
Javelin++: Scalability Issues in Global Computing

Michael 0. Neary Sean P. Brydon Paul Kmiec Sami Rollins Peter Cappello

Department of Comput,er Science
University of California, Santa Barbara

Santa Barbara, CA 93106
(n,eary, brydon, virus, srollins, cappello) @cs.ucsb.edu

Abstract

Javelin is a Java-based infrastructure for global computing.
This paper presents Javelin++, an extension of Javelin, in-
tended to support a much larger set of computational hosts.
First, Javelin++‘s switch from Java applets to Java appli-
cations is explained. Then, two scheduling schemes are pre-
sented: a probabilistic work-stealing scheduler and a deter-
ministic scheduler. The deterministic scheduler also imple-
ments eager scheduling, as well as another fault-tolerance
mechanism for hosts that have failed or retreated. A Jav-
elin++ API is sketched, then illustrated on a raytracing
application. Performance results for the two schedulers are
reported, indicating that Javelin++, with its broker net-
work, scales better than the original Javelin.

1 Introduction

Our goal is to harness the Internet’s vast, growing, compu-
tational capacity for ultra-large, coarse-grained parallel ap-
plications. Some other research projects based on a similar
vision include CONDOR [21, 131, Legion [18], and GLOBUS
[14]. By holding out the promise of a portable, secure pro-
gramming system, Java holds the promise of harnessing this
large heterogeneous computer network as a single, homoge-
neous, multi-user multiprocessor [6, 15, I]. Some research
projects that work to exploit this include Charlotte [5], At-
las [3], Popcorn [9], Javelin [12], and Bayanihan [23]. While
there are many issues related to global computing, five fun-
damental issues that affect every Java-based global comput-
ing application are:

l Performance - If there is no niche where Java-based
global computing outperforms existing multiprocessor
systems, then there is no reason to use it.

l Correctness - If the system does not produce correct
results, then there is no reason to use it.

l Scalability - In order for the system to outperform ex-
isting multiprocessor systems, it must harness a much
larger set of processors. To do so, it must scale to

Permission to make digilal or hard copies ol‘all or part ot‘this work Ihr

personal or classroom USC is granted without fee provided that cop&
are not made or distributed for profit or commercial advantage and that
copies bear this nolice and the fiull citation on the first page. To copy
otherwise, LO republish, to post on servers or to redistribute to lists.
requirvs prior specific permission and/or a f2c.
JAVA’99 San Francisco California USA
Copyright ACM 1999 I-581 13-161-5/99/06...$5.00

a higher degree than existing multiprocessor systems,
such as networks of processors (NOW)s [2].

Fault-tolerance - It is unreasonable to assume that
such a large set of components will have zero failures:
Fault-tolerance must attend systems of this order.

Incentive - Full use of global computing ultimately im-
plies using a set of computers that is too large for any
single person or organization to own or control. Where
authority to command is lacking incentives must be
provided [lo, 251. To date, global computing has used
fame, fun, or prizes as an incentive (e.g., the Great
Internet Mersenne Prime Search [17], code-cracking
(a money prize)‘, and SetiQhome’). The Popcorn
project [9] has explored computational markets.

Existing Java-based global computing projects have bottle-
necks that currently prevent them from scaling to the thou-
sands of computers that could be brought to bear. For ex-
ample, the authors of Charlotte note:

We have adopted a solution that does not scale
for settings such as the World Wide Web, but it
is an effective solution for OUT network at New
York University.

Bayanihan [24] has limited scalability now. However, its
authors note:

Currently, some ideas we are exploring include
forming server pools to handle large numbers of
clients, and using volunteer servers to form net-
works with more f6exible topologies.

Work apparently stopped on Atlas [3] after it had been
tested using only a few workstations.

In this paper, we focus on scaling Javelin, comparing
two scalable versions of Javelin, called Javelin++: one that
schedules work deterministically, and another that schedules
work probabilistically. Both versions work on a simple kind
of adaptively parallel computation [ll], called a piecework
computation. Such an adaptively parallel computation de-
composes into a set of sub-computations, each of which is
communicationally autonomous, apart from scheduling work
and communicating results. Piranha and Bayanihan, for ex-
ample, are well suited to piecework computations. Raytrac-
ing is a well known piecework computation, often used by
global computing researchers. Matrix product also can be

'http://vvv.rsa.com/rsslabs/97challenge
'http://setiathome.asl.berkeley.sdu

177

considered a piecework computation., since it can be decom-
posed into a set of block sub-products, whose results are
simply added to produce the matrix product. Piecework
computations are particularly attractive; they can get arbi-
trarily large, but their communication requirements are in
harmony with global computing’s intrinsic constraint: inter-
net communication is slow.

The remainder of the paper is organized as follows: Sec-
tion 2 briefly presents the Javelin arc.hitecture, and the archi-
tectural changes Javelin++ introduces. Section 3 discusses
scalability in the context of global computing, and presents
two scalable designs for Javelin++: deterministic and prob-
abilistic. Section 4 presents the Javelin++ API, and illus-
trates its use on a raytracing application. Section 5 presents
experimental results for the detemlinistic and probabilis-
tic versions of Javelin++, indicating the sensitivity of their
scalability to granularity. The final section concludes the
paper, indicating some immediately fruitful areas of global
computing research and development.

2 Architecture

The Javelin++ system architecture is essentially the same
as its predecessor, Javelin [12]. There are still three sys-
tem entities - clients, brokers, and hosts. A &ent is a
process seeking computing resources; a host is a process of-
fering computing resources; a broker is a process that co-
ordinates the allocation of computing resources. We did,
however, introduce a few changes to the architecture. The
most important ones are:

l Communication is now based on Java RMI instead of
TCP sockets. The application programmer thus no
longer needs to implement a communication protoco13.
Of course, the use of RMI requires the presence of
JDI< 1.1.x or later or compatible software at any host
participating in Javelin++.

l For a number of reasons, we found it desirable to base
our system on Java applications instead of applets, as
was done before. This is probably the most prominent
architectural change in the new system. The reasons
that compelled us to make this switch are outlined
below.

l Javelin++ is the first version that actually implements
a distributed broker network. Although the concept
was already included in the old architecture, it was
never practically achieved. Section 3.1 talks about the
broker network.

In the remainder of this section, we fist briefly recap the
architecture of the old Javelin system. This is followed by
a discussion of the advantages and disadvantages of using
Java applications instead of applets.

2.1 The Javelin Architecture

Figure 1 illustrates our architecture. Clients register their
tasks to be run with their local broker; hosts register their
intention to run tasks with the broker. The broker assigns
tasks to hosts that, then, run the tasks and send results
back to the clients. The role of a host or a client is not
fixed. A machine may serve as a Javelin host when it is
idle (e.g., during night hours), while being a client when its
owner wants additional computing resources.

3JavaParty [22] and HORB 1191 are alternatives to RMI, which
however tack RMI’s widespread installed base.

Figure 1: The Javelin Architecture.

One of the most important goals of Javelin is simplic-
ity, i.e., to enable everyone connected to the Internet or an
intranet to easily participate in Javelin. To this end, the
design is based on widely used components: Web browsers
and the portable language Java. By simply pointing their
browser to a known URL of a broker, users automatically
make their resources available to host parts of parallel com-
putations. This is achieved by downloading and executing
an applet that spawns a small daemon thread that waits
and ‘listens” for tasks from the broker. The simplicity of
this approach makes it easy for a host to participate - all
that is needed is a Java-capable Web browser and the URL
of the broker.

Tasks are represented as applets embedded in HTML
pages. This design decision implies certain limitations due
to Java applet security: E.g., all communication must be
routed through the broker and every file access involves net-
work communication. Therefore, in general, coarse-grained
applications with a high computation to communication ra-
tio are well suited to Javelin. For more information on the
original Javelin prototype, see [12].

2.2 Java Applets vs Applications

As the underlying distributed object technology, Java RMI
(Remote Method Invocation) is used. In the original Jav-
elin prototype, all applications run as Java applets, which
has the advantage of extreme ease of use from the point
of view of a participating host - the user only needs to
point a Java-capable browser to a broker’s web page to get
started. Another advantage of using applets is the strict
security model: the applet is effectively sandboxed by the
browser. A user can trust the established security policy
of his or her favorite browser when running untrusted code.
However, the use of applets in this context has some serious
drawbacks:

l No local file I/O - armlet securitv aenerallv does not
permit a&e& to the]&al hard d;iv;?, making it hard
if not impossible for some applications to run. For
instance, in the case of seismic data processing, local
file I/O is necessary to read large amounts of data in
parallel.

. No direct point-to-point communicntn’on - since ap-
plets may not accept any connections, and may only
initiate connections back to the server from where they
were downloaded, point-to-point communication can
be achieved only by providing special routing servers
that relay all messages sent by Javelin hosts. This
is a serious performance drawback, and the task of
implementing the network routing service is tedious,
especially with respect to fault tolerance.

172

l No native code interface - applets are not allowed to
interface with native code on the host machine, and
uploading native libraries through the browser is not
possible. That means that any kind of commercial off-
the-shelf (COTS) application cannot be made to run
on the infrastructure, although there are such applica-
tions that would benefit greatly from global computing
(e.g., the Boyce image rendering software was recently
implemented as a standalone glohal computing appli-
cation including a simple trading space [8]). There is
also an immense body of legacy code in scientific ap-
plications written in Fortran or C* which could benefit
from our infrastructure.

l No standard plntform - increasing browser hetero-
geneity makes it hard to program to all platforms,
defeating the original idea of .Java’s platform indepen-
dence. Since the arrival of JDK 1.1, browser devel-
opers have been sluggish in implementing the com-
plete API, leading to various subsets of the JDK being
supported by different platforms. A prominent exam-
ple is Microsoft’s outright denial of support for Java
R.MI in Internet Explorer, making it impossible to use
the most convenient and natural object technology for
Java in conjunction tith their browser. Netscape also
implements only a subset of JDK 1.1 functionalit,y, al-
though it supports RMI. As of today, the only agreed
upon standard remains JDK 1.0.2.

We consider these disadvantages so severe that they threaten
the general usefulness of Javelin++, since they disallow the
implementation of many interesting applications on our plat-
form. Therefore we decided to switch to Java applications
running on Sun’s JDK 1.1 (or later) as the main platform
for Javelin++ applications. This switch enables us to over-
come all the above disadvantages. However, such a switch
has its own disadvantages.

First, the user must have JDK 1.1 installed on any ma-
chine that is to become a Javelin++ host. Since JDK is
widely distributed at present, we do not consider this a se-
rious drawback. Second, the ease of use property of Javelin
is slightly weakened: Instead of simply pointing the web
browser to a broker site, the user must now download the
initial daemon class file, and then start a JVM that executes
the daemon. This process is slightly more complex than be-
fore, but can be well explained on the hroker’s web page.
Third, the main disadvantage of applications is, of course,
the lack of a security model that is predefined, agreed upon,
and therefore comfortable for the user, raising the question
of trust in the Javelin++ system. This can be overcome in
two ways:

1. A Javelin++ security model can be provided by im-
plementing a SecwityMunnger class that ensures that
applications communicate only with other Javelin++
applications, and have limited access privileges to local
resources like the file system.

2. On certain operating systems, e.g., Solaris and Linux,
it is possible to sandbox a process externally through
the so-called “Iproc” interface. This has been success-
fully demonstrated in the Berkeley Janus project [16]
and the UCSB Consh project [20].

Both approaches can lead to an even more secure execu-
tion environment than the browser itself can provide. For

‘This type of code could be called “SOTS” - scientific off-tbe-
shelf.

instance, the experiment of the Knitting Factory project
[4] found that when using Java RMI at least one browser,
Sun’s HotJava, permits direct point-to-point communica-
tion between applets once RMI handles have been exchanged
through the server!

An alternative approach when Java applications are used
would he to provide a special Javelinf+ screen saver that
the user could download and install on a host. Such a screen
saver would run the JVM and the Javelin++ daemon while
the host is idle, making the operation of Javelin++ conve-
nient for the user. Although this has the disadvantages of
making the installation harder for the user and having to
provide a separate implementation for each OS, thus los-
ing some of the platform independence of Java, it might be
worth considering for the most popular operating systems5.

3 Javelin++: A Scalable Architecture

In this section we present our approach of a scalable global
computing system. Other projects have tried or we cur-
rently trying to achieve greater scalability, e.g., Atlas [3]
through its tree-based approach, and Bayanihan [24] with
its volunteer server concept; but to date, no large-scale ex-
periments have shown that these concepts work in practice.
The original Javelin achieved good results up to about 60
hosts, when the single broker/router bottleneck became no-
ticeable.

Without modifying the original Javelin architecture, Jav-
elin++ introduces a number of scalability enhancements,
described below. The most prominent are:

a distributed broker network that overcomes the sin-
gle broker bottleneck and permits much greater host
participation,

the switch from Java applets to applications as de-
scribed in Section 2, which permits point-to-point com-
munication and thus allows arbitrary graph configura-
tions, and

two different schemes of work distribution, a proba-
bilistic one and a deterministic one, that both offer
the potential to accommodate large numbers of hosts
participating in a single application.

Let us begin by clarifying what we mean by scalable: If a
global computational infrastructure is scalable, its compo-
nents have bounded power - bounded computational rate,
bounded communication rate, and bounded state6. In par-
ticular, for .Javelin++ to he scalable, its clients, brokers,
and hosts have bounded power. These bounds imply that,
for example, clients, brokers, and hosts, can communicate
with only a fixed number of other components during a
fixed interval of time. Thus, at any point in time, there are
bounds on the number of connections between hosts, be-
tween brokers, between brokers and hosts, and between the
client and brokers. Bounded state similarly implies bounds
on the number of brokers that a broker can know about at
any point in time.

The .Javelin prototype offers just a single broker/router
that becomes a bottleneck when too many hosts participate
in a computation. Clearly, a network of brokers must be
created in order to achieve scalability. Internet-wide partic-
ipation means that all hosts must be largely autonomous and

‘MS Windows currently has more than 90% of the market.
‘III this context, bounded stands for bounded by some constant.

173

able to work in the presence of node and network failure
Scdability implies th.at the architecture cannot be centr:
ized. Bounded state implies that no site can, in genera
have a global system view (e.g., a table with the names
all participating brokers). We have identified two key pro
lems in building a scalable architecture:

1. Host allocation and code distribution - How does
client find hosts for its computation, and how does tl
code get distributed efficiently to a potentially ve
large number of hosts?

2. Data communication at runtime - How is data ex-
changed between participating hosts after an applica-
tion has been successfully started?

In the following we describe our approach to solve these
problems. The section is structured according to the differ-
ent states a Javelin++ host can be in during its lifetime.
The complete state transition diagram is shown in Figure 2.
There are four states: NoHost, Standby, Ready, and Run-
ning. If a host has not joined Javelin++ it is in state No-
Host. The transition to Standby is made by downloading
and starting the Javelin++ daemon and then registering
with a broker. In the next section we describe how brokers
are managed, hosts are allocated, and code is shipped so
that an application is ready to start, causing a state tran-
sition from Standby to Ready. In Section 3.2.1 we present
two different data exchange mechanisms that allow the host
to run the application and therefore transition to Running.
The first is a probabilistic approadh based on a distributed,
double ended queue and address hashing; the second is a de-
terministic, tree-based approach. The performance of these
two approaches is compared in Section 5.

The diagram has two more sets of transitions, a “natural”
way back from each state to the previous state when a phase
has terminated, and a set of “interrupt” transitions (shown
in dashed lines) that lead back to the NoHost state when a
user withdraws the host from the system.

Figure 2: State Transition Diagram for Javelin++ Hosts.

3.1 Scalable Code Distribution via a Broker Network

3.1.1 Network Topology and Broker Management

The topology of the broker network is an unrestra’cted graph
of bounded degree. Thus, at any time a broker can only
communicate with a constant number of other brokers. This
constant may vary among brokers according to their compu-
tational power. Similarly, a broker can only handle a con-
stant number of hosts. If that iimit is exceeded adequate
steps must be taken to redirect hosts to other brokers, as
described below. The bounds on both types of connection
give the broker network the potential to scale to arbitrary
numbers of participants. At the same time, the degree of
connectivity is higher than in a tree-based topology like the
one used in the ATLAS project [3]. Figure 3 shows the con-
nection setup of a broker.

Hosts rakers

Figure 3: Broker Connections.

In principal, a broker is just another Javelin++ appli-
cation. That means that it runs on top of the Javelin++
daemon thread. However, since brokers are expected to be
a lot more stable and reliable than other hosts, certain con-
ditions have to be met: A broker must run on a host with
a “permanent” connection to the Internet, i.e., slow modem
connections are not acceptable, and the user donating a bro-
ker host must be prepared to run the broker for a “long”
duration and give the system “ample warning” before with-
drawing the host, so that connected hosts can be moved to
other brokers.

We distinguish between two types of broker: primary
brokers and secondary brokers. Technically, there is not
much difference, except for the way the broker starts up.
A primary broker is a broker that starts up without logging
in to another broker as a host first. This is to guarantee
that there is a minimal broker network at system startup.
Primary brokers can start up from shell commands and link
to other primary brokers by reading in a configuration file.
In contrast, secondary brokers start up as normal Javelin++
hosts by linking to their local broker. At registration time
the host indicates whether or not it is prepared to run a
broker according to the above rules.

A secondary broker comes to life when the broker it is
connected to exceeds its individual limit for host connec-
tions. In order to accommodate the host that causes this
overflow, the broker chooses one of its hosts that is pre-
pared to be a broker and preempts the application running
on that host. Then it sends the broker code to the new
broker host and moves some of its hosts to the new broker.
Also, the new broker gets connected to other brokers by us-
ing the same (or part of the same) configuration file of the
primary broker which is also sent to it by the old broker. All
this can be achieved through the Javelin++ daemon. Next,
the daemons of the hosts that were moved are notified of
their new broker. This should be entirely transparent to the
users who donated the hosts. In the same way, the system
can collapse again if the number of hosts connected to the
secondary broker drops below a certain threshold, say e.g.
25% of its host capacity.

3.1.2 Code Distribution

A client and its local broker do not actively look for hosts
to join a computation. Hosts can join at any time, either
by contacting the same broker as the client or indirectly
through some other broker.

If every host that participates in a computation had to
go to the client to download the code this would soon lead
to a bottleneck for large numbers of hosts. Therefore, first
the local broker and then every other broker that joins in
a computation will act as a cache on behalf of the client.

174

The loading and caching mechanism is implemented as a
modification to the standard Java ClassLoader - whenever

. a loadClass() command fa.ils at a host it is translated to a.n
RMI call to the local broker, which in turn will either deliver
the requested class from its cache or make a recursive RMI
call to the broker it retrieved the application from. If all calls
in this chain fail to deliver the requested class, the client will
finally be contacted and deliver the original class file, which
will then be cached at all intermediate brokers in the chain.
Subsequent, requests by other hosts will not reach the client
again, thus eliminating another bottleneck in the system.

In the following we describe the sequence of steps from
the moment a client application is willing to execute until
the moment when a host has received the code to participate
in the computat.ion.

1.

2.

The client registers with its local broker.

If the broker is willing to accept jobs, the client then
sends a description of the application to the broker7.
Depending on the type of application, the client may
now start up and execute on its own.

3. A host joins the system by downloading the Javelin++
daemon class and starting a JVM that executes the
daemon .

4. The host daemon contacts the local broker asking for
code to execute.

5. If the local broker has work, it returns the name of the
application class and client ID. If not, it contacts its
neighboring brokers and asks for code until it either
finds an application or all neighbors have denied the
request. If this search is successful, the broker also
returns the application information to the host.

6. The host daemon executes the above mentioned recur-
sive class loading mechanism to load the application.
A new thread is created and the application starts to
execute on this host.

3.2 Scalable Computation

After distributing the code successfully, we can now tackle
the next problem of managing a scalable computation. In
Javelin++ we follow two distinct approaches to solve this
problem, a probabilistic and a deterministic model. Whereas
the probabilistic approach is somewhat “chaotic” in the sense
that communication between hosts is completely unstruc-
tured, the deterministic approach structures the participat-
ing hosts into a tree in which some hosts become “managers”
for other hosts. Both approaches offer high potential for
scalability, and a performance comparison is attempted in
Section 5. We now give a brief description of our strategies.

3.2.1 The Probabilistic Approach

In the probabilistic model we base our strategy on two main
data structures that are local to every host: a hash table
of host addresses (technically, Java RMI handles), and a
distributed, double-ended task: queue containing “chunks of
work”. For the reader who knows our previous Javelin pro-
totype [12] the deque will sound familiar. Indeed we have
only further refined this approach since it promised good
scalability from the beginning.

‘currently consisting of the niwne of the application class and the
ID of the client

The task queue is double-ended because we follow the
concept of randomized work stealing which was made pop-
ular by the Cilk project [7]. The local host picks work off
one end of the queue, whereas remote requests get served
at the other end. Jobs get split until a certain minimum
granularity determined by the application is reached, then
they will be processed. This means that when a host runs
out of local jobs, it picks one of its neighbors at random
from its hash table and issues a work request to that host.
In doing so the host piggybacks its own address information
onto the request so that address information can propagate
through the set of participants. Regardless of whether the
request is successful, the callee returns a constant number of
his own addresses for the same purpose. The caller will then
merge his acldress table with the set of returned addresses.
Thus, his knowledge of participants will increase until his
table fills up and “older” addresses must be evicted, which
can he taken care of by a standard replacement policy like,
e.g., LRU. All this will result in a working set of connections
for each host.

From the point of view of scalability, using a hash ta-
ble allows for fast retrieval in the average case and scales
to very large numbers. In addition, there is no centralized
site in this setup, and host autonomy is guaranteed since
sufficient information is kept locally to remain functional in
the presence of failures. It is important to observe that the
address table is bounded in size - the hash table is preallo-
cated to some fixed size that remains manageable.

For fault tolerance purposes the next version of the deque
will include distributed eager scheduling, where chunks of
work can be reassigned to faster hosts in case results are
still outstanding. Eager scheduling was made popular by
the Charlotte project [5]. It is a low overhead way of ensur-
ing progress towards the overall solution in the presence of
failures or varying processor speeds.

3.2.2 The Deterministic Approach

The second version of Javelin++ implements a deterministic
scheme. We chose to use a balanced tree - a heap - as the
underlying structure of our deterministic model. As in the
probabilistic approach, the fundamental concept employed is
work stealing from a distributed deque. The main difference
is that it follows a deterministic algorithm based on the tree
structure.

Initially, each host retrieves a chunk of work from its
parent and will perform computation on the work one piece
at a time. When a host is done with all the work in its deque,
it will attempt to steal work, first from its children and, if
that fails, from its parent. We chose this strategy to ensure
that all the work assigned to a subtree gets done before a
node requests new work from its parent. To facilitate this
scheme, each host keeps a counter of the total work assigned
to its subtree, plus a counter for each of its children. It
is important to observe that the counters are not likely to
reelect the exact state of the tree, but rather serve as upper
bounds on the amount of work left in a subtree. This way,
a host can make an “educated guess” as to which of its
children is most likely to have more work, and direct its
request to that child first. The counters are updated on
each reply to a work request.

Work stealing plus keeping the tree balanced ensures that
each of the hosts gets a relatively even work load. The root
of the tree is the client which is assumed to be a stable par-
ticipant. When a new host joins, it is assigned a position at
the bottom of the tree by the tree manager, which maintains

775

a heap data structure for that purpose. The tree fanout can
be chosen individually for each application at startup.

The functionality of the tree itself becomes most impor-
tant when a host fails or retreats. When a host is assigned
a position in the tree, it is given a list of all of its ances-
tors with the client being the first element of the list. If a
host detects that its parent is dead, it traverses its ancestor
chain until it finds a live ancestor. That host serves as the
temporary parent of the host unt:il the host has finished all
work in its current deque. We thus avoid losing the work
of the subtrees of a failed host. Once the chunk of work is
finished, the host needs a new parlent from which it requests
new work. At this point, the host contacts the tree man-
ager to get a new ancestor chain. If the empty position has

Host 8 replaces
host ;!

Figure 4: Deterministic tree

already been reported and filled, the tree manager traverses
the tree representation, and returns a new ancestor list to
the host. However, if the host is tbe first to report the fail-
ure, the tree manager reheaps the tree. First, it notifies the
last node in the tree that it is to be moved. Figure 4 illus-
trates the situation where node 2 has failed and is replaced
by node 8. Node 8 is assigned a new list of ancestors, and
is moved to its new position. Then, the tree manager tra-
verses the tree representation to find the new ancestor chain
of the orphaned node, and returns that chain. Currently,
the tree is managed by one entity and therefore presents a
potential bottleneck if the host failure rate is high. However,
it would be possible to modify the existing implementation
such that it would distribute the tree management through-
out the broker network. In this case, the host failure rate
which the system could recover from would increase as the
number of brokers increased.

Although the results that we have obtained from both
approaches are promising, we would like to examine a third
approach-a synthesis of the probabilistic and deterministic
versions. To further improve fault tolerance, we also plan to
incorporate distributed eager scheduling in the next version
of the cleterministic deque.

4 The Javelin++ API

In this section we illustrate our sy:stem from an application
programmer’s point of view. We first present the classes

needed by the programmer to create a Javelin++ applica-
tion. We then give an example that shows how the API is
actually used and how easy it is to create Javelin++ appli-
cations.

A Javelin++ application consists of one client and many
hosts. The client is responsible for initiating the compu-
tation, managing the problem, and collecting the results.
It may or may not do part of the actual computation. The
hosts help the client manage and compute the problem. The
client code executes on a single machine, while the host code
is distributed throughout the Javelin++ network and exe-
cuted on many different machines.

All of the Javelin++ classes are contained in two pack-
ages: JavelinPlus and JavelinPlus.util. The first pack-
age contains all of the core Javelin++ classes and the second
one contains data managers and other helper classes. We fol-
low the convention that all classes and interfaces beginning
with the letter “J” are implemented in Javelin++ and can
be directly used by the application, whereas interfaces not
beginning with “J” must be implemented by the application
in order to work with the system.

The application programmer must provide code for both
the client and the host, which may actually be joined to-
gether in a single source fle as our example below shows,
plus the implementation of three interfaces specifying classes
needed by the system.

4.1 The JavelinPlus Package

This package contains all the core classes needed by clients,
hosts, and brokers, including the Javelin++ daemon men-
tioned in Section 3. The programmer writing an applica-
tion for Javelin++ only needs to
JavelinClient class.

public class JavelinClient <
public JavelinClient(String

String
String

public void begin0 ;
public void terminate 0 ;

3

get acquainted with the

client,
className,
broker) ;

Any Javelin++ client must create a JavelinClient instance.
The only constructor of JavelinClient takes the local host-
name, the top-level classname used to load the host classes,
and a broker’s hostname. Once the client is ready to start
the computation, the client invokes the begin0 method.
This causes the client to register with a broker, which in
turn allows for the broker network to assign hosts to the
client’s computation. The terminate0 method unregisters
the client allowing the broker network to clean up and stop
assigning hosts to that client. It is typically called after the
computation is done and before the client exits.

4.2 The JavelinPlus.util Package

To manage the computation, clients and hosts must instanti-
ate one of the data managers in this package. Data managers
dictate how the computation is divided, how hosts obtain
work, and how results return to the client. As discussed
in Section 3, data managers can either be probabilistic or
deterministic, and they are responsible for providing scal-
ability and fault tolerance. Currently, Javelin++ provides
two data managers: the deterministic JavelinDDeque and
the probabilistic JavelinRDeque. Both of these implement
the JDataManager interface shown below.

176

public interface JDataJ4anager c
public void addWork(Splittable work);
public Splittable getWork();
public void returnFtesult(Object result);
public void setResultListener(ResultListener rl);
public void setDoneListener(DoneListener dl);

The three main methods are addWork0, getWork and
returnResult 0. In our model, a host uses the first method
to pass new work to the data manager. In the piecework
scenario this method is typically only executed once by the
client to initialize the computation. The getWork method
is used by a host to obtain a piece of the computation. In
case the computation produces a usable result, the host
passes that result to the client using the returnResult
method. However, the exact way of how the result actu-
ally propagates to the client depends on the underlying data
manager. For instance, results could be sent directly to the
client or collected and combined to be sent in larger chunks.

The programmer must also tell the data manager how
to notify his application whenever a new result arrives and
when all the work is complete. This is done by the methods
setResultListener() and setDoneListener 0. The two
methods are mainly needed on the client which needs to
process results and is interested in knowing when the com-
Putation is complete. For this purpose, the programmer
must implement the two interfaces below so that the respec-
tive methods can be called by the system.

public interface ResultListener c
public void returnResult(Object result);

1

public interface DoneListener I
public void workDone 0 ;

1

So far, we have not mentioned how the client specifies the
work to a data manager. For this, the programmer has to
write a class representing the type of work to be done which
implements the Splittable interface, shown below. This
way, the data manager has a means to divide and distribute
the work to hosts.

public interface Splittable c
public boolean canSplit0;
public SplittableC] split 0 ;
public int getObjectSize0;

The split0 method should split the work represented by
a particular object into two relatively equal parts. The two
parts are returned in an array of length twos. For example,
assume we have a class that implements the Splittable in-
terface and represents an image. If we were to invoke the
split 0 method on an instance representing an n by n im-
age, the returned array should contain two new instances
each representing an 9 by n image. The canSplit. method
determines if a split is possible and is always invoked prior to
split 0 method. If canSplit 0 returns f&e, the split 0
method will not be called. Finally, the getObjectSize0
method returns the integer size of the object, This is needed
by the deterministic deque which keeps integer counters of
all work assigned to a tree node and its children. The
method is ignored by the random deque.

*altlmugh other ways of splitting are conceivabie with this
interface!

4.3 Examples

The main design goal is to separate the computation en-
gine from the data delivery. The data delivery interacts
with Javelin++ to obtain and format the work for the com-
putation engine. This design produces two very desirable
properties. First, we can reduce application writing to us-
ing an off-the-shelf program/library (computation engine)
and only writing a small data delivery part. Second, having
done one such application, it is very easy to change to a
different computation engine.

The client must pass the name of the host class into the
JavelinClient constructor. This class has to implement the
Runnable interface, since the Javelin++ daemon is going to
execute the host application as a thread. Therefore, the
programmer must implement the run0 method, which is
the first method that is going to be invoked.

Prior to the computation, the host is only required to
instantiate the same data manager as the client. Then, the
host starts the computational loop: ask data manager for
work, compute work, and register results. Once the data
manager returns null or no more work, the host can termi-
nate by simply returning from the run0 method.

The skeletons for the client and the host are presented
below. To save space and increase readability much of the
error handling code has been omitted.

public class GenericClient
implements ResultListener, DoneListener i
JavelinClient jClient = null;
JDataManager dm = null;
Splittable work = null;

public GenericClientfString broker) i
jClient = neu JavelinClient(localHost,

“GenericHost”,
broker) ;

// Create a work object of the class
// that implements Splittable.
uork = new

// Create a data manager.
// Here, a deterministic deque
// is instantiated.
dill= new JavelinDDequeO ;

// Pass the work to the data manager.
dm. addWork(vork) ;
dm.setResultListener(this);
dm.setDoneListener(this);

jClient .beginO ; // Begin execution phase.
1

public void returnResult(Clbject result) {
. . . // ResultListener Implementation.

1

public void workDone I
// DoneListener Implementation.
jClient.terminateO;

1

public static void main(String[] argv) I
GenericClient genclient

= new GenericClient (argv [OI) ;
1

177

3

public class GenericHost implements Runnable {
JDataManager dm = null;

public GenericHost (> { . . .)

public void init {
// Instantiate the same data manager
// as in the client.

3

public void run0 <
init 0 ;

// Computational loop.
while (true) i

if ((Object work = dm.getWork()) == null)
break;

Object result = doUork(uoik) ;
dm.returnResult(result);

3
3

3

Next, we give some code extracts from our raytracing appli-
cation. The raytracer is still the same application that was
used in the original Javelin system [12]. We first show how
this application implements the Splittable interface to tell
Javelin++ how objects can be split. Here, the RectEntry
class shown below simply extends the java. aut. Rectangle
class to define the area that needs to be rendered.

public class RectEntry extends java.awt.Rectangle
implements Splittable i:
// minimum size for split
public static final. int limit ‘= 32;
private int jsize = 0;

public RectEntry(int x. int y, int wu, int hIi> f
supercx. y, vu, hh);
jsize = (w/limit) * (an/limit>;

3

boolean canSplit {
return (width > limit i 1 height > limit) ;

3

Splittable Cl split 0 I
Splittable[] result = new Splittable [2] ;

if (width > height) I
result CO] = neu RectEntry(r, y,

width/2, height) ;
result[l] = new RectEntry(x + width/2, y,

vidth/2, height) ;
3
else i:

result CO] = new RectEntry(x, y,
width, height/2);

result cl] = new RectEntry(x, y + height/2,
width. height/a);

3
return result;

3

public int get0bjectSizeOI

return jsize;
3

3

Finally, the computational loop for the raytracer is shown
below. First, we ask the data manager for an area to render.
Our rendering engine is simple and is totally contained in
the RayTrace class. To render an area, the data delivery
simply invokes the raytrace method. At the end of the
loop the result for this area is returned.

while (true) {
area = (RectEntry)dataManager.getWork() ;
int Cl pixels

= tracer.raytrace(area.x. area.y,
area.width, area.height) ;

dataManager .returnResult (new RectResult (area.
pixels)) i

3

5 Experimental Results

Tests were run in campus student computer labs under a
typical workload for the network and computers. This envi-
ronment consists of 12 Pentium II, 350 MHz processors with
128 MB RAM, 41 Pentium-S, 166 MHz processors with 64
MB RAM, and 10 Sun Ultrasparc with 64 MB RAM and
processor speeds varying from 143 to 400 MHz. All ma-
chines run under Solaris 2.5.1 and 2.6. The machines are
connected by a 100 Mbit network. We used the new JDK
1.2 with active JIT for our experiments, although our code
is designed to run with JDK 1.1.x as well.

To test the performance of the probabilistic deque and
the deterministic tree, we ran experiments on the raytrac-
ing application described in Section 4. The performance was
measured by recording the time to render the image. The
size of the image used for testing is 1024 x 1024 pixels, con-
sisting of a plane and 993 spheres arranged as a cone. This
image is complex enough to justify parallel computing, but
small enough to enable us run tests in a reasonable amount
of time. The image is decomposed into a set of square sub-
images, such as 128 x 128 pixels. Each sub-image constitutes
an independent task for a host to compute. The computa-
tional complexity of a task thus depends on the size of the
sub-image and its complexity (i.e., the number of objects in
the scene to he raytraced). The test image took approxi-
mately 6 hours to render on one machine. Since the image
being tested was an actual scene, the computational com-
plexity of the individual tasks varies, depending on which
part of the scene it represents. We manually joined hosts to
the computation soon after the client started. In the future,
we plan to have hosts in place, waiting for a client to start.

In the first experiment, we varied the number of hosts
on the image decomposed into 1024 suh-images of 32 x 32
pixels. In our second experiment, we fixed the total work
(image) and number of hosts, and varied the task size, thus
varying the number of tasks to be distributed. In a pro-
duction environment, we would set the deterministic tree’s
branching factor, or fanout, to maximize efficiency. For test
purposes, the tree’s branching factor was set to 4, to force
the tree to have some depth.

5.1 Measurements

Figures 5 and 6 show that, for both the deterministic and
the probabilistic deque, the speedup degrades slightly from
linear for the higher host numbers.

178

Figure 5: Speedup Curve for Random Deque.

0 10 20 30 40 50 60

Proc~srorr

Figure 6: Speedup Curve for Deterministic Deque.

The slight degradation, we believe, is associated with
transient phenomena: starting up the large number of pro-
cessors and winding down the computation, where necessar-
ily a large number of processors eventually must run out of
work. Also, the varying workloads of participating hosts re-
duce the potential speedup, as results from slow processors
come in late. Work stealing can alleviate this problem, but
overall a loss in performance cannot be overcome.

One phenomenon has to be explained in this context:
both curves first show a degradation up to 32 hosts, then
a sudden increase in speedup for the largest experiments.
This is because only for our largest experiments (more than
41 processors), we added the fewer but faster processors,
which managed to steal more work from slower processors
and thus improved speedup. For the random deque, our
best result was a speedup of 52 for 60 processors. The de-
terministic deque achieved a comparable speedup of 46 for
52 processors.

By varying the number of tasks, experiment 2 shows that
the speedup improves when the hosts are better utilized.
Prom the bar chart in Figure 7, we see that by decreasing
the task size, and thus increasing the number of tasks, we
significantly improve the speedup. With a task size of 32 x

32 pixels, yielding 1024 tasks, the speedup reached 37.9 for
40 hosts. Further reductions in task size did not result in
improved speedup, only in increased communication. Thus,
an image that took over 5 hours (300+ min) to render on a
single computer took less than 6 minutes on machines that
were servicing undergrad and grad students, who unknow-
ingly stole cycles from the image rendering as they surfed
the web, emailed their friends, and occasionally compiled
code.

In the experiments for the original Javelin, the picture
had more than 12 times as many objects, while the hosts (the
Meiko’s Spare processors) were only about a fifth as fast,
yielding tasks with a much larger computational load than
the tasks used for these experiments. The communication
speeds were about the same. We believe that if our current
experiments had a comparable computation/communication
ratio that our speedups wnuld have been even closer to op-
timal. Also, the original Javelin experiments were run on
an otherwise idle set of 64 processors (Meiko). Since such a
setting with a dedicated multiprocessor machine is not the
target environment for global computing, our Javelin++ ex-
periments were run on a student laboratory whose machines
were not idle, reflecting a situation much closer to actual re-
ality.

Figure 7: Different Granularities for the Deque.

The tree built in the deterministic scheduler was not a
bottleneck in these experiments; the time for a host to join
the computation was about 70ms.

6 Conclusion

Parallel Internet computations need at least an order of mag-
nitude more computers than conventional NOWs to justify
their use. Global computing infrastructures thus must scale
to at least an order of magnitude more computers than con-
ventional NOWs. We have investigated the problem of cre-
ating a scalable, Java-based global computing infrastructure
called Javelin++. We have presented an approach to dis-
tribute application code in a scalable manner through a net-
work of brokers, each of which acts as a code cache for the
hosts connected to it. We have also implemented two con-
ceptually different approaches for managing a scalable com-
putation: one that distributes work probabilistically, and
another that distributes work deterministically. Our de-
sign analysis indicates that these versions of Javelin++ scale
better than the original Javelin infrastructure. We achived
good results in a restricted setting, and we believe both ap-
proaches will scale beyond what our experiments were able

179

to verify. Our tests have have confirmed the scheme’s sen-
sitivity to computation/communication ratio. We thus hy-
pothesize that as the computation/communication ratio in-
creases, the speedups get closer to linear for much higher
numbers of hosts. This hypothesis i,s not unreasonable; to
achieve a computation/communication ratio comparable to
that of a NOW, we must increase the computational load in
the Internet setting to compensate for its increased commu-
nication time (relative to these times in NOWs).

In future, we plan to focus primarily on fault-tolerance,
which will allow us to run experiments on a much larger
scale. We also intend to generalize our computational model
to accommodate any divide-and-conquer computation, con-
tribute to the issues of correctness checking, and support
host incentives.

References

[l] A. Alexandrov, M. Ibel, K:. E. Schauser, and
C. Scheiman. SuperWeb: Research Issues in Java-Based
Global Computing. Concurrency: Practice and Experi-
ence, 9(6):535-553, June 1997.

PI

PI

PI

[51

PI

[71

PI

PI

[101

T. E. Anderson, D. E. Culler, and D. Patterson. A case
for NOW (Networks of Workstations). IEEE Micro,
15(l), Feb. 1995.

J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer.
ATLAS: An Infrastructure for Global Computing. In
Proceedings of the Seventh ACM SIGOPS European
Workshop on System Support for Worldwide Applica-
tions, 1996.

A. Baratloo, M. Karaul, H. Karl, and Z. M. Kedem.
An Infrastructure for Network Computing with Java
Applets. Concurrency: Practice and Experience, 1998.

A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff.
Charlotte: Metacomputing on the Web. In Proceed-
ings of fhe 9th Conference on Parallel and Distributed
Computing Systems, 1996.

D. Bhatia, V. Burzevski, M. Camuseva, G. Fox,
G. Premchandran, and W. Furmanski. WebFlow-
A Visual Programming Paradigm for Web/Java-based
Coarse Grain Distributed Computing. Concurrency:
Practice and Experience, 9(6):555-577, June 1997.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An Effi-
cient Multithreaded Runtime System. In 5th ACM SIG-
PLAN Symposium on Principles and Practice of Par-
allel Programming (PPOPP ‘95,), pages 207-216, Santa
Barbara, CA, July 1995.

V. Borda. Brycewarp. Master’s thesis, Dep. of Com-
puter Science, University of California, Santa Barbara,
Santa Barbara, CA, 1998.

N. Camiel, S. London, N. Nisan, and 0. Regev. The
POPCORN Project: Distributed Computation over the
Internet in Java. In 6th International World Wide Web
Conference, Apr. 1997.

P. Cappello, B. Christiansen, M. 0. Neary, and K. E.
Schauser. Market-Based Massively Parallel Internet
Computing. In Third Working Con& on Massively Par-
allel Programming Models, pages 118 - 129, nov 1997.
London.

PI

PI

1131

PI

Ll51

P31

[I71

PI

w

PO1

PI

1221

[231

PI

1251

N. Carriero, D. Gelernter, D. Kaminsky, and J. West-
brook. Adaptive Parallelism with Piranha. Technical
Report YALEU/DCS/TR-954, Department of Com-
puter Science, Yale University, New Haven, Connecti-
cut, 1993.

B. 0. Christiansen, P. Cappello, M. F. Ionescu, M. 0.
Neary, K. E. Schauser, and D. Wu. Javelin: Internet-
Based Parallel Computing Using Java. Concurrency:
Practice and Experience, 9(11):1139-1160, Nov. 1997.

D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers,
and J. Pruyne. A Worldwide Flock of Condors: Load
Sharing among Workstation Clusters. Journal on Fu-
ture Generations of Computer Systems, 12, 1996.

I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. International Journal of Super-
computer Applications, 1997.

G. Fox and W. Furmanski. Java for Parallel Computing
and as a General Language for Scientific and Engineer-
ing Simulation and Modeling. Concurrency: Practice
and Experience, 9(6):415425, June 1997.

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer.
A Secure Environment for Untrusted Helper Applica-
tions - Confining the Wily Hacker. In Proceedings of
the 1996 USENIX Security Symposium, 1996.

Great Internet Mersenne Prime Search. GIMPS Discov-
ers 36th Known Mersenne Prime. Press Release, Sept.
1997. http://www.mersenne.org/2976221.htm.

A. S. Grimshaw, W. A. Wulf, and the Legion team.
The Legion Vision of a Worldwide Virtual Computer.
Communications of the ACM, 40(l), Jan. 1997.

S. Hirano. HORB: Extended Execution of Java Pro-
grams. In First International Conference on World-
Wide Computing and its Applications (WWCA 97))
1997. http://ring.etl.go.jp/openlab/horb/.

P. Kmiec. Consh: User-Level Confined Execution Shell.
Master’s thesis, Dep. of Computer Science, University
of California, Santa Barbara, Santa Barbara, CA, Dee
1998.

M. Litzkow, M. Livny, and M. W. Mutka. Condor -
A Hunter of Idle Workstations. In Proceedings of the
8th International Conference of Distributed Computing
Systems, June 1988.

M. Philippsen and M. Zenger. JavaParty - Transparent
Remote Objects in .Java. Concurrency: Practice nnd
Experience, 9(11):1225-1242, nov 1997.

L. F. G. Sarmenta. Bayanihan: Web-Based Volunteer
Computing Using Java. In 2nd International Confer-
ence on World- Wide Computing and its Applications,
Mar. 1998.

L. F. G. Sarmenta and S. Hirano. Bayanihan: Build-
ing and Studying Volunteer Computing Systems Using
Java. Future Generation Computer Systems Special Is-
sue on Metacomputing, 1998. To appear.

D. W. Walker. Free-Market Computing and the Global
Economic Infrastructure. IEEE Parallel and Dis-
tributed Technology, 4(3):60-62, 1996.

780

