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Abstract

Performance analysis of business processes is a real necessity of middle
and large-scale organizations that aim to achieve superior efficiency and
competitiveness. We propose a GSPN model for performance evaluation
of business processes. We show how fundamental concepts of Work-
flow Management can be represented through GSPN structures and how
to retrieve several valuable performance information from these models.
The models can also be used for correctness verification of the workflow
(soundness property).

1 Introduction

The concept of systems thinking is an important instrument for understanding
complex systems. In Management, systems thinking led to the conception of
Business Process Management (BPM) [9] and [10] - a point of view through
which the manager can see how the enterprise runs as a whole. It recognizes
that a change in one area of a system can affect other parts of the system. BPM
promotes business effectiveness and efficiency while striving for innovation, flex-
ibility and integration with technology. A business process is a collection of
related, structured activities to create a product or provide a service to meet
the needs of clients.

It is a common approach to use information systems to support Business
Process Management. Such systems are known as Business Process Manage-
ment Systems (BPMS) or Workflow Management Systems (WfMS) [6]. They
are employed for automating and monitoring the flow of activities and informa-
tion along the process. A WfMS receive a Workflow as input. A Workflow is a
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set of rules that govern the sequence of activities to get a more complex and col-
laborative work done. The Workflow design is a complicated time-consuming
process. Efficiency and correctness are two essential requirements for the design
of complex Workflows.

In this context, Petri Nets have been successfully applied as a formal tech-
nique for verification [1][13][12][3] and performance evaluation [8][16][11][15] of
business Workflows.

Generalized Stochastic Petri Nets (GSPN) [14] is a well known formalism
widely used for modeling and evaluating the performance of concurrent systems
with parallelism, synchronization, and resource dispute. We propose a GSPN
model for performance evaluation of business processes. We show how funda-
mental concepts of Workflow Management can be represented through GSPN
structures and how to retrieve several valuable performance information from
these models. The models can also be used for correctness verification of the
workflow (soundness property).

2 Building Blocks

This section presents the proposed models to represent Workflow systems and
to analyze the performance of such systems. Generalized Stochastic Petri Nets
(GSPN) are employed as modeling language. The stochastic model can be
studied in more detail in order to find relations between system’s variables
and other properties not easily recognized in an algorithmic-like approach. We
present several of these relations.

We start our discussion with the basic entities that must exist in a Workflow
system (Activities, roles, worklists and instances) and define GSPN models to
represent them. Furthermore, we provide a number of composition rules which
allow for the construction of complex business processes containing concur-
rence, synchronization, loops and so on. These structures are found in several
process notations, but there is a lack of uniformity in their terminology. For
this reason, we adopt the terminology provided by WfMC [7]. One can refer
to the WfMC glossary in order to find synonymous and related terms for a
specific notation.

Regarding expressiveness, the models present the following main character-
istics:

• represent simultaneous execution of multiple process instances;

• represent resources grouped in Roles that are responsible for executing
several Activities (shared resources);

• distinguish Work Items and ongoing Activity Instances;

• assume that Case arrival is a Poisson process;
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• assume that service times are exponentially distributed random variables.

Regardless of the assumption of exponential times, it is possible to approx-
imate any random distribution with rational Laplace transform by combining
exponential variables. Methods for modeling these distributions with GSPN
are well known [5][14] and can be applied in the proposed model in order to
improve its representativeness. However, this approach will not be taken into
consideration in this paper.

The following information can be obtained by this model:

• soundness verification;

• minimum number of resources demanded by each Role;

• number of ongoing Activity Instances;

• number of Work Items in each Worklist;

• number of available resources in each Role;

• mean time of Case processing (response time).

2.1 Basic Blocks

Next, we describe the basic structures for modeling Workflow and formulae for
calculating metrics about them.

A pool is a structure that groups the Roles that participate in the process.
In most notations, each Role is represented by a swimlane in the pool. When
an Activity is placed on that swimlane, it means that the respective Role is
responsible for the execution of that Activity.

Definition 1 (Pool). The Pool, denoted by P, contains the Roles that
participate in the Workflow. It is defined as a set P = {R1, R2, ..., RN}, where
each Ri is a Role identifier.

Definition 2 (Process Instance). Ongoing Process Instances are repre-
sented by tokens in the GSPN.

The fundamental structure in the Workflow model is the Activity model.
This model represents the execution of an Activity by a resource. Activities
are the atomic unity of work.

We used a labels notation to identify each Activity and Role, helping to
recognize the elements in the net associated with these structures. Hence, the
elements associated with an Activity expressed by the notation Ai(Rk, di) are
labeled by the same index i, while the Role is a place labeled by index k.
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Figure 1: Activity Model in GSPN

Definition 3 (Activity Model). An Activity Model is denoted by Ai(Rk, di),
where:

1. Rk ∈ P is the Role responsible for the execution of the Activity;

2. di ∈ R∗+ is the mean time delay for the Activity execution.

and corresponds to a GSPN, Ai(Rk, di) = (Pi, Ti, Πi, Ii, Oi, Hi,M
i
0, ωi),

which is defined as follows:

1. Pi = {Rk, Wi, Si}, where:

• Rk is a place that represents the Role Rk;

• Wi is a place for holding the Activity’s Work Items, called Worklist
place;

• Si is a place for containing the Activity Instances, called Service
place.

2. Ti = {qi, TACTIV ITY−i}, where:

• qi is an immediate transition, with ωi(qi) = 1 e Πi(qi) = 1;

• TACTIV ITY−i is a timed transition with mean delay di and infinite
server semantics.

3. and Ii, Oi, are such that:

(a) the pre-condition •qi = {Wi, Rk} and the post-condition qi
• = {Si};

(b) the pre-condition •TACTIV ITY−i = {Si} and the post-condition
TACTIV ITY−i

• = {Rk}.

We omit parameters Rk and di when they are not relevant for the context,
using the simplified notation “Ai” for referring to an Activity “Ai(Rk, di)”.

Fig. 1 presents the GSPN for the Activity Model.
This model can be used to represent both manual Activities and automated

Activities with limited resources. When an Activity is executed by a software
application (for example, a Web Service), it is usually possible to assume infinite

4



resources because the limit of parallel processing is defined by the machine’s
memory and processor and is likely to be enough for the demand. In these
cases, there are two options: 1) if the automated Activity is considered too
fast, it can be ignored in the model; 2) if, despite the assumption of infinite
resources, the time of execution is considered relevant, the Infinite Resource
Activity Model, presented bellow, can be used.

Definition 4 (Infinite Resource Activity Model). An Infinite Resource
Activity Model, denoted by Aa

i (di), where di is the mean execution time delay,
corresponds to a GSPN containing:

1. a place Si, called Service place;

2. a timed infinite-server transition TACTIV ITY−i with mean delay di, pre-
condition •TACTIV ITY−i = {Si} and empty post-condition.

Sometimes, resources in more than one Role can handle the same Activity.
For example, a supervisor can decide that himself will execute an Activity
that is usually executed by a subordinate. This situation can be though as
a set of Activities sharing the same worklist. Each resource is assigned to its
own Activity, but work items are shared between them. For this situation we
provide the structure named Multiple-Role Activity Model.

Definition 5 (Multiple-Role Activity Model). A Multiple-Role Activity
Model is denoted by Am

i (Pi, Di), where:

1. Pi ⊆ P is the set of Roles that can execute the Activity;

2. Di : Pi → R∗+ is a function that relates each Role to a time delay that is
the mean time for the Activity execution by that Role.

and corresponds to a GSPN, Am
i (Pi, Di) = (Pi, Ti, Πi, Ii, Oi, Hi,M

i
0, ωi),

which is defined as follows:

1. Pi = {Wi, Rk, Sk
i | Rk ∈ Pi}, where:

• Wi is a place for holding the Activity’s Work Items, called Worklist
place;

• Each place Rk is a place that represents a Role Rk;

• Each place Sk
i is a place for containing the Activity Instances that

are being executed by Role Rk, called Service places.

2. Ti = {qk
i , T k

ACTIV ITY−i | Rk ∈ Pi}, where:

• Each qk
i is an immediate transition, with ωi(qk

i ) = 1 and Πi(qk
i ) = 1;

• Each T k
ACTIV ITY−i is a timed transition with mean delay Di(Rk)

and infinite server semantics.
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3. and Ii, Oi, are such that:

(a) the pre-condition •qk
i = {Wi, Rk} and the post-condition qk

i
• =

{Sk
i }, for all Rk ∈ Pi;

(b) the pre-condition •T k
ACTIV ITY−i = {Sk

i } and the post-condition
T k

ACTIV ITY−i

• = {Rk}, for all Rk ∈ Pi.

Activity models are composed between them by applying composition rules,
which will be defined in later sections. Through these compositions Sub-
processes are created.

A Sub-process is a GSPN that attends to the restrictions presented by
Def. 6. We denote by SProc the set of all GSPNs that form a valid Sub-process.

Definition 6 (Sub-process). A Sub-process is a GSPN
U = (PU , TU , ΠU , IU , OU , HU ,MU

0 , ωU ), such that

1. there exists a unique place Sp ∈ PU , such that •Sp = ∅, called Starting
Place;

2. there exists a non-empty set of transitions Dt ⊆ TU , such that ∀t ∈
Dt : t• = ∅, called Departing Transitions;

3. for each token arriving at Starting Place Sp, exactly one token departs
from the Sub-process through any one of the transitions in the set Dt.

The simplest Sub-process is that of a single Activity Model. The Starting
Place of the Activity Model Ai is place Wi and the Departing Transitions is
a set defined by Dt = {TACTIV ITY−i}. Hence, every Activity is also a Sub-
process.

Fig. 2 displays a Process Definition represented in the BPMN notation [17].
It exemplifies a process containing a single Activity. The input circle is the
start event, which represents the beginning of the Workflow execution and the
output circle is the end event, which represents the end of the execution.

P
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w

im
la

n
e
 R

k

Activity Ai

Figure 2: BPMN Workflow with a single Activity

When Sub-processes are composed, their respective GSPNs are united.
Def. 7 presents a definition for GSPN union operation.
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Definition 7 (GSPN Union). Let GSPNSet be the set of all existing
GSPNs, the operation of uniting two GSPNs can be defined as follows:

∪ : GSPNSet ×GSPNSet → GSPNSet

G3 = G1 ∪G2, where:

1. G1 = (P1, T1, Π1, I1, O1,H1, M
1
0 , ω1);

2. G2 = (P2, T2, Π2, I2, O2,H2, M
2
0 , ω2);

3. G3 = (P3, T3, Π3, I3, O3,H3, M
3
0 , ω3);

4. P3 = P1 ∪ P2;

5. T3 = T1 ∪ T2;

6.

I3(p, t) =





I1(p, t) if p ∈ P1 and t ∈ T1

I2(p, t) if p ∈ P2 and t ∈ T2

0 otherwise

7.

O3(p, t) =





O1(p, t) if p ∈ P1 and t ∈ T1

O2(p, t) if p ∈ P2 and t ∈ T2

0 otherwise

8.

H3(p, t) =





H1(p, t) if p ∈ P1 and t ∈ T1

H2(p, t) if p ∈ P2 and t ∈ T2

0 otherwise

9.

ω3(t) =
{

ω1(t) if t ∈ T1

ω2(t) if t ∈ T2

10.

Π3(t) =
{

Π1(t) if t ∈ T1

Π2(t) if t ∈ T2

11.

M3
0 (p) =

{
M1

0 (p) if p ∈ P1

M2
0 (p) if p ∈ P2

When performing the union of GSPNs, two elements of the same name
present in the original GSPNs are merged in the resulting GSPN. For example,
if G1 contains a place named P and G2 also contains a place P , the union
will cause these places to be considered the same single place in the resulting
GSPN. This behavior is coherent with the mathematical union operator and
is desired in our model because we want Role places to be merged when they
represent the same Role. Def. 8 explicit this property.
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Definition 8 (Role Places Merging). Let Rk ∈ P be a Role and A1(Rk, d1),
A2(Rk, d2) any two Activities. If these Activities are composed, place Rk of
each model will be the same single place in the resulting GSPN.

Following, we define some auxiliary functions to be used along this section.

Definition 9 (Starting Place Function). For a Sub-process
U = (PU , TU , ΠU , IU , OU ,HU , MU

0 , ωU ), we denote by Start(U) the unique
place Sp ∈ PU such that •Sp = ∅, called the Starting Place of U .

Definition 10 (Departing Transitions Function). For a Sub-process
U = (PU , TU , ΠU , IU , OU , HU ,MU

0 , ωU ), we denote by End(U) the set of transi-
tions Dt ⊆ TU such that ∀t ∈ Dt : t• = ∅, which correspond to the Departing
Transitions set of U .

A Sub-process model represents the Process Definition. In order to evaluate
the performance of the Workflow, one must insert this model in a system,
where customers and resources are present. We define this as Workflow System,
defined in Def. 11.

Definition 11 (Workflow System). A Workflow System, defined as a tuple
Wf = (λ,P, U,Emp), where:

1. λ ∈ R∗+ is the arrival rate, which indicates the rate at which Cases are
produced to the system;

2. P is a Pool;

3. U ∈ SProc is the Sub-process model that contains the Process Definition;

4. Emp : P → N+ is a Employing function, which assigns a number of
resources to each Role.

is equivalent to a GSPN which is composed by U with the following additional
elements:

1. a timed transition TARRIV AL with mean delay d = 1/λ, empty pre-
condition and post-condition given by TARRIV AL

• = {Start(U)};
2. a place PD with pre-condition •PD = End(U);

3. an immediate transition qD with pre-condition •qD = {PD} and empty
post-condition;

4. a initial marking function M0 such that M0(Rj) = Emp(rj),∀rj ∈ P,
where Rj ∈ PU is the place representing role rj ∈ P.
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Figure 3: Simplest Workflow System

Fig. 3 presents the simplest Workflow System model. The Sub-process
contains just one Activity and is highlighted by the dashed square. Notice that
place R receives an initial marking K, corresponding to the value of Emp(R).

Place PD and transition qD together can be viewed as a Sub-process, which
we name Case Departure Point. This Sub-process can be used in compositions
which have the end of the process as target.

2.2 Metrics for the Basic Blocks

The following metrics can be evaluated for these basic blocks.

Definition 12 (Minimum Number of Resources for a Role). Let Rk be a
Role with K resources that perform a set of activities
A1(Rk, d1), A2(Rk, d2), . . . , AN (Rk, dN ) in a Workflow System, a stationary so-
lution for this Workflow System exists only if:

K >

N∑

i=1

λidi ,

where λi is the rate at which Cases arrive at Activity Ai.

Notice that arrival rate for each Activity can be different, due to the char-
acteristics of the Case flow inside the process.

Definition 13 (Expected Number of Activity Instances). For an
Activity Ai with mean delay di and arrival rate λi, provided with sufficient
resources, the expected number of Activity Instances during the Workflow ex-
ecution is given by:

E(Si) = λidi .
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Table 1: Metrics for the basic models
Metric Expression

Minimum Number of Resources K >
∑N

i=1 λidi

Expected Number of Activity Instances E(S) = λd

Expected Number of Available Resources E(R) = K −∑N
i=1 E(Si)

Expected Number of Work Items E(W ) = expectation of place W
Expected Number of Cases E(n) = E(W ) + E(S)
Mean Response Time E(τ) = E(n)/λ

Definition 14 (Expected Number of Available Resources). For a Role Rk

with K resources and performing Activities A1, . . . , AN , the mean number of
available resources in the Workflow execution is given by:

E(Rk) = K −
N∑

i=1

E(Si) ,

where E(Si) is the expected number of instances of Ai.

Definition 15 (Expected Number of Work Items). For an Activity Ai,
the mean number of Work Items of this Activity during the Workflow execution
is equal to the expected marking of place Wi.

Definition 16 (Expected Number of Cases). For an Activity Ai, the
mean number of Cases being processed by this Activity during the Workflow
execution is given by:

E(ni) = E(Wi) + E(Si) .

Definition 17 (Expected Activity Response Time). Let Ai be an Activity
with Case arrival rate λi and mean service time di, the mean Activity’s response
time is given by:

E(τi) =
E(ni)

λi
,

where E(ni) is the mean number of Cases in Ai.

Table 1 summarizes the metrics defined for the basic models.

3 Composition Rules

The composition of basic structures allows for the creation of complex Sub-
processes. For this purpose, we provide a set of composition rules (or opera-
tors). Each operator composes the Sub-processes in a different manner, creating
different flow relations between them.
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Figure 4: Sequence composition (SEQ)

Sub-processes composition is performed by union of their GSPN models
and the addition of auxiliary (control) elements. For the sake of simplicity,
we assign simple names to these auxiliary elements. However, one must keep
in mind that such elements must receive unique labels when constructing the
model, in order to avoid homonymous elements, which are merged by union
operations.

3.1 Sequence

This operator combines to Sub-processes, U1 and U2, with a sequential relation
such that U2 is executed after U1. The model is constructed by adding an arc
connecting each departing transition of U1 to the starting place of U2. This is
illustrated in Fig. 4.

Definition 18 (Sequence Operator – SEQ).

SEQ : SProc × SProc → SProc

SEQ(U1, U2) = UR, where:

UR = U1 ∪ U2, with the addition of an arc such that:

1. Start(UR) = Start(U1);

2. End(UR) = End(U2);

3. •Start(U2) = End(U1).

For notation simplification, it is possible to use a more general operator
SEQ(U1, U2, . . . , UN ) (multiple arguments), as an abbreviation to the com-
position SEQ(U1, SEQ(U2, . . . SEQ(UN−1, UN ))), without differences in the
resulting model.

3.2 Metrics for the Sequence

The following metrics can be obtained for a sequential composition Sub-process.
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Definition 19 (Internal Arrival Rate in the Sequence). Let SEQ(U1, U2)
be a Sub-process with Case arrival rate λ, the rates λ1, λ2 of Case arrival in
each component U1, U2, respectively, are given by:

λ1 = λ2 = λ

Definition 20 (Expected Number of Cases in the Sequence). Let SEQ(U1, U2)
be a Sub-process, the expected number of Cases inside this Sub-process during
Workflow execution is given by:

E(nSEQ) = E(n1) + E(n2) ,

where E(ni) is the mean number of Cases inside the Sub-process Ui.

Definition 21 (Expected Response Time of the Sequence). Let SEQ(U1, U2)
be a Sub-process, the mean time spent by a Case executing the Sub-process is
given by:

E(τSEQ) =
E(nSEQ)

λ
,

where λ is the arrival rate at the Sub-process.

3.3 Alternative Path (XOR)

This operator combines a set of N Sub-processes (U1, . . . , UN ) in a way that
they are alternatively executed. Each Case arriving is forwarded to one of these
Sub-processes (which we call paths), according to a probability distribution
defined by a function Pr. For each Sub-process Ui, a probability Pr(Ui) for
the Case be routed to that Sub-process is assigned.

This composition is modeled by the addition of a place PXOR, which is the
starting place of the Sub-process, a set of immediate transitions qx1, . . . , qxN ,
which removes a token from PXOR and put it in the starting place of Sub-
process U1, . . . , UN , respectively. Each transition receive a weight ω(qxi) equal
to the probability Pr(Ui) of the Sub-process Ui be chosen.

This model is shown in Fig. 5.

Definition 22 (Alternative Path Operator – XOR). Let U1, U2, . . . , UN

be Sub-processes and Pr a probability distribution function

XOR : SProc × . . .× SProc × (SProc → R[0; 1]) → SProc

UR = XOR(U1, U2, . . . , UN , P r), where:

1. Let GXOR be a GSPN containing a place PXOR and immediate transi-
tions
qx1, . . . , qxN , with PXOR

• = {qxi}, i = 1, . . . , N ;
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Figure 5: Alternative path composition (XOR)

2. ω(qxi) = Pr(Ui), i = 1, . . . , N ;

3. UR = U1 ∪ . . . ∪ UN ∪GXOR, with the addition of arcs such that:

(a) Start(UR) = PXOR;
(b) End(UR) = End(U1) ∪ . . . ∪ End(UN );
(c) •Start(Ui) = {qxi}, i = 1, . . . , N .

3.4 Metrics for the Alternative Path

The following metrics can be measured for the Alternative Path composition.

Definition 23 (Internal Arrival Rate in the Alternative Path). Let
XOR(U1, U2, . . . , UN , P r) be a Sub-process with arrival rate λ, the internal
arrival rates λ1, . . . , λN in each of its components U1, . . . , UN , respectively, is
given by:

λi = λPr(Ui), i = 1, . . . , N .

Definition 24 (Expected Number of Cases in the Alternative Path). Let
XOR(U1, U2, . . . , UN , P r) be a Sub-process, the expected number of Cases in-
side it during Workflow execution is given by:

E(nXOR) =
N∑

i=1

E(ni) ,

where E(ni) is the mean number of Cases in Sub-process Ui.

Definition 25 (Expected Response Time of the Alternative Path). Let
XOR(U1, U2, . . . , UN , P r) be a Sub-process, the mean time spent by a Case in
the execution of this Sub-process is:

E(τXOR) =
E(nXOR)

λ
,
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Figure 6: Parallel composition (AND)

where λ is the arrival rate at the Sub-process.

3.5 Parallel Execution (AND)

This operator creates a Sub-process that consists of the parallel execution of
N other Sub-processes that compose it. Each arriving Case is sent to all of
these Sub-processes simultaneously to be processed by them. Synchronization
occurs before the departure of the Case, in a way that it leaves the Sub-process
only after every parallel process have been done.

This composition is modeled by the addition of an initial structure, re-
sponsible for splitting the tokens that arrive and another structure in the exit,
responsible for the synchronization and for merging the tokens back. This
model is presented in Fig. 6.

Definition 26 (Parallel Operator – AND).

AND : SProc × . . .× SProc× → SProc

UR = AND(U1, U2, . . . , UN ), where:

1. Let GAND be a GSPN containing place PAND, immediate transition
qsplit, with PAND

• = {qsplit}, a set of places {Z1, . . . , ZN} and another
immediate transition qz, such that •qz = {Z1, . . . , ZN};

2. UR = U1∪ . . .∪UN ∪GAND, with the addition of arcs in such a way that:

(a) Start(UR) = PAND;

(b) End(UR) = {qz};
(c) •Start(Ui) = qsplit, i = 1, . . . , N ;

(d) •Zi = End(Ui), i = 1, . . . , N .
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3.6 Metrics for the Parallel Execution

The following metrics can be obtained for the Parallel Execution Sub-process.

Definition 27 (Internal Arrival Rate in the Parallel Execution). Let
AND(U1, U2, . . . , UN ) be a Sub-process with Case arrival rate λ, the internal
arrival rates λ1, . . . , λN in each component U1, . . . , UN , respectively, is given
by:

λi = λ, i = 1, . . . , N .

Definition 28 (Expected Number of Cases in Parallel Execution). Let
AND(U1, U2, . . . , UN ) be a Sub-process, the expected number of Cases inside
it in the Workflow Execution is given by:

E(nPAR) =
1
N

N∑

i=1

[
E(ni) + E(Zi)

]
,

where E(ni) is the mean number of Cases inside Sub-process Ui and E(Zi) is
the expected marking of place Zi.

Definition 29 (Expected Synchronization Time of the Parallel Execution).
Let AND(U1, U2, . . . , UN ) be a Sub-process, the mean time spent by a Case
waiting for synchronization in the Sub-process is given by:

E(ζPAR) =
1

Nλ

N∑

i=1

E(Zi) ,

where λ is the Case arrival rate at the Sub-process and E(Zi) is the expected
marking of place Zi.

Definition 30 (Expected Response Time in Parallel Execution). Let
AND(U1, U2, . . . , UN ) be a Sub-process, the mean time spent by a Case inside
this Sub-process is:

E(τPAR) =
E(nPAR)

λ
,

where λ is the Case arrival rate at the Sub-process.

3.7 Iteration

An Iteration is a Sub-process executed several times for processing the same
Case. In one or more points of the Sub-process’ execution a decision is made
about whether the Case must continue iterating or leave the structure.

The iterative structure in our model needs that a single entry point exist
for the iteration, but several exit points are allowed. When there is only one
exit point and no Activity exists in the return path from the exit point to the
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entry point, we simplify the structure and call it Simple Iteration, created by
the LOOP operator. Otherwise, we use the more general model, called Grid
Iteration, constructed by the GRID-LOOP operator.

Fig. 7 depicts the Simple Iteration model and Fig. 8 shows a Grid Iteration
model example, with two exit points.

Note that Simple Iteration is created by a single Sub-process while Grid
Iteration is a more complex composition. It is worthy of notice that the Grid
Iteration contains both the iterative path – i.e. the Sub-processes that will
execute repeatedly – and the exiting paths – i.e. the Sub-process executed
after the Case leaves through each exit point (see Fig. 8). This is necessary to
assure correctness of the model while maintaining uniformity in the composition
rules.

A probability must be assigned to each exit point, indicating the probabil-
ity of a Case to exit from the loop by that point. This is a constant value,
independent of the number of iterations executed.

The LOOP operation, which creates a Simple Iteration, is created by adding
a decision structure to the end of the Sub-process. Two immediate transitions
are used to divide the flow. One corresponds to the departure while the other
is used to return the token to the starting place. This model is presented in
Fig. 7.

Definition 31 (Simple Iteration Operator – LOOP). Let U1 be a Sub-
process and θ the probability of leaving the iterative loop, the Simple Iteration
operator can be defined as

LOOP : SProc × R[0; 1] → SProc

LOOP (U1, θ) = UR, where:

1. Let GLOOP be a GSPN consisting of a place PL and two immediate
transitions qback and qout, such that PL• = {qback, qout};

2. ω(qout) = θ;

3. ω(qback) = 1− θ;

4. UR = U1 ∪GLOOP , with the addition of arcs in such a way that:

(a) ∀t ∈ End(U1), t• = {PL};
(b) qback• = {Start(U1)};
(c) Start(UR) = Start(U1);

(d) End(UR) = {qout}.

The GRID-LOOP operator model is created by the addition of decision
structures between the iterating Sub-processes, representing each exit point.
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In these points, two immediate transitions divide the flow, routing tokens two
the next looping Sub-process or to the exit path Sub-process, according to a
probability distribution function Pr. The last Sub-process is connected to the
starting place of the structure, defining the cycle. This model is outlined in
Fig. 8.

Definition 32 (Grid Iteration Operator – GRID-LOOP). Let k be the
number of exit points p1, . . . , pk; let UI1, . . . , UIk+1 be Sub-processes that com-
pose the iterative cycle, intercalated by the exit points and UO1, . . . , UOk be
Sub-processes targeted by each one of the exit points, respectively; and let
Pr be a probability distribution function that assigns to each point pi an exit
probability Pr(pi), i = 1, . . . , k, we define the GRID-LOOP operator as follows

GRID − LOOP : P(SProc)× P(SProc)× (SProc → R[0; 1]) → SProc

GRID − LOOP ({UI1, . . . , UIk+1}, {UO1, . . . , UOk}, P r) = UR, where:

1. Let GGLOOP be a GSPN containing k places PL1, . . . , PLk; k immediate
transitions qo1 . . . , qok; and other k immediate transitions qb1, . . . , qbk,
with:

(a) ω(qoi) = Pr(pi), i = 1, . . . k;
(b) ω(qbi) = 1− Pr(pi), i = 1, . . . k;

2. UR = UI1 ∪ . . . ∪ UIk+1 ∪ UO1 . . . ∪ UOk ∪ GGLOOP , with the addition
of arcs in such a way that:

(a) PLi
• = {qoi, qbi}, i = 1, . . . k;

(b) •PLi = End(UIi), i = 1, . . . k;
(c) qbi

• = {Start(UIi+1)}, i = 1, . . . k;
(d) qoi

• = {Start(UOi)}, i = 1, . . . k.
(e) ∀t ∈ End(UIk+1), t• = {Start(UI1)};
(f) Start(UR) = Start(UI1);
(g) End(UR) = End(UO1) ∪ . . . ∪ End(UOk).

3.8 Iteration Metrics

The following metrics can be obtained from Simple Iteration Sub-process and
from Grid Iteration Sub-process.

Definition 33 (Internal Arrival Rate in Simple Iteration). Let
LOOP (U1, θ) be a Sub-process with Case arrival rate λ, the internal arrival
rate λ1 in Sub-process U1 is given by:

λ1 =
λ

θ
.
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UI1

Start(UI1) [ (p )Pr 1 ]
PL1

qb1

qo1

Start(UO1)

Start(UI2)
[ (p )Pr 2 ]

PL2

qb2

qo2

Start(UO2)

Start(UI3)

UI2

UI3

UO2

UO1

Figure 8: Grid-form Iterative Composition with two exit points (GRID-LOOP)

Definition 34 (Expected Number of Cases in Simple Iteration). Let
LOOP (U1, θ) be a Sub-process, the expected number of Cases in this Sub-
process in the Workflow execution is:

E(nLOOP ) = E(n1) ,

where E(n1) is the expected number of Cases in Sub-process U1.

Definition 35 (Expected Time in the Simple Iteration). Let LOOP (U1, θ)
be a Sub-process, the mean time spent by a Case in this Sub-process is given
by:

E(τLOOP ) =
E(nLOOP )

λ
,

where λ is the Case arrival rate.

The equation in Def. 35 considers the time necessary for the Case to exit
from the structure. Hence, it is the sum of the times spent in each cycle.

Definition 36 (Internal Arrival Rate in Grid Iteration). Let GRID −
LOOP ({UI1, . . . , UIk+1}, {UO1, . . . , UOk}, P r) be a Sub-process with Case
arrival rate λ, the arrival rates λI

i in each Sub-process UIi is calculated as
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follows:
λI

1 =
λ∑k

j=1 Pr(pj)
;

λI
i = λI

1

i−1∏
v=1

(1− Pr(pv)) .

And the arrival rate λO
i in each Sub-process UOi is given by:

λO
i = λI

1

i∏
v=1

Pr(pv) .

Definition 37 (Expected Number of Cases in Grid Iteration). Let
GRID−LOOP ({UI1, . . . , UIk+1}, {UO1, . . . , UOk}, P r), be a Sub-process, the
expected number of Cases in this Sub-process in the Workflow execution is
computed by:

E(nG−LOOP ) =
k+1∑

i=1

E(nI
i) +

k∑

i=1

E(nO
i) ,

where E(nI
i) is the mean number of Cases in Sub-process UIi and E(nO

i) is
the mean number of Cases in Sub-process UOi.

Usually, we are most interested in the number of Cases only in the iteration
cycle, not the complete structure. This value corresponds to:

E(nI
G−LOOP ) =

k+1∑

i=1

E(nI
i) .

Definition 38 (Expected Time in the Grid Iteration Cycle). Let
GRID−LOOP ({UI1, . . . , UIk+1}, {UO1, . . . , UOk}, P r) be a Sub-process, the
expected time spent by a Case inside the cycle part of the structure is given
by:

E(τ I
G−LOOP ) =

E(nI
G−LOOP )
λ

,

where λ is the Case arrival rate at the Sub-process.

The mean total time in the GRID-LOOP structure is given by the sum of
times in the cycle part and in the last Sub-process, which is executed after an
exit point is taken. The probability of each path being taken must be considered
for obtaining the final value.

Definition 39 (Total Expected Time in Grid Loop). Let
GRID−LOOP ({UI1, . . . , UIk+1}, {UO1, . . . , UOk}, P r) be a Sub-process, the
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mean time spent by a Case in this Sub-process in the Workflow execution is
computed by:

E(τG−LOOP ) = E(τ I
G−LOOP ) +

k∑
v=1

v∏

i=1

Pr(pi)E(τO
i) ,

where E(τO
i) is the expected time spent inside Sub-process UOi.

3.9 Multiple Paths with Synchronization (OR)

This composition correspond to patterns Multi-Choice (WCP6) and Structured
Synchronizing Merge (WCP7). It represents a point in the flow where a Case
can be routed to one or more paths in a non-exclusive and parallel way. In
the departure side, instances that gone through a single path can leave im-
mediately, while instances that gone through multiple paths must wait for the
synchronization with its counterparts before leaving.

For the sake of simplification, we present the operator for the case we have
two Sub-processes, U1 and U2. The Case can be routed to the first, the last or
both. This model can be generalized to N paths without much difficulty.

We assign a probability α for the Case to decide for going to U1, β for the
decision for U2 and π for the decision of going to both paths in parallel.

The model for this composition is displayed in Fig. 9. This model requires
the use of seven auxiliary places. A place POR represents the decision point.
Two places, C1 and C2, collect tokens that depart from U1 and U2, respec-
tively. Other two places, H1 and H2, are used to count the number of tokens
that are inside Sub-processes U1 and U2, respectively, which are instances of
a replicated Case. Finally, places Z1 and Z2 are used to synchronize tokens
which correspond to the same Case, once they depart from each Sub-process.

When a Case arrives at POR, immediate transitions are enabled. Each one
represents one of the three possible decisions. If Sub-process U1 is chosen, the
token is removed from POR and sent to the starting place of U1. Analogously,
a token is put in U2 when it is chosen. When the choice is for going to both
paths in parallel, the token is removed from POR and one token is sent to each
Sub-process. Also, places H1 and H2 receive one token each, indicating that
there is one token in U1 and another in U2 that are representing the same Case.

Once a token departs from one of the Sub-processes, say, U1, the token in
H1 is removed and one token is put in Z1, where it will wait for synchronization
until a token exit from U2 and is put in Z2.

If the Case have decided for going through a single path, no token is put in
H1 or H2. Hence, the token that departs from the Sub-process is immediately
routed to outside the structure.

Definition 40 (Multiple Path with Synchronization Operator – OR). Let
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U1, U2 be two Sub-processes, this operator is defined as

OR : SProc × SProc × R+ × R+ × R+ → SProc

OR(U1, U2, α, π, β) = UR, where:

1. Let GOR be a GSPN containing a place POR and immediate transitions
q1, q2, qs, such that

(a) POR
• = {q1, q2, qs};

(b) ω(q1) = α;

(c) ω(q2) = β;

(d) ω(qs) = π.

and places C1, C2,H1,H2, Z1, Z2, immediate transitions qbp1, qsc1, qbp2, qsc2, qz,
such that:

(a) •H1 = •H2 = {qs};
(b) Ci

• = {qbpi, qsci}, i = 1, 2;

(c) Hi
• = {qsci}, i = 1, 2;

(d) Hi
◦ = {qbpi}, i = 1, 2;

(e) qsci
• = {Zi}, i = 1, 2;

(f) •qz = {Z1, Z2};
(g) ω(qbp1) = α/(α + π);

(h) ω(qsc1) = π/(α + π);

(i) ω(qbp2) = β/(β + π);

(j) ω(qsc2) = π/(β + π).

2. UR = U1 ∪ U2 ∪GXOR, with the addition of arcs in such a way that:

(a) •Start(Ui) = {qi, qs}, i = 1, 2;

(b) •Ci = End(Ui), i = 1, 2;

(c) Start(UR) = POR;

(d) End(UR) = {qbp1, qbp2, qz}.
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Figure 9: Multiple path with synchronization composition (OR)

3.10 Metrics for Multiple Path with Synchronization

We can obtain the following metrics for Multiple Path with Synchronization.

Definition 41 (Internal Arrival Rate at Multiple Path with Synchroniza-
tion). Let OR(U1, U2, α, π, β) be a Sub-process with Case arrival rate λ, the
internal arrival rates λ1, λ2 at each component U1, U2, respectively, is calculated
by:

λ1 = (α + π)λ ;

λ2 = (β + π)λ .

Note that λ1 + λ2 > λ. The synchronization structure assures that the
departure rate of the structure is equal to λ.

This structure contain tokens that are themselves individual Cases and also
tokens that are copies of an split Case. When calculating metrics for the
structure, this must be taken into consideration. For computing the number
of Cases in the structure, we firstly sum the contents of places Z1 and Z2.
These places contain tokens that have already leaved the Sub-processes. The
value of this sum is divided by the half, because there are two tokens for each
Case. Then, we sum to this result the number of tokens that are inside each
Sub-process. The result will contain tokens that represent the same Case in
different Sub-processes. To get the correct number of Cases, we subtract from
this result the number of Cases that were replicated (and are still inside the
Sub-processes), which is obtained from places H1 and H2.

Definition 42 (Expected Number of Cases in Multiple Path with Synchro-
nization). Let OR(U1, U2, α, π, β) be a Sub-process, the expected number of
Cases inside this Sub-process in the Workflow execution is computed by:

E(nOR) = E(n1) + E(n2) +
1
2

[
E(Z1) + E(Z2)

]
− 1

2

[
E(H1) + E(H2)

]
,

where E(ni) is the expected number of Cases in Ui, E(Zi) is the expected
marking of place Zi and E(Hi) is the expected marking of place Hi.
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Definition 43 (Expected Time in Multiple Path with Synchronization).
Let OR(U1, U2, α, π, β) be a Sub-process, the mean time spent by a Case in
this Sub-process is given by:

E(τOR) =
E(nOR)

λ
,

where λ is the Case arrival rate at the Sub-process.

3.11 Interleaving

This composition represents the same situation found in the pattern Interleaved
Routing (WCP40). A set of Activities must be executed sequentially, but an
order in which they must be taken is not defined. Generalizing the pattern,
this operator allows the inclusion of Sub-processes in the structure.

The model generates one token for each Sub-process, as like they could be
executed in parallel, but use a mutex to assure that they will be executed in a
mutual exclusive way. An auxiliary synchronization place is added to the final
of each Sub-process to guarantee that the Case will depart from the structure
only after all Sub-processes have finished processing.

When a token arrives at the starting place PINTER, place PMUT , which
corresponds to the mutex, and places H1, . . . ,HN receive one token each. Place
Hi indicates that Sub-process Ui needs to be executed.

When the execution of a Sub-process Ui is finished, a token is put in place
Zi, indicating that the Sub-process has been already executed and a token is
returned to place PMUT . When all Sub-processes are concluded, the departing
transition qz fires, removing a token from places Z1, . . . , ZN and PMUT .

Notice that each Case adds its own token to the mutex, which allows that
independent Cases are executed in parallel. There is no problem for not being
able to differentiate Cases in this approach, because we are interested only in
the number of executions of each Sub-process and not the data processed by
them. Thus, the differentiation is not relevant for our interest.

The model is presented in Fig. 10.

Definition 44 (Interleaving Operator – INTER). Let U1, U2, . . . , UN

be Sub-processes

INTER : SProc × . . .× SProc → SProc

INTER(U1, U2, . . . , UN ) = UR, where:

1. Let GINTER be a GSPN containing places PMUT ; PINTER; H1, . . . , HN ;
and Z1, . . . , ZN ; and immediate transitions qs; qz; e qw1, . . . , qwN , such
that:

(a) PINTER
• = qs;
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Figure 10: Interleaving composition (INTER)

(b) qs• = {PMUT ,H1, . . . , HN};
(c) Hi

• = qwi, i = 1, . . . , N ;

(d) PMUT
• = {qw1, . . . , qwN , qz};

(e) •qz = {Z1, . . . , ZN}.
2. UR = U1 ∪ . . . ∪ UN ∪ GINTER, with the addition of arcs in such a way

that:

(a) qwi
• = {Start(Ui)}, i = 1, . . . , N ;

(b) •Zi = End(Ui), i = 1, . . . , N ;

(c) •PMUT = {qs} ∪ End(U1) ∪ . . . ∪ End(UN );

(d) Start(UR) = PINTER;

(e) End(UR) = {qz}.

3.12 Metrics for Interleaving

The following metrics can be computed for the Interleaving model.

Definition 45 (Internal Arrival Rate in Interleaving). Let
INTER(U1, U2, . . . , UN ) be a Sub-process with Case arrival rate λ, the internal
arrival rates λ1, . . . , λN in each component U1, . . . , UN , respectively, is given
by:

λi = λ, i = 1, . . . , N .

Definition 46 (Expected Number of Cases in Interleaving). Let
INTER(U1, U2, . . . , UN ) be a Sub-process, the expected number of Cases inside
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this Sub-process in the Workflow execution is:

E(nINTER) =
N∑

i=1

E(ni) ,

where E(ni) is the expected number of Cases in Ui.

Definition 47 (Expected Time for Interleaving). Let INTER(U1, U2, . . . , UN )
be a Sub-process, the mean time spent by a Case in this Sub-process is given
by:

E(τINTER) =
E(nINTER)

λ
,

where λ is the arrival rate at the Sub-process.

It can be noticed from these metrics that the average performance of the
Interleaving is the same of a Sequence. This is reasonable since sub-processes
are actually executed in sequence, despite the absence of a pre-defined order.
This also reveals that the performance of a Sequence composition in the average
is the same no matter how the sub-processes inside it are ordered.

3.13 Sub-process Elimination

Sometimes, it is desired that one Sub-process in the composition is eliminated.
For example, in an Alternative Path when there is a path that just routes to
the departure, without executing nothing. In these situations, the Sub-process
can be eliminated by the operation in Def. 48.

Definition 48 (Sub-process Elimination). Let U be a Sub-process with
St = Start(U) e Dt = End(U), it is eliminated from the Workflow by the
following steps:

1. ∀p : t ∈ Dt,O(t, p) > 0 | •p = •St;

2. ∀t ∈ •St | O(t, St) = 0.

4 Analyzing Workflow Through the GSPN Mod-
els

This section describes techniques to evaluate Workflows using the GSPN model
proposed in this work.

The same GSPN model can be employed to evaluate the correctness as well
as the performance of the modeled Sub-process. Depending on the objective,
the Sub-process must be inserted into the corresponding Workflow structure.
Correctness is verified through the Workflow Soundness Model and performance
is evaluated through the Workflow System Model.
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4.1 Soundness

The minimum necessary conditions for a Workflow to be correct were defined
by van der Aalst with his Soundness property [2], as follows:

Soundness. A process is sound if it contains no unnecessary tasks and
every Case submitted to the process is completed in full and with no references
to it remaining in the process.

For qualitative analysis of the Workflow, the Sub-process model must be
set up as defined by the Workflow Soundness Model in Def. 49. The objective
of this analysis is to verify logical properties regarding the Workflow. Some
typical errors [2] that can be found through this analysis are:

• Activities without input conditions – conditions required for executing
the Activity are undefined;

• Activities without output conditions – the execution of such Activities
has no effect on the Case processing;

• Dead Activities – the system never reaches an state in which the Activity
can be executed;

• Deadlock – Case processing is blocked and a condition that could unblock
the process can never be reached;

• Livelock – the system is locked in a never-ending cycle, where the exit
condition will never occur;

• Activities still to be executed after the Case has departed from the pro-
cess;

• Tokens are retained in the system after the conclusion of the Case pro-
cessing.

Verifying the Soundness of a GSPN Sub-process model corresponds to ver-
ify liveness and boundedness in our Workflow Soundness Model, according to
Def. 50.

Definition 49 (Workflow Soundness Model). The Workflow Soundness
Model of a Sub-process U is a GSPN GU such that:

1. GU = U , with the following modifications:

(a) Let Emp : P → N+ be a employing function, which assigns a number
of resources to each Role;

(b) •Start(U) = End(U);

(c) ∀rk ∈ P, M0(Rk) = Emp(rk), where Rk is a place in GU that rep-
resents the Role rk;
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Figure 11: Workflow Soundness Model

(d) M0(Start(U)) = 1.

Definition 50 (Soundness Verification). Let U be a Sub-process and
WSU be the Workflow Soundness Model of U , the Sub-process U is Sound if
and only if WSU is live and bounded.

The composition rules presented in Section 3 ensure that the resulting
GSPN model for the Workflow will be sound if the composing Sub-processes
are sound.

4.2 Performance Analysis

Once the correctness of the model is verified through the Workflow Soundness
Model, it is possible to evaluate the performance of the Sub-process represented
through the model. For this purpose, the Workflow System Model, described
in Def. 11, must be used.

Two approaches can be adopted:

• Transient analysis – evaluates the system behavior for a period of time
after it starts executing;

• Stationary analysis – evaluates the behavior of the system when it
reaches the equilibrium state.

The methods for obtaining these solutions for GSPNs are well-known [14][4].
Notice that the Workflow System model is not bound limited, i.e., place

markings can theoretically grow to infinity. However, if the minimum number
of resources is provided, the system reaches an equilibrium state, which is
its stationary solution. We provided formulae for analytically obtaining the
stationary solution of a number of metrics. Other metrics must be calculated
through simulation.

5 Conclusion

In this technical report we present the results of the master’s thesis of the first
author. We formally defined an stochastic representation for business work-
flows based on Generalized Stochastic Petri Nets (GSPN). The GSPN models
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proposed can be used to represent a rich set of complex business processes
and can be employed to evaluate both qualitative and quantitative properties
of them. Quantitative results can be obtained by simulation of the models
and by analytical formulae presented along this paper. Qualitative results are
obtained by static analysis of the GSPN structure.
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