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Abstract 

Javelin is a Java-based infrastructure for global computing. 
This paper presents Javelin++, an extension of Javelin, in- 
tended to support a much larger set of computational hosts. 
First, Javelin++‘s switch from Java applets to Java appli- 
cations is explained. Then, two scheduling schemes are pre- 
sented: a probabilistic work-stealing scheduler and a deter- 
ministic scheduler. The deterministic scheduler also imple- 
ments eager scheduling, as well as another fault-tolerance 
mechanism for hosts that have failed or retreated. A Jav- 
elin++ API is sketched, then illustrated on a raytracing 
application. Performance results for the two schedulers are 
reported, indicating that Javelin++, with its broker net- 
work, scales better than the original Javelin. 

1 Introduction 

Our goal is to harness the Internet’s vast, growing, compu- 
tational capacity for ultra-large, coarse-grained parallel ap- 
plications. Some other research projects based on a similar 
vision include CONDOR [21, 131, Legion [18], and GLOBUS 
[14]. By holding out the promise of a portable, secure pro- 
gramming system, Java holds the promise of harnessing this 
large heterogeneous computer network as a single, homoge- 
neous, multi-user multiprocessor [6, 15, I]. Some research 
projects that work to exploit this include Charlotte [5], At- 
las [3], Popcorn [9], Javelin [12], and Bayanihan [23]. While 
there are many issues related to global computing, five fun- 
damental issues that affect every Java-based global comput- 
ing application are: 

l Performance - If there is no niche where Java-based 
global computing outperforms existing multiprocessor 
systems, then there is no reason to use it. 

l Correctness - If the system does not produce correct 
results, then there is no reason to use it. 

l Scalability - In order for the system to outperform ex- 
isting multiprocessor systems, it must harness a much 
larger set of processors. To do so, it must scale to 
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a higher degree than existing multiprocessor systems, 
such as networks of processors (NOW)s [2]. 

Fault-tolerance - It is unreasonable to assume that 
such a large set of components will have zero failures: 
Fault-tolerance must attend systems of this order. 

Incentive - Full use of global computing ultimately im- 
plies using a set of computers that is too large for any 
single person or organization to own or control. Where 
authority to command is lacking incentives must be 
provided [lo, 251. To date, global computing has used 
fame, fun, or prizes as an incentive (e.g., the Great 
Internet Mersenne Prime Search [17], code-cracking 
(a money prize)‘, and SetiQhome’). The Popcorn 
project [9] has explored computational markets. 

Existing Java-based global computing projects have bottle- 
necks that currently prevent them from scaling to the thou- 
sands of computers that could be brought to bear. For ex- 
ample, the authors of Charlotte note: 

We have adopted a solution that does not scale 
for settings such as the World Wide Web, but it 
is an effective solution for OUT network at New 
York University. 

Bayanihan [24] has limited scalability now. However, its 
authors note: 

Currently, some ideas we are exploring include 
forming server pools to handle large numbers of 
clients, and using volunteer servers to form net- 
works with more f6exible topologies. 

Work apparently stopped on Atlas [3] after it had been 
tested using only a few workstations. 

In this paper, we focus on scaling Javelin, comparing 
two scalable versions of Javelin, called Javelin++: one that 
schedules work deterministically, and another that schedules 
work probabilistically. Both versions work on a simple kind 
of adaptively parallel computation [ll], called a piecework 
computation. Such an adaptively parallel computation de- 
composes into a set of sub-computations, each of which is 
communicationally autonomous, apart from scheduling work 
and communicating results. Piranha and Bayanihan, for ex- 
ample, are well suited to piecework computations. Raytrac- 
ing is a well known piecework computation, often used by 
global computing researchers. Matrix product also can be 
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considered a piecework computation., since it can be decom- 
posed into a set of block sub-products, whose results are 
simply added to produce the matrix product. Piecework 
computations are particularly attractive; they can get arbi- 
trarily large, but their communication requirements are in 
harmony with global computing’s intrinsic constraint: inter- 
net communication is slow. 

The remainder of the paper is organized as follows: Sec- 
tion 2 briefly presents the Javelin arc.hitecture, and the archi- 
tectural changes Javelin++ introduces. Section 3 discusses 
scalability in the context of global computing, and presents 
two scalable designs for Javelin++: deterministic and prob- 
abilistic. Section 4 presents the Javelin++ API, and illus- 
trates its use on a raytracing application. Section 5 presents 
experimental results for the detemlinistic and probabilis- 
tic versions of Javelin++, indicating the sensitivity of their 
scalability to granularity. The final section concludes the 
paper, indicating some immediately fruitful areas of global 
computing research and development. 

2 Architecture 

The Javelin++ system architecture is essentially the same 
as its predecessor, Javelin [12]. There are still three sys- 
tem entities - clients, brokers, and hosts. A &ent is a 
process seeking computing resources; a host is a process of- 
fering computing resources; a broker is a process that co- 
ordinates the allocation of computing resources. We did, 
however, introduce a few changes to the architecture. The 
most important ones are: 

l Communication is now based on Java RMI instead of 
TCP sockets. The application programmer thus no 
longer needs to implement a communication protoco13. 
Of course, the use of RMI requires the presence of 
JDI< 1.1.x or later or compatible software at any host 
participating in Javelin++. 

l For a number of reasons, we found it desirable to base 
our system on Java applications instead of applets, as 
was done before. This is probably the most prominent 
architectural change in the new system. The reasons 
that compelled us to make this switch are outlined 
below. 

l Javelin++ is the first version that actually implements 
a distributed broker network. Although the concept 
was already included in the old architecture, it was 
never practically achieved. Section 3.1 talks about the 
broker network. 

In the remainder of this section, we fist briefly recap the 
architecture of the old Javelin system. This is followed by 
a discussion of the advantages and disadvantages of using 
Java applications instead of applets. 

2.1 The Javelin Architecture 

Figure 1 illustrates our architecture. Clients register their 
tasks to be run with their local broker; hosts register their 
intention to run tasks with the broker. The broker assigns 
tasks to hosts that, then, run the tasks and send results 
back to the clients. The role of a host or a client is not 
fixed. A machine may serve as a Javelin host when it is 
idle (e.g., during night hours), while being a client when its 
owner wants additional computing resources. 

3JavaParty [22] and HORB 1191 are alternatives to RMI, which 
however tack RMI’s widespread installed base. 

Figure 1: The Javelin Architecture. 

One of the most important goals of Javelin is simplic- 
ity, i.e., to enable everyone connected to the Internet or an 
intranet to easily participate in Javelin. To this end, the 
design is based on widely used components: Web browsers 
and the portable language Java. By simply pointing their 
browser to a known URL of a broker, users automatically 
make their resources available to host parts of parallel com- 
putations. This is achieved by downloading and executing 
an applet that spawns a small daemon thread that waits 
and ‘listens” for tasks from the broker. The simplicity of 
this approach makes it easy for a host to participate - all 
that is needed is a Java-capable Web browser and the URL 
of the broker. 

Tasks are represented as applets embedded in HTML 
pages. This design decision implies certain limitations due 
to Java applet security: E.g., all communication must be 
routed through the broker and every file access involves net- 
work communication. Therefore, in general, coarse-grained 
applications with a high computation to communication ra- 
tio are well suited to Javelin. For more information on the 
original Javelin prototype, see [12]. 

2.2 Java Applets vs Applications 

As the underlying distributed object technology, Java RMI 
(Remote Method Invocation) is used. In the original Jav- 
elin prototype, all applications run as Java applets, which 
has the advantage of extreme ease of use from the point 
of view of a participating host - the user only needs to 
point a Java-capable browser to a broker’s web page to get 
started. Another advantage of using applets is the strict 
security model: the applet is effectively sandboxed by the 
browser. A user can trust the established security policy 
of his or her favorite browser when running untrusted code. 
However, the use of applets in this context has some serious 
drawbacks: 

l No local file I/O - armlet securitv aenerallv does not 
permit a&e& to the ]&al hard d;iv;?, making it hard 
if not impossible for some applications to run. For 
instance, in the case of seismic data processing, local 
file I/O is necessary to read large amounts of data in 
parallel. 

. No direct point-to-point communicntn’on - since ap- 
plets may not accept any connections, and may only 
initiate connections back to the server from where they 
were downloaded, point-to-point communication can 
be achieved only by providing special routing servers 
that relay all messages sent by Javelin hosts. This 
is a serious performance drawback, and the task of 
implementing the network routing service is tedious, 
especially with respect to fault tolerance. 
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l No native code interface - applets are not allowed to 
interface with native code on the host machine, and 
uploading native libraries through the browser is not 
possible. That means that any kind of commercial off- 
the-shelf (COTS) application cannot be made to run 
on the infrastructure, although there are such applica- 
tions that would benefit greatly from global computing 
(e.g., the Boyce image rendering software was recently 
implemented as a standalone glohal computing appli- 
cation including a simple trading space [8]). There is 
also an immense body of legacy code in scientific ap- 
plications written in Fortran or C* which could benefit 
from our infrastructure. 

l No standard plntform - increasing browser hetero- 
geneity makes it hard to program to all platforms, 
defeating the original idea of .Java’s platform indepen- 
dence. Since the arrival of JDK 1.1, browser devel- 
opers have been sluggish in implementing the com- 
plete API, leading to various subsets of the JDK being 
supported by different platforms. A prominent exam- 
ple is Microsoft’s outright denial of support for Java 
R.MI in Internet Explorer, making it impossible to use 
the most convenient and natural object technology for 
Java in conjunction tith their browser. Netscape also 
implements only a subset of JDK 1.1 functionalit,y, al- 
though it supports RMI. As of today, the only agreed 
upon standard remains JDK 1.0.2. 

We consider these disadvantages so severe that they threaten 
the general usefulness of Javelin++, since they disallow the 
implementation of many interesting applications on our plat- 
form. Therefore we decided to switch to Java applications 
running on Sun’s JDK 1.1 (or later) as the main platform 
for Javelin++ applications. This switch enables us to over- 
come all the above disadvantages. However, such a switch 
has its own disadvantages. 

First, the user must have JDK 1.1 installed on any ma- 
chine that is to become a Javelin++ host. Since JDK is 
widely distributed at present, we do not consider this a se- 
rious drawback. Second, the ease of use property of Javelin 
is slightly weakened: Instead of simply pointing the web 
browser to a broker site, the user must now download the 
initial daemon class file, and then start a JVM that executes 
the daemon. This process is slightly more complex than be- 
fore, but can be well explained on the hroker’s web page. 
Third, the main disadvantage of applications is, of course, 
the lack of a security model that is predefined, agreed upon, 
and therefore comfortable for the user, raising the question 
of trust in the Javelin++ system. This can be overcome in 
two ways: 

1. A Javelin++ security model can be provided by im- 
plementing a SecwityMunnger class that ensures that 
applications communicate only with other Javelin++ 
applications, and have limited access privileges to local 
resources like the file system. 

2. On certain operating systems, e.g., Solaris and Linux, 
it is possible to sandbox a process externally through 
the so-called “Iproc” interface. This has been success- 
fully demonstrated in the Berkeley Janus project [16] 
and the UCSB Consh project [20]. 

Both approaches can lead to an even more secure execu- 
tion environment than the browser itself can provide. For 

‘This type of code could be called “SOTS” - scientific off-tbe- 
shelf. 

instance, the experiment of the Knitting Factory project 
[4] found that when using Java RMI at least one browser, 
Sun’s HotJava, permits direct point-to-point communica- 
tion between applets once RMI handles have been exchanged 
through the server! 

An alternative approach when Java applications are used 
would he to provide a special Javelinf+ screen saver that 
the user could download and install on a host. Such a screen 
saver would run the JVM and the Javelin++ daemon while 
the host is idle, making the operation of Javelin++ conve- 
nient for the user. Although this has the disadvantages of 
making the installation harder for the user and having to 
provide a separate implementation for each OS, thus los- 
ing some of the platform independence of Java, it might be 
worth considering for the most popular operating systems5. 

3 Javelin++: A Scalable Architecture 

In this section we present our approach of a scalable global 
computing system. Other projects have tried or we cur- 
rently trying to achieve greater scalability, e.g., Atlas [3] 
through its tree-based approach, and Bayanihan [24] with 
its volunteer server concept; but to date, no large-scale ex- 
periments have shown that these concepts work in practice. 
The original Javelin achieved good results up to about 60 
hosts, when the single broker/router bottleneck became no- 
ticeable. 

Without modifying the original Javelin architecture, Jav- 
elin++ introduces a number of scalability enhancements, 
described below. The most prominent are: 

a distributed broker network that overcomes the sin- 
gle broker bottleneck and permits much greater host 
participation, 

the switch from Java applets to applications as de- 
scribed in Section 2, which permits point-to-point com- 
munication and thus allows arbitrary graph configura- 
tions, and 

two different schemes of work distribution, a proba- 
bilistic one and a deterministic one, that both offer 
the potential to accommodate large numbers of hosts 
participating in a single application. 

Let us begin by clarifying what we mean by scalable: If a 
global computational infrastructure is scalable, its compo- 
nents have bounded power - bounded computational rate, 
bounded communication rate, and bounded state6. In par- 
ticular, for .Javelin++ to he scalable, its clients, brokers, 
and hosts have bounded power. These bounds imply that, 
for example, clients, brokers, and hosts, can communicate 
with only a fixed number of other components during a 
fixed interval of time. Thus, at any point in time, there are 
bounds on the number of connections between hosts, be- 
tween brokers, between brokers and hosts, and between the 
client and brokers. Bounded state similarly implies bounds 
on the number of brokers that a broker can know about at 
any point in time. 

The .Javelin prototype offers just a single broker/router 
that becomes a bottleneck when too many hosts participate 
in a computation. Clearly, a network of brokers must be 
created in order to achieve scalability. Internet-wide partic- 
ipation means that all hosts must be largely autonomous and 

‘MS Windows currently has more than 90% of the market. 
‘III this context, bounded stands for bounded by some constant. 
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able to work in the presence of node and network failure 
Scdability implies th.at the architecture cannot be centr: 
ized. Bounded state implies that no site can, in genera 
have a global system view (e.g., a table with the names 
all participating brokers). We have identified two key pro 
lems in building a scalable architecture: 

1. Host allocation and code distribution - How does 
client find hosts for its computation, and how does tl 
code get distributed efficiently to a potentially ve 
large number of hosts? 

2. Data communication at runtime - How is data ex- 
changed between participating hosts after an applica- 
tion has been successfully started? 

In the following we describe our approach to solve these 
problems. The section is structured according to the differ- 
ent states a Javelin++ host can be in during its lifetime. 
The complete state transition diagram is shown in Figure 2. 
There are four states: NoHost, Standby, Ready, and Run- 
ning. If a host has not joined Javelin++ it is in state No- 
Host. The transition to Standby is made by downloading 
and starting the Javelin++ daemon and then registering 
with a broker. In the next section we describe how brokers 
are managed, hosts are allocated, and code is shipped so 
that an application is ready to start, causing a state tran- 
sition from Standby to Ready. In Section 3.2.1 we present 
two different data exchange mechanisms that allow the host 
to run the application and therefore transition to Running. 
The first is a probabilistic approadh based on a distributed, 
double ended queue and address hashing; the second is a de- 
terministic, tree-based approach. The performance of these 
two approaches is compared in Section 5. 

The diagram has two more sets of transitions, a “natural” 
way back from each state to the previous state when a phase 
has terminated, and a set of “interrupt” transitions (shown 
in dashed lines) that lead back to the NoHost state when a 
user withdraws the host from the system. 

Figure 2: State Transition Diagram for Javelin++ Hosts. 

3.1 Scalable Code Distribution via a Broker Network 

3.1.1 Network Topology and Broker Management 

The topology of the broker network is an unrestra’cted graph 
of bounded degree. Thus, at any time a broker can only 
communicate with a constant number of other brokers. This 
constant may vary among brokers according to their compu- 
tational power. Similarly, a broker can only handle a con- 
stant number of hosts. If that iimit is exceeded adequate 
steps must be taken to redirect hosts to other brokers, as 
described below. The bounds on both types of connection 
give the broker network the potential to scale to arbitrary 
numbers of participants. At the same time, the degree of 
connectivity is higher than in a tree-based topology like the 
one used in the ATLAS project [3]. Figure 3 shows the con- 
nection setup of a broker. 

Hosts rakers 

Figure 3: Broker Connections. 

In principal, a broker is just another Javelin++ appli- 
cation. That means that it runs on top of the Javelin++ 
daemon thread. However, since brokers are expected to be 
a lot more stable and reliable than other hosts, certain con- 
ditions have to be met: A broker must run on a host with 
a “permanent” connection to the Internet, i.e., slow modem 
connections are not acceptable, and the user donating a bro- 
ker host must be prepared to run the broker for a “long” 
duration and give the system “ample warning” before with- 
drawing the host, so that connected hosts can be moved to 
other brokers. 

We distinguish between two types of broker: primary 
brokers and secondary brokers. Technically, there is not 
much difference, except for the way the broker starts up. 
A primary broker is a broker that starts up without logging 
in to another broker as a host first. This is to guarantee 
that there is a minimal broker network at system startup. 
Primary brokers can start up from shell commands and link 
to other primary brokers by reading in a configuration file. 
In contrast, secondary brokers start up as normal Javelin++ 
hosts by linking to their local broker. At registration time 
the host indicates whether or not it is prepared to run a 
broker according to the above rules. 

A secondary broker comes to life when the broker it is 
connected to exceeds its individual limit for host connec- 
tions. In order to accommodate the host that causes this 
overflow, the broker chooses one of its hosts that is pre- 
pared to be a broker and preempts the application running 
on that host. Then it sends the broker code to the new 
broker host and moves some of its hosts to the new broker. 
Also, the new broker gets connected to other brokers by us- 
ing the same (or part of the same) configuration file of the 
primary broker which is also sent to it by the old broker. All 
this can be achieved through the Javelin++ daemon. Next, 
the daemons of the hosts that were moved are notified of 
their new broker. This should be entirely transparent to the 
users who donated the hosts. In the same way, the system 
can collapse again if the number of hosts connected to the 
secondary broker drops below a certain threshold, say e.g. 
25% of its host capacity. 

3.1.2 Code Distribution 

A client and its local broker do not actively look for hosts 
to join a computation. Hosts can join at any time, either 
by contacting the same broker as the client or indirectly 
through some other broker. 

If every host that participates in a computation had to 
go to the client to download the code this would soon lead 
to a bottleneck for large numbers of hosts. Therefore, first 
the local broker and then every other broker that joins in 
a computation will act as a cache on behalf of the client. 
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The loading and caching mechanism is implemented as a 
modification to the standard Java ClassLoader - whenever 

. a loadClass() command fa.ils at a host it is translated to a.n 
RMI call to the local broker, which in turn will either deliver 
the requested class from its cache or make a recursive RMI 
call to the broker it retrieved the application from. If all calls 
in this chain fail to deliver the requested class, the client will 
finally be contacted and deliver the original class file, which 
will then be cached at all intermediate brokers in the chain. 
Subsequent, requests by other hosts will not reach the client 
again, thus eliminating another bottleneck in the system. 

In the following we describe the sequence of steps from 
the moment a client application is willing to execute until 
the moment when a host has received the code to participate 
in the computat.ion. 

1. 

2. 

The client registers with its local broker. 

If the broker is willing to accept jobs, the client then 
sends a description of the application to the broker7. 
Depending on the type of application, the client may 
now start up and execute on its own. 

3. A host joins the system by downloading the Javelin++ 
daemon class and starting a JVM that executes the 
daemon . 

4. The host daemon contacts the local broker asking for 
code to execute. 

5. If the local broker has work, it returns the name of the 
application class and client ID. If not, it contacts its 
neighboring brokers and asks for code until it either 
finds an application or all neighbors have denied the 
request. If this search is successful, the broker also 
returns the application information to the host. 

6. The host daemon executes the above mentioned recur- 
sive class loading mechanism to load the application. 
A new thread is created and the application starts to 
execute on this host. 

3.2 Scalable Computation 

After distributing the code successfully, we can now tackle 
the next problem of managing a scalable computation. In 
Javelin++ we follow two distinct approaches to solve this 
problem, a probabilistic and a deterministic model. Whereas 
the probabilistic approach is somewhat “chaotic” in the sense 
that communication between hosts is completely unstruc- 
tured, the deterministic approach structures the participat- 
ing hosts into a tree in which some hosts become “managers” 
for other hosts. Both approaches offer high potential for 
scalability, and a performance comparison is attempted in 
Section 5. We now give a brief description of our strategies. 

3.2.1 The Probabilistic Approach 

In the probabilistic model we base our strategy on two main 
data structures that are local to every host: a hash table 
of host addresses (technically, Java RMI handles), and a 
distributed, double-ended task: queue containing “chunks of 
work”. For the reader who knows our previous Javelin pro- 
totype [12] the deque will sound familiar. Indeed we have 
only further refined this approach since it promised good 
scalability from the beginning. 

‘currently consisting of the niwne of the application class and the 
ID of the client 

The task queue is double-ended because we follow the 
concept of randomized work stealing which was made pop- 
ular by the Cilk project [7]. The local host picks work off 
one end of the queue, whereas remote requests get served 
at the other end. Jobs get split until a certain minimum 
granularity determined by the application is reached, then 
they will be processed. This means that when a host runs 
out of local jobs, it picks one of its neighbors at random 
from its hash table and issues a work request to that host. 
In doing so the host piggybacks its own address information 
onto the request so that address information can propagate 
through the set of participants. Regardless of whether the 
request is successful, the callee returns a constant number of 
his own addresses for the same purpose. The caller will then 
merge his acldress table with the set of returned addresses. 
Thus, his knowledge of participants will increase until his 
table fills up and “older” addresses must be evicted, which 
can he taken care of by a standard replacement policy like, 
e.g., LRU. All this will result in a working set of connections 
for each host. 

From the point of view of scalability, using a hash ta- 
ble allows for fast retrieval in the average case and scales 
to very large numbers. In addition, there is no centralized 
site in this setup, and host autonomy is guaranteed since 
sufficient information is kept locally to remain functional in 
the presence of failures. It is important to observe that the 
address table is bounded in size - the hash table is preallo- 
cated to some fixed size that remains manageable. 

For fault tolerance purposes the next version of the deque 
will include distributed eager scheduling, where chunks of 
work can be reassigned to faster hosts in case results are 
still outstanding. Eager scheduling was made popular by 
the Charlotte project [5]. It is a low overhead way of ensur- 
ing progress towards the overall solution in the presence of 
failures or varying processor speeds. 

3.2.2 The Deterministic Approach 

The second version of Javelin++ implements a deterministic 
scheme. We chose to use a balanced tree - a heap - as the 
underlying structure of our deterministic model. As in the 
probabilistic approach, the fundamental concept employed is 
work stealing from a distributed deque. The main difference 
is that it follows a deterministic algorithm based on the tree 
structure. 

Initially, each host retrieves a chunk of work from its 
parent and will perform computation on the work one piece 
at a time. When a host is done with all the work in its deque, 
it will attempt to steal work, first from its children and, if 
that fails, from its parent. We chose this strategy to ensure 
that all the work assigned to a subtree gets done before a 
node requests new work from its parent. To facilitate this 
scheme, each host keeps a counter of the total work assigned 
to its subtree, plus a counter for each of its children. It 
is important to observe that the counters are not likely to 
reelect the exact state of the tree, but rather serve as upper 
bounds on the amount of work left in a subtree. This way, 
a host can make an “educated guess” as to which of its 
children is most likely to have more work, and direct its 
request to that child first. The counters are updated on 
each reply to a work request. 

Work stealing plus keeping the tree balanced ensures that 
each of the hosts gets a relatively even work load. The root 
of the tree is the client which is assumed to be a stable par- 
ticipant. When a new host joins, it is assigned a position at 
the bottom of the tree by the tree manager, which maintains 
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a heap data structure for that purpose. The tree fanout can 
be chosen individually for each application at startup. 

The functionality of the tree itself becomes most impor- 
tant when a host fails or retreats. When a host is assigned 
a position in the tree, it is given a list of all of its ances- 
tors with the client being the first element of the list. If a 
host detects that its parent is dead, it traverses its ancestor 
chain until it finds a live ancestor. That host serves as the 
temporary parent of the host unt:il the host has finished all 
work in its current deque. We thus avoid losing the work 
of the subtrees of a failed host. Once the chunk of work is 
finished, the host needs a new parlent from which it requests 
new work. At this point, the host contacts the tree man- 
ager to get a new ancestor chain. If the empty position has 

Host 8 replaces 
host ;! 

Figure 4: Deterministic tree 

already been reported and filled, the tree manager traverses 
the tree representation, and returns a new ancestor list to 
the host. However, if the host is tbe first to report the fail- 
ure, the tree manager reheaps the tree. First, it notifies the 
last node in the tree that it is to be moved. Figure 4 illus- 
trates the situation where node 2 has failed and is replaced 
by node 8. Node 8 is assigned a new list of ancestors, and 
is moved to its new position. Then, the tree manager tra- 
verses the tree representation to find the new ancestor chain 
of the orphaned node, and returns that chain. Currently, 
the tree is managed by one entity and therefore presents a 
potential bottleneck if the host failure rate is high. However, 
it would be possible to modify the existing implementation 
such that it would distribute the tree management through- 
out the broker network. In this case, the host failure rate 
which the system could recover from would increase as the 
number of brokers increased. 

Although the results that we have obtained from both 
approaches are promising, we would like to examine a third 
approach-a synthesis of the probabilistic and deterministic 
versions. To further improve fault tolerance, we also plan to 
incorporate distributed eager scheduling in the next version 
of the cleterministic deque. 

4 The Javelin++ API 

In this section we illustrate our sy:stem from an application 
programmer’s point of view. We first present the classes 

needed by the programmer to create a Javelin++ applica- 
tion. We then give an example that shows how the API is 
actually used and how easy it is to create Javelin++ appli- 
cations. 

A Javelin++ application consists of one client and many 
hosts. The client is responsible for initiating the compu- 
tation, managing the problem, and collecting the results. 
It may or may not do part of the actual computation. The 
hosts help the client manage and compute the problem. The 
client code executes on a single machine, while the host code 
is distributed throughout the Javelin++ network and exe- 
cuted on many different machines. 

All of the Javelin++ classes are contained in two pack- 
ages: JavelinPlus and JavelinPlus.util. The first pack- 
age contains all of the core Javelin++ classes and the second 
one contains data managers and other helper classes. We fol- 
low the convention that all classes and interfaces beginning 
with the letter “J” are implemented in Javelin++ and can 
be directly used by the application, whereas interfaces not 
beginning with “J” must be implemented by the application 
in order to work with the system. 

The application programmer must provide code for both 
the client and the host, which may actually be joined to- 
gether in a single source fle as our example below shows, 
plus the implementation of three interfaces specifying classes 
needed by the system. 

4.1 The JavelinPlus Package 

This package contains all the core classes needed by clients, 
hosts, and brokers, including the Javelin++ daemon men- 
tioned in Section 3. The programmer writing an applica- 
tion for Javelin++ only needs to 
JavelinClient class. 

public class JavelinClient < 
public JavelinClient(String 

String 
String 

public void begin0 ; 
public void terminate 0 ; 

3 

get acquainted with the 

client, 
className, 
broker) ; 

Any Javelin++ client must create a JavelinClient instance. 
The only constructor of JavelinClient takes the local host- 
name, the top-level classname used to load the host classes, 
and a broker’s hostname. Once the client is ready to start 
the computation, the client invokes the begin0 method. 
This causes the client to register with a broker, which in 
turn allows for the broker network to assign hosts to the 
client’s computation. The terminate0 method unregisters 
the client allowing the broker network to clean up and stop 
assigning hosts to that client. It is typically called after the 
computation is done and before the client exits. 

4.2 The JavelinPlus.util Package 

To manage the computation, clients and hosts must instanti- 
ate one of the data managers in this package. Data managers 
dictate how the computation is divided, how hosts obtain 
work, and how results return to the client. As discussed 
in Section 3, data managers can either be probabilistic or 
deterministic, and they are responsible for providing scal- 
ability and fault tolerance. Currently, Javelin++ provides 
two data managers: the deterministic JavelinDDeque and 
the probabilistic JavelinRDeque. Both of these implement 
the JDataManager interface shown below. 
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public interface JDataJ4anager c 
public void addWork(Splittable work); 
public Splittable getWork(); 
public void returnFtesult(Object result); 
public void setResultListener(ResultListener rl); 
public void setDoneListener(DoneListener dl); 

The three main methods are addWork0, getWork and 
returnResult 0. In our model, a host uses the first method 
to pass new work to the data manager. In the piecework 
scenario this method is typically only executed once by the 
client to initialize the computation. The getWork method 
is used by a host to obtain a piece of the computation. In 
case the computation produces a usable result, the host 
passes that result to the client using the returnResult 
method. However, the exact way of how the result actu- 
ally propagates to the client depends on the underlying data 
manager. For instance, results could be sent directly to the 
client or collected and combined to be sent in larger chunks. 

The programmer must also tell the data manager how 
to notify his application whenever a new result arrives and 
when all the work is complete. This is done by the methods 
setResultListener() and setDoneListener 0. The two 
methods are mainly needed on the client which needs to 
process results and is interested in knowing when the com- 
Putation is complete. For this purpose, the programmer 
must implement the two interfaces below so that the respec- 
tive methods can be called by the system. 

public interface ResultListener c 
public void returnResult(Object result); 

1 

public interface DoneListener I 
public void workDone 0 ; 

1 

So far, we have not mentioned how the client specifies the 
work to a data manager. For this, the programmer has to 
write a class representing the type of work to be done which 
implements the Splittable interface, shown below. This 
way, the data manager has a means to divide and distribute 
the work to hosts. 

public interface Splittable c 
public boolean canSplit0; 
public SplittableC] split 0 ; 
public int getObjectSize0; 

The split0 method should split the work represented by 
a particular object into two relatively equal parts. The two 
parts are returned in an array of length twos. For example, 
assume we have a class that implements the Splittable in- 
terface and represents an image. If we were to invoke the 
split 0 method on an instance representing an n by n im- 
age, the returned array should contain two new instances 
each representing an 9 by n image. The canSplit. method 
determines if a split is possible and is always invoked prior to 
split 0 method. If canSplit 0 returns f&e, the split 0 
method will not be called. Finally, the getObjectSize0 
method returns the integer size of the object, This is needed 
by the deterministic deque which keeps integer counters of 
all work assigned to a tree node and its children. The 
method is ignored by the random deque. 

*altlmugh other ways of splitting are conceivabie with this 
interface! 

4.3 Examples 

The main design goal is to separate the computation en- 
gine from the data delivery. The data delivery interacts 
with Javelin++ to obtain and format the work for the com- 
putation engine. This design produces two very desirable 
properties. First, we can reduce application writing to us- 
ing an off-the-shelf program/library (computation engine) 
and only writing a small data delivery part. Second, having 
done one such application, it is very easy to change to a 
different computation engine. 

The client must pass the name of the host class into the 
JavelinClient constructor. This class has to implement the 
Runnable interface, since the Javelin++ daemon is going to 
execute the host application as a thread. Therefore, the 
programmer must implement the run0 method, which is 
the first method that is going to be invoked. 

Prior to the computation, the host is only required to 
instantiate the same data manager as the client. Then, the 
host starts the computational loop: ask data manager for 
work, compute work, and register results. Once the data 
manager returns null or no more work, the host can termi- 
nate by simply returning from the run0 method. 

The skeletons for the client and the host are presented 
below. To save space and increase readability much of the 
error handling code has been omitted. 

public class GenericClient 
implements ResultListener, DoneListener i 
JavelinClient jClient = null; 
JDataManager dm = null; 
Splittable work = null; 

public GenericClientfString broker) i 
jClient = neu JavelinClient(localHost, 

“GenericHost”, 
broker) ; 

// Create a work object of the class 
// that implements Splittable. 
uork = new . . . . 

// Create a data manager. 
// Here, a deterministic deque 
// is instantiated. 
dill= new JavelinDDequeO ; 

// Pass the work to the data manager. 
dm. addWork(vork) ; 
dm.setResultListener(this); 
dm.setDoneListener(this); 

jClient .beginO ; // Begin execution phase. 
1 

public void returnResult(Clbject result) { 
. . . // ResultListener Implementation. 

1 

public void workDone I 
// DoneListener Implementation. 
jClient.terminateO; 

1 

public static void main(String[] argv) I 
GenericClient genclient 

= new GenericClient (argv [OI ) ; 
1 
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3 

public class GenericHost implements Runnable { 
JDataManager dm = null; 

public GenericHost (> { . . . ) 

public void init { 
// Instantiate the same data manager 
// as in the client. 

3 

public void run0 < 
init 0 ; 

// Computational loop. 
while (true) i 

if ((Object work = dm.getWork()) == null) 
break; 

Object result = doUork(uoik) ; 
dm.returnResult(result); 

3 
3 

3 

Next, we give some code extracts from our raytracing appli- 
cation. The raytracer is still the same application that was 
used in the original Javelin system [12]. We first show how 
this application implements the Splittable interface to tell 
Javelin++ how objects can be split. Here, the RectEntry 
class shown below simply extends the java. aut. Rectangle 
class to define the area that needs to be rendered. 

public class RectEntry extends java.awt.Rectangle 
implements Splittable i: 
// minimum size for split 
public static final. int limit ‘= 32; 
private int jsize = 0; 

public RectEntry(int x. int y, int wu, int hIi> f 
supercx. y, vu, hh); 
jsize = (w/limit) * (an/limit>; 

3 

boolean canSplit { 
return (width > limit i 1 height > limit) ; 

3 

Splittable Cl split 0 I 
Splittable[] result = new Splittable [2] ; 

if (width > height) I 
result CO] = neu RectEntry(r, y, 

width/2, height) ; 
result[l] = new RectEntry(x + width/2, y, 

vidth/2, height) ; 
3 
else i: 

result CO] = new RectEntry(x, y, 
width, height/2); 

result cl] = new RectEntry(x, y + height/2, 
width. height/a); 

3 
return result; 

3 

public int get0bjectSizeOI 

return jsize; 
3 

3 

Finally, the computational loop for the raytracer is shown 
below. First, we ask the data manager for an area to render. 
Our rendering engine is simple and is totally contained in 
the RayTrace class. To render an area, the data delivery 
simply invokes the raytrace method. At the end of the 
loop the result for this area is returned. 

while (true) { 
area = (RectEntry)dataManager.getWork() ; 
int Cl pixels 

= tracer.raytrace(area.x. area.y, 
area.width, area.height) ; 

dataManager .returnResult (new RectResult (area. 
pixels)) i 

3 

5 Experimental Results 

Tests were run in campus student computer labs under a 
typical workload for the network and computers. This envi- 
ronment consists of 12 Pentium II, 350 MHz processors with 
128 MB RAM, 41 Pentium-S, 166 MHz processors with 64 
MB RAM, and 10 Sun Ultrasparc with 64 MB RAM and 
processor speeds varying from 143 to 400 MHz. All ma- 
chines run under Solaris 2.5.1 and 2.6. The machines are 
connected by a 100 Mbit network. We used the new JDK 
1.2 with active JIT for our experiments, although our code 
is designed to run with JDK 1.1.x as well. 

To test the performance of the probabilistic deque and 
the deterministic tree, we ran experiments on the raytrac- 
ing application described in Section 4. The performance was 
measured by recording the time to render the image. The 
size of the image used for testing is 1024 x 1024 pixels, con- 
sisting of a plane and 993 spheres arranged as a cone. This 
image is complex enough to justify parallel computing, but 
small enough to enable us run tests in a reasonable amount 
of time. The image is decomposed into a set of square sub- 
images, such as 128 x 128 pixels. Each sub-image constitutes 
an independent task for a host to compute. The computa- 
tional complexity of a task thus depends on the size of the 
sub-image and its complexity (i.e., the number of objects in 
the scene to he raytraced). The test image took approxi- 
mately 6 hours to render on one machine. Since the image 
being tested was an actual scene, the computational com- 
plexity of the individual tasks varies, depending on which 
part of the scene it represents. We manually joined hosts to 
the computation soon after the client started. In the future, 
we plan to have hosts in place, waiting for a client to start. 

In the first experiment, we varied the number of hosts 
on the image decomposed into 1024 suh-images of 32 x 32 
pixels. In our second experiment, we fixed the total work 
(image) and number of hosts, and varied the task size, thus 
varying the number of tasks to be distributed. In a pro- 
duction environment, we would set the deterministic tree’s 
branching factor, or fanout, to maximize efficiency. For test 
purposes, the tree’s branching factor was set to 4, to force 
the tree to have some depth. 

5.1 Measurements 

Figures 5 and 6 show that, for both the deterministic and 
the probabilistic deque, the speedup degrades slightly from 
linear for the higher host numbers. 
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Figure 5: Speedup Curve for Random Deque. 
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Figure 6: Speedup Curve for Deterministic Deque. 

The slight degradation, we believe, is associated with 
transient phenomena: starting up the large number of pro- 
cessors and winding down the computation, where necessar- 
ily a large number of processors eventually must run out of 
work. Also, the varying workloads of participating hosts re- 
duce the potential speedup, as results from slow processors 
come in late. Work stealing can alleviate this problem, but 
overall a loss in performance cannot be overcome. 

One phenomenon has to be explained in this context: 
both curves first show a degradation up to 32 hosts, then 
a sudden increase in speedup for the largest experiments. 
This is because only for our largest experiments (more than 
41 processors), we added the fewer but faster processors, 
which managed to steal more work from slower processors 
and thus improved speedup. For the random deque, our 
best result was a speedup of 52 for 60 processors. The de- 
terministic deque achieved a comparable speedup of 46 for 
52 processors. 

By varying the number of tasks, experiment 2 shows that 
the speedup improves when the hosts are better utilized. 
Prom the bar chart in Figure 7, we see that by decreasing 
the task size, and thus increasing the number of tasks, we 
significantly improve the speedup. With a task size of 32 x 

32 pixels, yielding 1024 tasks, the speedup reached 37.9 for 
40 hosts. Further reductions in task size did not result in 
improved speedup, only in increased communication. Thus, 
an image that took over 5 hours (300+ min) to render on a 
single computer took less than 6 minutes on machines that 
were servicing undergrad and grad students, who unknow- 
ingly stole cycles from the image rendering as they surfed 
the web, emailed their friends, and occasionally compiled 
code. 

In the experiments for the original Javelin, the picture 
had more than 12 times as many objects, while the hosts (the 
Meiko’s Spare processors) were only about a fifth as fast, 
yielding tasks with a much larger computational load than 
the tasks used for these experiments. The communication 
speeds were about the same. We believe that if our current 
experiments had a comparable computation/communication 
ratio that our speedups wnuld have been even closer to op- 
timal. Also, the original Javelin experiments were run on 
an otherwise idle set of 64 processors (Meiko). Since such a 
setting with a dedicated multiprocessor machine is not the 
target environment for global computing, our Javelin++ ex- 
periments were run on a student laboratory whose machines 
were not idle, reflecting a situation much closer to actual re- 
ality. 

Figure 7: Different Granularities for the Deque. 

The tree built in the deterministic scheduler was not a 
bottleneck in these experiments; the time for a host to join 
the computation was about 70ms. 

6 Conclusion 

Parallel Internet computations need at least an order of mag- 
nitude more computers than conventional NOWs to justify 
their use. Global computing infrastructures thus must scale 
to at least an order of magnitude more computers than con- 
ventional NOWs. We have investigated the problem of cre- 
ating a scalable, Java-based global computing infrastructure 
called Javelin++. We have presented an approach to dis- 
tribute application code in a scalable manner through a net- 
work of brokers, each of which acts as a code cache for the 
hosts connected to it. We have also implemented two con- 
ceptually different approaches for managing a scalable com- 
putation: one that distributes work probabilistically, and 
another that distributes work deterministically. Our de- 
sign analysis indicates that these versions of Javelin++ scale 
better than the original Javelin infrastructure. We achived 
good results in a restricted setting, and we believe both ap- 
proaches will scale beyond what our experiments were able 
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to verify. Our tests have have confirmed the scheme’s sen- 
sitivity to computation/communication ratio. We thus hy- 
pothesize that as the computation/communication ratio in- 
creases, the speedups get closer to linear for much higher 
numbers of hosts. This hypothesis i,s not unreasonable; to 
achieve a computation/communication ratio comparable to 
that of a NOW, we must increase the computational load in 
the Internet setting to compensate for its increased commu- 
nication time (relative to these times in NOWs). 

In future, we plan to focus primarily on fault-tolerance, 
which will allow us to run experiments on a much larger 
scale. We also intend to generalize our computational model 
to accommodate any divide-and-conquer computation, con- 
tribute to the issues of correctness checking, and support 
host incentives. 
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