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a b s t r a c t

The transition method for image binarization is based on the concept of t-transition pixels, a

generalization of edge pixels, and t-transition sets. We introduce a novel unsupervised thresholding for

unimodal histograms to estimate the transition sets. We also present dilation and incidence transition

operators to refine the transition set. Afterward, we propose the simple edge transition operator for

detecting edges. Our experiments show that the new approach increases the effectiveness of OCR

applications outperforming several top-ranked binarization algorithms.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In binarization algorithms, the foreground F denotes the subset
of pixel of interest, while the background B is the complement of F .

Few binarization researchers work with color images directly
[1]. The rest transforms an image from color to gray intensities
before applying the binarization algorithm. For example: (1) Chou
et al. [2] developed a binarization system for images produced by
cameras, which deals with uneven illuminated images. They
divide a gray-intensity image into several regions and decide how
to binarize each region. (2) Caron et al. [3] detect region of interest
characterizing each pixel with a gray-intensity template of 3�3,
the frequency of which appears to obey a power law distribution.
(3) Milewski et al. [4] presented a methodology for separating
handwritten foreground pixels, from background in carbon copied
medical forms. They compare the gray-intensity mean of small
neighborhoods around the pixel of interest. (4) and (5) Both Chen
et al. [5] and Mello et al. [6] binarize documents using gray-
intensity images as input. Whereas Chen et al. generate the binary
image from the edge image of the gray-intensity image, Mello
et al. compute a threshold based on a weighted entropy equation.

We follow the approach of the previous examples. That is, our
method takes a gray-intensity image I as input and returns a
ll rights reserved.
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binary image B as output, where pixels in white represent the
background and pixels in black represent the foreground.

We can identify three categories of binarization algorithms [7].
Global algorithms label a given pixel using information from the
whole image, while local algorithms rely on information from the
pixel neighborhood. Hybrid algorithms combine information from
the whole image and from the pixel neighborhood. Note that
global algorithms can be transformed into local versions by
restricting the analysis to the pixel neighborhood. All algorithms
considered in this article are local even though some of them were
originally formulated for global analysis. Local versions usually
perform better than global ones [7].

Thresholding algorithms classify a pixel as foreground if the
gray intensity of the pixel is darker than a threshold. In this line,
Sezgin and Sankur [8] present an exhaustive categorization of
thresholding. They affirm that Kittler’s minimum error thresholding

[9] and Sauvola’s thresholding [10] are the best-scored algorithms
binarizing documents uniformly illuminated and degraded with
noise and blur. In essence, Kittler’s criterion maximizes the
likelihood of the joint distribution of gray intensities assuming
that foreground and background are normally distributed with
different variances. Otsu’s algorithm [11] minimizes the gray-
intensity variances of both foreground and background. In
contrast, Portes et al. [12] maximizes the non-extensive entropy,
also called Tsallis entropy [13], of both foreground and back-
ground.

Sauvola’s algorithm is a modified version of Niblack’s algorithm

[14]. Both algorithms assume that the gray intensities of the
background are approximately normally distributed and select a
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Fig. 1. The schemes exemplify two no-transition pixels a and d, a negative transition pixel b and a positive transition pixel c. We expect that VðaÞ � 0� VðdÞ, VðbÞr�t� and

VðcÞZt + , where t� and t+ are approximately equal to the expected gray-intensity contrast between foreground and background pixels.

M.A. Ramı́rez-Ortegón et al. / Pattern Recognition 43 (2010) 3243–32543244
threshold as the lower limit of an interval centered in the mean of
the gray-intensity histogram. Wolf and Jolion [15] modified
Sauvola’s equation by adding two terms: the minimum gray
intensity of the neighborhood and the maximum standard
deviation of all neighborhoods. Both act like a dynamic var-
iance-normalization factors.

The key ideas in the methods mentioned above are the
following: Niblack, Sauvola and Wolf use statistics from a

neighborhood of the pixel of interest, while Kittler, Portes and Otsu
define a criterion to optimize and assume an a priori statistical

distribution for both foreground and background. However, all six
algorithms disregard edge information and this leads to false
positive spots and diminished foreground boundaries.

We attempt to extend the transition method proposed in [16].
The concept of t-transition pixel, t-transition set, transition value,
and transition function are briefly explained. Later on, we discuss
the histogram behavior of transition values. Some mathematical
arguments and empirical evidence lead us to propose the double

linear thresholding to compute a threshold for transition values in
order to approximate the transition set, which is refined by both
incidence and dilation transition operators.

Although edge detection is not the main scope of this article,
we introduce the simple edge transition operator that is capable to
compute the edge image.

This paper considers only one input image without sudden
illumination changes in small neighborhoods.

The rest of this paper is organized as follows. Section 2
introduces the main concepts and introduces the concept of
transition. The transition method is developed in Section 3.
Section 4 describes the design of our experiments. The results are
shown in Section 5. Conclusions are presented in Section 6.
1 The analysis of the sampling bias is beyond the scope of this paper. Readers

interested in pursuing the topic further are encouraged to consult the books by

[17,18] for a more thorough explanation. Useful discussion is also available in

[19,20].
2. Preliminary concepts

2.1. Notation

An image function F can be defined as the mapping F : P-A
where P ¼ fpi,jjpi,jAN�Ng and A�Z. The pixel pi,j is located in
the i-th row and the j-th column. If the pixel position is irrelevant,
we denote the pixel pi,j as p. I : P-G¼ f0,1, . . . ,lg is the gray
image function. B : P-f0,1g represents the binarization of I,
where one is considered as foreground. Local binarization
algorithms compute a threshold surface T : P-G over the whole
image; BðpÞ ¼ 1 if IðpÞ is lower than the threshold TðpÞ. The
information to compute TðpÞ is gathered from the pixels within a
square N rðpÞ centered at the pixel p of sides with length 2r+1.

PðpAAÞ denotes the probability that a pixel p belongs toA�P.
The mean and variance of any function F in a set A are denoted as
mF,A and s2

F,A.
The maximum F(x) value in a set A is denoted as maxxAA FðxÞ

while minxAA FðxÞ denotes the minimum. Similarly, arg maxxAA FðxÞ

denotes the value of x that leads to the maximum value of F(x) in A
while arg minxAA FðxÞ the value of x that leads to the minimum.

We denote HI,A the histogram of those pixels within A. For
instance, HI,F\N r ðpÞ denotes the histogram of gray intensities
foreground pixels within N rðpÞ.

2.2. Transition set

A pixel p is a t-transition pixel if the neighborhood N tðpÞ contains
foreground and background pixels. The set of these pixels is named
Pt . If t¼1, then the t-transition pixel is an edge pixel.

A neighborhood that contains a large subset of Pt also contains
a significant subset of the foreground contour. Furthermore, the
statistical distribution of the positive transition set F t ¼Pt \ F
approximates the distribution of F since it is a large foreground
sample.1 Analogously, the distribution of the negative transition

set Bt ¼Pt \ B approximates the distribution of B, see Fig. 1.
A transition function F is a discriminant function that fulfills the

following conditions:
1.
 Extreme positive values for pixels in F t .

2.
 Extreme negative values for pixels in Bt .

3.
 F takes values close to zero in Pc

t .
Formally, these conditions can be expressed in terms of condi-
tional probabilities:

PðpAF tjFðpÞZtþ Þ41�eþ , ð1Þ

PðpABtjFðpÞr�t�Þ41�e�, ð2Þ

PðpAðPtÞ
c
j�t�oFðpÞotþ Þ � 1�e, ð3Þ

where eþo0:5, e�o0:5, and eo0:5, but the closer they are to
zero, the better. Eqs. (1) and (2) mean p is pre-classified as
foreground when FðpÞ is greater than t+. In contrast, p is pre-
classified as background when FðpÞ is lower than �t�. Note that
there is no information to pre-classify p if �t�oFðpÞotþ .

The previous equations suggest the max–min function V to
measure a transition value:

VðpÞ ¼ max
qAN t ðpÞ

IðqÞ�IðpÞ

� �
� IðpÞ� min

qAN t ðpÞ
IðqÞ

� �
¼ max

qAN t ðpÞ
IðqÞþ min

qAN t ðpÞ
IðqÞ�2IðpÞ: ð4Þ
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Fig. 1 exemplifies two transition pixels b and c. Without
considering outliers, we expect that VðcÞ �maxpAN t ðcÞ IðpÞ�IðcÞ

and minpAN t ðcÞ IðpÞ�IðcÞ � 0 because the pixel with minimum gray
intensity in N tðcÞ is foreground and has to be similar to the gray
intensity of c (foreground smoothness). Moreover, maxpAN t ðcÞ I

ðpÞ�IðcÞ has to be higher than the minimum contrast expected in
the image because it is the gray-intensity difference between
foreground and background pixels. On the contrary, VðdÞ � 0
because both maximum and minimum gray intensity within
N tðdÞ have to be similar to d.

The concept of transition pixel, transition set and
transition function were proposed and widely explained by
Ramı́rez-Ortegón et al. [16].

We denote HV ,A the transition-value histogram of the pixels
within A. For instance, HV ,F denotes the histogram of transition
values of foreground pixels.
3. Description of the transition method

Since F t and Bt are dual sets, we will explain only the method
for F t leaving out details for Bt .
Table 1
Estimated threshold by minimum symmetric value with k ¼ 10.

a b
TðpÞ ¼

aþb

2

Ground truth sF\N r ðpÞ ¼ 98 sB\N r ðpÞ ¼ 207 152.5

Transition set sF t\N r ðpÞ ¼ 99 sBt\N r ðpÞ ¼ 205 152

Transition set approximation sF̂ t\N r ðpÞ
¼ 98 sB̂ t\N r ðpÞ

¼ 207 152.5
3.1. Overview of the transition method

Consider that Fig. 2(a) is a neighborhood N rðpÞ; the left peak of
the gray-intensity histogram HI,N r ðpÞ is mainly formed by
foreground pixels, while the right peak is formed by background
pixels.

If we knew the class-conditional density PðIðqÞjqAF \N rðpÞÞ,
we could consider the maximum likelihood estimation or
Bayesian estimation approach to solve the binarization problem.
Unfortunately, we rarely know the class-conditional densities.
However, we can reasonably assume that the gray intensities of
the foreground are approximately normally distributed with
mean mþ and variance s2

þ in small neighborhood F \N rðpÞ.
0.0
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Fig. 2. (a) Gray-intensity image of the neighborhood N rðpÞ and gray-intensity histogr

intensities of both foreground and background. We have manually fitted a normal prob

pixels within the positive transition set F t , while pixels within the negative transitio

approximate the gray-intensity densities of B and F , respectively. (d) Approximation of t

as foreground and background samples, respectively. (For interpretation of the references
That is

HI,F\N r ðpÞðiÞ � cþfði;mþ ,s2
þ Þ, ð5Þ

where cþ ¼ jF t \N rðpÞj and fðx;m,sÞ denotes the normal prob-
ability density function with mean m and variance s2. TðpÞ is
quickly computed when there is an analytic intersection between
cþfði;mþ ,s2

þ Þ and the correspondent background function
c�fði;m�,s2

�Þ, see Fig. 2(b).
We can approximate PðIðqÞjqAF \N rðpÞÞ by drawing a

representative sample of F \N rðpÞ. The positive transition set
F tðpÞ satisfies

PðIðqÞjqAF \N rðpÞÞ � PðIðqÞjqAF̂ t \N rðpÞÞ: ð6Þ

Hence, F t \N rðpÞ is a representative sample of F \N rðpÞ, see
Fig. 2(c).

Although the transition sets are also unknown, our method
provides F̂ t which is an accurate estimate of F t , see Fig. 2(d).
Thus, (6) changes to

PðIðqÞ j qAF \N rðpÞÞ � PðIðqÞ j qAF̂ t \N rðpÞÞ: ð7Þ

We are now able to compute the gray threshold with usual
classification procedures. In Table 1, for instance, we computed
the minimum symmetric value as

sA ¼ arg min
iA ½k,l�k�,HI,AðiÞ40

1

HI,AðiÞ

Xk

j ¼ 1

jHI,Aðiþ jÞ�HI,Aði�jÞj,

where A is a set of pixels and kr l=2 is an integer.
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am HI,N r ðpÞ of pixels within N rðpÞ. (b) Binary ground truth and histogram of gray

ability density distribution function to each histogram. (c) Transition sets. In blue,

n set Bt are shown in red. In N rðpÞ, the density of gray intensities of Bt and F t

he transition sets. We use the approximation of positive and negative transition sets

to color in this figure legend, the reader is referred to the web version of this article.)



ARTICLE IN PRESS

Fig. 3. (a) Original image. (b) Transition image by function max–min using N 2. (c) Transition image. In blue, pixels with transition value higher than zero; in red, pixels

with transition value lower than zero. (d) The transition image after filtering by t+¼14 and t�¼15. (e) Transition image after removing isolated pixels. (f) Transition image

after incidence transition operators. (g) Transition image after dilation transition operators. (h) Binary image. Modeling the gray intensities as lognormally distributed.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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We abbreviate Pt,rðpÞ ¼Pt \N rðpÞ and P̂ t,rðpÞ ¼ P̂ t \N rðpÞ.
We define F t,rðpÞ, F̂ t,rðpÞ, Bt,rðpÞ, and B̂ t,rðpÞ in a similar manner.

The complete method consists of the following steps:
1.
 Compute the transition values for each pixel with a transition
function. We suggest the max–min function using neighbor-
hoods of radius 2, see Fig. 3(b).
2.
 Calculate the thresholds t+ and t� . Take F̂ t ¼ fp j VðpÞZtþ g

and B̂ t ¼ fp j VðpÞr�t�g (Section 3.2), see Fig. 3(b).

3.
 Restore F̂ t and B̂ t (Section 3.3), see Fig. 3(f, g).

4.
 Label p using information from F̂ t,rðpÞ and B̂ t,rðpÞ (Section 3.4).

5.
 � If binarization: Compute TðpÞ (Section 3.4.1), Fig. 3(h).
� If edge detection: Compute simple edge transition operator

(Section 3.5).

6.
 Remove noise from B with standard algorithms.
2 We have constructed a formal treatment of this argument using some

probability assumptions over the gray-intensity differences. This work has been

submitted for publication.
3.2. Transition threshold

We find a suitable transition threshold by analyzing functions
of the transition values:

Empirical scaled density function:

ui ¼
1

k
HV ,PðiÞ where k¼max

iA ½1,l�
HV ,PðiÞ: ð8Þ

Empirical complementary cumulative distribution function:

vi ¼
1

k

Xl

j ¼ i

HV ,P ðjÞ where k¼
Xl

j ¼ 1

HV ,PðjÞ: ð9Þ

The behavior of the positive transition values (Fig. 4(a)) will
appear to have a heavy right tail. The power-law distribution has
been discarded because the log–log plot (Fig. 4(b)) of the empirical
complementary cumulative distribution (CCD) function does not
follow the characteristic straight-line form of the power-law
distribution [21].
Fig. 4(a) shows two linear zones. The first linear relation
mostly corresponds to non-transition set Pc

t having positive
transition value. The second linear part is mainly formed by
transition pixels. Indeed, the histogram of positive transition
values is a combination of three histogram as is shown in
Fig. 4(b).2 Thus, a criterion to select the transition threshold t+ is
to take the value t that divide the graph, using linear–linear or
linear–log scales, into approximately two lines.
3.2.1. Double-linear threshold for transition values

The double-linear method approximates the positive side of
the transition graphs (i,wi) by joining two linear functions, see
Fig. 5(a), where wi is computed as (8) or (9). However, the
transition graph is truncated between the bounds xmin and xmax in
order to reduce the noise in the first and last values of the graph,
where xmin is the minimum index i that satisfies

wi4wiþ1 and wi4wiþ2 and wiþ14wiþ2 ð10Þ

and xmax is the maximum index i that satisfies

wi

wxmin

4d, ð11Þ

such that d40 is small (we suggest d¼ 0:01).
For mathematical convenience, we re-label our values wi as

yi ¼wiþ xmin
for i¼ 0,1, . . . ,xmax�xmin ¼ n ð12Þ

and postulate that yi satisfies (13) and (14):

yi �m1 � iþb1 if i¼ 0,1,2, . . . ,t, ð13Þ

yi �m2 � iþb2 if i¼ t,tþ1, . . . ,n: ð14Þ



ARTICLE IN PRESS

3

10 20 30 40

6

9

12

15

18

Transition Value

-4.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-3.0

-1.5

0.0

ln Transition Value

×103

Fig. 4. (a) Estimated histogram of the positive transition set F t given the histogram of positive transition values. (b) The log–log plot of the empirical complementary

cumulative distribution functions of the positive transition pixels does not follow the characteristic straight-line form of the power-law distribution.

0.2

0.4

0.6

0.8

1.0

302010
0.0

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

Fig. 5. (a) The scaled density function is approximated by the joining of two lines L1 and L2. (b) Plot of Error1(t) + Error3(t) between xmin¼3 and xmax¼30.

M.A. Ramı́rez-Ortegón et al. / Pattern Recognition 43 (2010) 3243–3254 3247
We use the differences rate estimator [22] to compute m̂1. This
estimator is defined as

m̂1 ¼
6

tðtþ1Þðtþ2Þ

Xt

i ¼ 0

ð2i�tÞyi: ð15Þ

However, the slope can be computed by regression methods as in
[23,24].

Unfortunately, there is no differences-rate estimator for the
intercept term b, therefore we use the least-square estimator

b̂1 ¼
1

tþ1

Xt

i ¼ 0

ðyi�m̂1 � iÞ: ð16Þ

A natural error function for (13) can be defined as

Error1ðtÞ ¼
Xt

i ¼ 0

ðyi�m̂1 � i�b̂1Þ
2: ð17Þ

In the same way, an error function for (14) is defined as

Error2ðtÞ ¼
Xn

i ¼ t

ðyi�m̂2�xi � i�b̂2Þ
2, ð18Þ

where

m̂2 ¼
6

ðn�tÞðn�tþ1Þðn�tþ2Þ

Xn�t

i ¼ 0

ð2i�nþtÞyi ð19Þ

and

b̂2 ¼
1

n�tþ1

Xn

i ¼ t

ð yi�m2�i Þ: ð20Þ

Finally, t+ is computed as

tþ ¼ arg min
tA ½1,n�

Error1ðtÞþError2ðtÞþxminþ2: ð21Þ

Fig. 5(b) plot of (21).
3.3. Restoration of transition set

The restoration of the transition set P̂ t is the process of adding
and removing pixels from P̂ t with the aim of increasing the
cardinality while reducing the noise.

Morphological operators, like erosion and dilation [25], could
be adapted to enhance P̂ t . However, those operators will add or
remove pixels without considering neither gray intensities nor
transition values. Those operators in their original form will alter
the trusty foreground sample F̂ t , loosing the confidence in the
transition set approximation. We propose morphological
operators that preserve the confidence of the transition set
approximation.

3.3.1. Isolation transition operator

The cross and diagonal isolate operators were successfully used
in [16] in order to remove false positives of the approximated
transition sets. The cross isolate operator is defined as

Given pAF̂t , set F̂t’F̂t \ fpg if jF̂ t \N	ðpÞj ¼ 0: ð22Þ

where N	ðpi,jÞ ¼ fpi�1,j,piþ1,j,pi,j�1,pi,jþ1g. Instead the cross neigh-
borhood, the diagonal transition operator uses the diagonal
neighborhood N
ðpi,jÞ ¼ fpi�1,j�1,pi�1,jþ1,piþ1,j�1,piþ1,jþ1g.

Some applications, like text recognition or fingerprint classi-
fier, assume that the foreground consists of large connected
components. These components are commonly larger than a
particular rectangular area. Then, the connected components that
are completely contained in small rectangular neighborhoods
may be removed. We define the rectangular transition operator as

F̂ t’F̂ t\ fpg if pAF̂ t and jF̂ t \N x,yðpÞj ¼ jF̂ t \N xþ1,yþ1ðp Þj,

ð23Þ

where N y,xðpÞ is defined as the rectangular neighborhood
centered at the pixel p of sides with length 2y+1, 2x+1.
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3.3.2. Incidence transition operator

The blue pixels in Fig. 6(a) depict pixels with high positive
transition value. In red, those pixels with high negative transition
value. In the same figure, whereas the isolated blue pixel q (right-
bottom corner) is an outlier and easily removed by cross, diagonal
or rectangular transition operators, the red pixels around q form a
large ‘‘isolated’’ connected component (24 pixels) that cannot be
removed by those operators.

By definition, a background t-transition pixel p contains at
least one foreground t-transition pixels in N tðpÞ. That is
jF t,tðpÞjZ1, if pAPt . Moreover, jF t,2tðpÞj4 jF t,tðpÞj in most of
the transition pixels. Thus, the neighborhood N 2tðpÞ of a pixel
with high positive transition value may contain several pixels
with high positive transition value. An example is Fig. 6(a), where
jF̂ 2,2ðpÞj ¼ 1 and jF̂ 2,4ðpÞj ¼ 8. In opposite to p, the pixel q and all
the red pixels around it only contains one blue pixel in N 4ðqÞ.

To deal with pixels like q, we define a generalization of isolated
transition pixel as: Given two positive integers a and b, a pixel
pAPt is a k-isolated transition pixel if

jF̂ t,kðpÞjoa or jB̂ t,kðpÞjob: ð24Þ

The incidence transition operator removes all the k-isolated
transition pixels. We recommend setting k¼ 2t, a¼ b¼ 1þt.
Table 2

The probability of the inequality is approximated given p and qAN rðpÞ.

PðIðpÞZ IðqÞÞ PðIðpÞr IðqÞÞ

qAB qAF qAB qAF

pAB � 0:5 � 1 � 0:5 � 0

pAF � 0 � 0:5 � 1 � 0:5
3.3.3. Dilation transition operator

Suppose that p and qAN tðpÞ are two foreground pixels such
that qAF t and p=2F t , thus VðqÞZtþ and VðpÞotþ . This implies
that p is excluded from F̂ t . However, we can assume

PðIðqÞZ IðpÞÞ � PðIðqÞr IðpÞÞ if p,qAF \N tðpÞ ð25Þ

because IðqÞ � IðpÞ for all qAF \N tðpÞ. So,

PðIðqÞZ IðpÞÞ � PðIðqÞr IðpÞÞ if p,qAF t,tðpÞ: ð26Þ

In other words, about half of the pixels in F̂ t,tðpÞ have a gray
intensity equal or lower than IðpÞ (Fig. 6(b), top). In addition, the
gray intensities of the background are strictly higher than IðpÞ in
the ideal case. Therefore, the number of pixels that are equal or
lower in gray intensity than IðpÞ may be zero or close to zero.
Table 2 is constructed following the same reasoning, although a
formal proof of the probabilities is beyond the scope of this paper.

Using the conditional probabilities of Table 2, a high number of
pixels in F t,tðpÞ that are equal or lower in gray intensity than IðpÞ
is a strong evidence that p belongs to the foreground. We derived
a similar argument for background pixels.
q

p

Fig. 6. (a) The transition values were computed using N 2. The pixels with high positive

gray-intensity of the blue pixel in N 2ðpÞ is lower or equal to IðpÞ. (b) Top: the approxim

this figure legend, the reader is referred to the web version of this article.)
To measure this conditional probabilities, we define the
t-transition balance:

TBtðpÞ ¼ jfqAF t,tðpÞjIðqÞZ IðpÞgj�jfqABt,tðpÞjIðqÞZ IðpÞgj: ð27Þ

So, TBtðpÞ � 1
2 jF t,tðpÞj if p is foreground, and TBtðpÞ � � 1

2 jBt,tðpÞj if
p is background. Hence, TBtðpÞ is approximated with cTBtðpÞ which
uses P̂ tðpÞ instead of PtðpÞ.

Given p =2Pt , the dilation transition operator set

F̂ t’F̂ t [ fpg if cTBðpÞZa ð28Þ

and

B̂ t’B̂ t [ fpg if cTBðpÞr�b, ð29Þ

where a and b are two positive integers. We recommend setting
a ¼ b ¼ 1 + t.

3.4. Positive and negative sets

Only pixels in P̂ t,rðpÞ ¼ F̂ t,rðpÞ [ B̂ t,rðpÞ are considered to
compute TðpÞ: At the same time, outliers are discarded by labeling
as background those pixels p that satisfy either jF̂ t,rðpÞjonþ or
jB̂ t,rðpÞjon�, where n+ and n� depend on r and objects of interest;
the higher the n+, the larger the objects that can be removed from
the foreground. For instance, consider a simple horizontal line with
height 1 as the foreground. The line’s extremes are evaluated if
nþrrþ1. Otherwise, the line’s extremes are labeled as background
without even computing TðpÞ. We suggest n+¼n�¼5 for detecting
small foreground objects.

A second criterion to discard outliers uses the difference
between the mean of gray intensities of both transition set
approximations. The pixel p is labeled as background if

mI,B̂ t,r ðpÞ
�mI,F̂ t,r ðpÞ

oc, ð30Þ

where c is an integer, which depicts the minimum contrast expected
between the foreground and background. We suggest c ¼ 15.
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ation of the transition balance of p. (For interpretation of the references to color in
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p

Fig. 7. (a) Original image. (b) Transition set approximation. (c) Edge image by transition operator.

Fig. 8. (a) Original image. (b) Edge image by Canny method. (c) Edge image by Prewitt method. (d) Edge image by Roberts method. (e) Raw transition image. (f) Edge image

of (e) computed by the simple edge transition operator. (g) Restored transition image of (a). (h) Edge image of (g) computed by the simple edge transition operator.

3 The default parameters of MatLab are chosen heuristically in a way that

depend on the input data.
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3.4.1. Statistical thresholds

Normal threshold: Assume that HI,F t,r ðpÞðiÞ � cþfði;mþ ,s2
þ Þ,

where fðx;m,sÞ is the normal probability density function with
mean m and variance s2. Then, HI,F t,r ðpÞ is approximated when

cþ ¼ jF̂ t,rðpÞj ðcomplete formÞ or cþ ¼ 1 ðsimple formÞ,

mþ ¼ mI,F̂ t,r ðpÞ
,

s2
þ ¼maxðs2

I,F̂ t,r ðpÞ
,1Þ: ð31Þ

The intersection of those curves is the root mþox0om� of the
quadratic equation with coefficients a, b and c given by

a¼
1

s2
þ

�
1

s2
�

,

b¼
2m�
s2
�

�
2mþ
s2
þ

,

c¼
m2
þ

s2
þ

�
m2
�

s2
�

�2ln
s� � c�
sþ � cþ

� �
: ð32Þ

Lognormal threshold: Assume that HI,F r,t ðpÞðiÞ � cþlði;mþ ,s2
þ Þ,

where lðm,s2Þ denotes the lognormal probability density function
with parameters m and s2.

The intersection is computed using the root x0 of the quadratic
equation with coefficients given by (32). This corresponds to
exp(x0).

In practice, the parameters mþ and s2
þ are estimated based on

the estimated mean and variance of the lognormal distribution
using the relations

mþ ¼ lnðmI,F̂ t,rðpÞ
Þ�

1

2
s2
þ and s2

þ ¼ ln 1þ
s2

I,F̂ t,rðpÞ

½mI,F̂ t,r ðpÞ
�2

 !
: ð33Þ
3.5. Edge detection

In binarization context, an edge pixel p can be defined as a
foreground pixel that contains background pixels within N 1ðpÞ.
Therefore, F 1 is the set of edge pixels. We could define an edge
pixel p as the pixel that contains both foreground and background
pixels within N 1ðpÞ, or as those background pixels that contain
foreground pixels in the neighborhood of radius 1. Nevertheless,
we prefer the first edge pixel definition.

We can approximate F1 by

F̂ 1 ¼ fpjpAF̂ t and jB̂ t,1ðpÞj40g: ð34Þ

The pixel p in Fig. 7(b), which belongs to P̂ c

t , can be considered as
edge pixel since it is exactly between pixels in F̂ t and B̂ t . Hence,
we define the simple edge transition operator as

F̂ 1 ¼ fpj0o jF̂ t,1ðpÞj and jB̂ t,1ðpÞj40g: ð35Þ

Fig. 8(b)–(d) were computed on MatLab [26] using Canny [27],
Prewitt [28] and Roberts Cross methods,3 respectively. Fig. 8(f)
was computed following steps 1 and 2 of the transition method
(Fig. 8(e)) and applying the simple edge transition operator. The
raw transition set approximation (without restoration process)
generates many false positives. In contrast, Fig. 8(h), which
follows the transition method with a restored transition set,
reports a lower number of false negatives than Fig. 8(f).
Unfortunately, the combination of transition operators used in
Fig. 8(e) includes more than one cross, diagonal and incidence
transition operators in a non-trivial order.
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Header

Comments

Labels

Fig. 9. (a) Example of map that contains header, labels a comment. (b) Example of label and header.

Image

Secondary Window

Primary Window

Fig. 10. All algorithms gather the threshold information from a primary

neighborhood, although Wolf’s algorithm uses a secondary neighborhood to

compute any ‘‘global information’’.
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4. Design of experiments

To perform an objective evaluation of the binarization results,
we have used an unsupervised measure, based on gray-intensity
variances, and an optical character recognition (OCR) software.

4.1. Test images

Historical documents usually present several kinds of degra-
dations, such as ink stains, burned areas, weak ink strokes and
wide variations in the background. Thus, the binarization
algorithms were tested with digitalized images of the historical
atlas ‘‘Theatrum orbis terrarum, sive, Atlas novus’’ (Blaeu Atlas) [29]
at 150 dpi resolution.

We reported the results of n¼86 images Ii, for i¼1,y,n,
extracted from 61 maps. These images are mainly composed of
map headers, map comments and region labels without stylized
handwriting characters, see Fig. 9.

4.2. Description of binarization algorithms

We compare Kittler’s [9], Otsu’s [11], Portes’s [12], Sauvola’s [10],
Wolf’s [15] methods (top ranked by [7,8,30]) with four variants of
the transition method. We implemented all nine algorithms in their
local versions to increase their accuracy, despite local implementa-
tions raise the running-time dramatically.

Because Kitller’s, Otsu’s and Porte’s algorithms assume that the
set of pixels can be divided into two clusters, computing TðpÞ
with these algorithms will systematically produce false positives
due to neighborhoods that are completely contained in the
background. To avoid these false positives, TðpÞ ¼ t� if the
difference between the gray-intensity means of the clusters is
higher than c, where tn is the optimal local threshold according to
the binarization algorithm and c depicts the minimum contrast
expected between the foreground and the background. Otherwise
the pixel is classified as background. The difference of gray-
intensity means between the clusters is given by

m0�m1oc with mi ¼
1

jCij

X
qACi

IðqÞ for i¼ 0,1, ð36Þ

where C0 ¼ fqAN rðpÞjIðqÞrt�g and C1 ¼ fqAN rðpÞjIðqÞ4t�g.
Real applications rarely use more than one parameter set. This is

the main reason we fixed Sauvola’s a¼ 0:5 and b¼ 128, Portes’s
a¼ 2, and Wolf’s a¼ 0:5, which are the recommended parameters.4
4 The higher the a, the higher the threshold in both Sauvola’s and Wolf’s

algorithms. Portes et al. did not determine the relation between a and their

proposed threshold.
We set the primary neighborhood radius to r¼50, local
windows of 101 �101 pixels, and set the secondary neighbor-
hood radius to 100 for Wolf’s method, see Fig. 10.

The transition algorithms, denoted by the prefix T, are
composite methods with the following combination of operators:
�
 Max–min function using N 2.

�
 Double-linear threshold for transition values using either the

empirical scaled density function denoted by DF or the empirical
complementary cumulative distribution function denoted by CCD.

�
 Isolate transition operators (in order): cross transition opera-

tor, diagonal transition operator and rectangular transition
operator (x¼y¼2).

�
 Incidence transition operator (k¼4, a¼ b¼3).

�
 Dilation transition operator (a¼b¼3).

�
 Gray-intensity threshold. Setting n+¼n�¼ 25, c¼15,

and using either the normal threshold (simple form) denoted
by N or the lognormal threshold (simple form) denoted by L.

We named our four variants as T-DF-N, T-DF-L, T-CCD-N and
T-CCD-L depending on how the algorithm computes the transition
and gray-intensity thresholds.

We also tested three variants of T-CCD-L in order to analyze the
influence of transition operators on the transition method: T-CCD-L-
A does not include any transition operator, T-CCD-L-B includes only
the isolate transition operators, and T-CCD-L-C includes both isolate
transition operators and incidence transition operators.

4.3. Post-processing step

All binarized images were post-processed removing from the
foreground small stains (connected components containing four
or less pixels) before computing any evaluation measure. The
following operators were applied in this order: cross operator,
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diagonal operator and rectangular operator (x¼y¼2) which
correspond to cross, diagonal and rectangular transition operators
but filtering the binary image.

4.4. Evaluation measures

Since there is not a public standard benchmark available for
binarization algorithms, we use the uniform variance (UV) measure
[16]

UV ¼
X
pAP

sBðpÞ � jB \N rðpÞjþsF ðpÞ � jF \N rðpÞj

jN rðpÞj

to evaluate the image segmentation quality.
Besides the UV measure, we used TopOCR [31] to recognize the

text from binarized images. Our evaluation measures are accuracy

(AC) and precision (PR) computed as

AC ¼
#ðcharacters of TmatchÞ

#ðcharacters of TinÞ
and PR¼

#ðcharacters of TmatchÞ

#ðcharacters of ToutÞ
,

where Tin is the original text in the image, Tout denotes the
recognized text from the OCR, and Tmatch denotes the maximum
matching text between Tin and Tout. Tmatch is computed using
Needleman–Wuntsh algorithm [32].

TopOCR was tested with four parameter sets. The program
tester reports the AC and PR measures from the parameter set that
scores higher in terms of AC measure. If there is any draw, PR
measure is used.

AC measure is an important measure for OCR applications,
because a high AC measurement increases the possibility to extract,
by further algorithms, relevant information. However, the mean and
variance of AC performance xi,j, for each binarization method j and
image Ii, highly depend on the maximum AC performance xni that the
OCR can compute for Ii. Consequently, we cannot infer from xi,j how
effective is the algorithm j to maximize the OCR performance. For
0
0

0.2

0.2

0.4

0.4 0.6 0.8 1

0.6

0.8

1

Fig. 11. (a) The graph of the maximum AC performance is decreasingl

Table 3
UV pairwise comparison.

Kittler Otsu Portes Sauvola

Kittler – 72 0.84 35 0.41 86 1.00
Otsu 14 0.16 – 12 0.14 85 0.99

Portes 51 0.59 74 0.86 – 86 1.00
Sauvola 0 0.00 1 0.01 0 0.00 –

Wolf 57 0.66 79 0.92 50 0.58 86 1.00

T-CCD-L 56 0.65 82 0.95 40 0.47 86 1.00
T-CCD-N 30 0.35 78 0.91 25 0.29 86 1.00
T-DF-L 54 0.63 82 0.95 42 0.49 86 1.00
T-DF-N 28 0.33 80 0.93 26 0.30 86 1.00

The cell y-row, x-column shows how many times the algorithm y surpass the algorith

images. The highest values are shown in bold.
instance, suppose that x�i o0:3, for i¼1,y,n, this implies that the
average of xi,j (fixing j) is lower than 0.3. However, we cannot affirm
that the binarization algorithm j is ineffective to maximize the OCR
performance. Hence, our observations are mainly based on pairwise
tables and the ratio yi,j of xi,j to xni . This ratio represents the AC efficacy

of algorithm j to maximize the AC performance in Ii. We have
computed xni by sweeping parameters (including the neighborhood
radius) of Kittler’s, Niblack’s, Otsu’s, Porte’s, Sauvola’s and Wolf’s
algorithms.

Each cell (y-row, x-column) of the pairwise tables contains two
values nyx and pyx. The number nyx represents the times that the
algorithm y has a higher score than the algorithm x, while
pyx ¼ nyx=ðnyxþnxyÞ represents the conditional probability of y’s
score being higher than x’s score. We based our observations on
the values pyx. We ascertain that algorithm x is better than
algorithm y if nyxZ1:33nxy, which is equivalent to pyxZ0:57.
5. Results

We arranged the test images such that the graph of AC
performance is decreasing. That is x�1Z � � �Zx�n. However,
Fig. 11(a) shows that AC performance of Otsu’s and T-CCD-L
methods fluctuates irregularly although xni ’s graph is decreasing.
We cannot visually assess the binarization performance because
of the fluctuations.

To deal with these fluctuations, we present graphs and
statistics of points ði=n,yzi,j ,jÞ where zi,j are indexes such that
yz1,j ,jZ � � �Zyzn,j ,j for each binarization method j.

UV measure penalizes eroded and overestimated foreground
boundaries, but it also penalizes stains (ink stains and dark
background spots) that are classified as background so that
algorithms that compute foreground boundaries correctly and
classify stains as foreground are highly scored, like Wolf’s
thresholding that is the best in terms of UV measure, see Table 3.
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y arranged. (b) Ordered AC efficiency of no-transition algorithms.

Wolf T-CCD-L T-CCD-N T-DF-L T-DF-N

29 0.34 30 0.35 56 0.65 32 0.37 58 0.67

7 0.08 4 0.05 8 0.09 4 0.05 6 0.07

36 0.42 46 0.53 61 0.71 44 0.51 60 0.70

0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

– 50 0.58 66 0.77 52 0.60 68 0.79

36 0.42 – 83 0.97 44 0.52 79 0.92

20 0.23 3 0.03 – 4 0.05 47 0.56

34 0.40 40 0.48 82 0.95 – 81 0.94
18 0.21 7 0.08 37 0.44 5 0.06 –

m x in terms of UV measure. T-CCD-L and T-DF-N have even scores in a couple of
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However scattered stains and a slight overestimate of the
foreground contour lead Wolf’s method to low OCR
performance, see Tables 4–6.

Kitller’s thresholding also classifies stains as foreground but,
contrary to Wolf’s method, it overestimates the foreground
boundaries greatly. In consequence, Kittler’s method is a medium
rank in terms of UV measure and reports the lowest AC efficacy
because of the overestimated foreground boundary, see Fig. 11.

Sauvola’s algorithms compute low thresholds, which discard
stains from the foreground, but low thresholds also produce
eroded foreground boundaries that are strongly penalized by UV
measure (Table 3). As a result, Sauvola’s method was the worst in
terms of UV. What is more, this also affects the OCR performance
badly (Table 3).
Table 4
AC pairwise comparison.

Kittler Otsu Portes Sauvola

Kittler – 15 0.21 18 0.25 26 0.35

Otsu 58 0.79 – 44 0.62 55 0.76
Portes 53 0.75 27 0.38 – 37 0.51

Sauvola 48 0.65 17 0.24 35 0.49 –

Wolf 40 0.67 15 0.22 26 0.39 33 0.46

T-CCD-L 64 0.82 38 0.66 49 0.70 54 0.74

T-CCD-N 61 0.82 33 0.59 44 0.62 53 0.73

T-DF-L 61 0.78 35 0.55 44 0.64 52 0.68

T-DF-N 66 0.86 34 0.61 45 0.65 52 0.75

The sum nxyþnyx r86 because some algorithms have even scores in several images. T

Table 5
PR pairwise comparison for text.

Kittler Otsu Portes Sauvola

Kittler – 20 0.24 32 0.39 44 0.52

Otsu 65 0.76 – 52 0.63 59 0.73

Portes 51 0.61 31 0.37 – 53 0.64

Sauvola 41 0.48 22 0.27 30 0.36 –

Wolf 46 0.59 29 0.36 35 0.44 49 0.59

T-CCD-L 62 0.76 44 0.58 55 0.66 64 0.77
T-CCD-N 62 0.75 42 0.58 51 0.62 61 0.75

T-DF-L 62 0.75 39 0.51 57 0.69 59 0.71

T-DF-N 63 0.75 39 0.57 50 0.60 62 0.76

The sum nxyþnyx r86 because some algorithms have even scores in several images. T

Table 6
Mean, variance and quantiles of AC efficacy for each binarization method.

Mean Var. Values i/n such that yzi ,j equal to or

1.00 0.95 0.90

Kittler 0.646 0.261 0.02 0.05 0.10

Otsu 0.787 0.196 0.06 0.16 0.27

Portes 0.748 0.203 0.05 0.10 0.21

Sauvola 0.702 0.212 0.06 0.09 0.19

Wolf 0.691 0.246 0.00 0.06 0.14

T-CCD-L 0.805 0.175 0.08 0.13 0.30

T-CCD-N 0.798 0.182 0.08 0.13 0.31
T-DF-L 0.795 0.196 0.09 0.12 0.31
T-DF-N 0.796 0.189 0.08 0.15 0.28

The best values are shown in bold.
Portes’s classifies stains as foreground frequently and
overestimates the foreground contour slightly. In combination,
this reduces the OCR performance but increases the UV
measurements.

Otsu’s and transition algorithms determine sharp foreground
contours. However, Otsu’s generated a great deal of stains in
neighborhoods that are completely contained in the background
despite the restriction of (36).

Transition algorithms differ as a product of two factors:
the function that computes the transition thresholds and the
function that computes the gray-intensity thresholds. Transition
algorithm based on the complementary cumulative distribution
resists more noise than those based on the density distribution
so that both T-CCD-L and T-CCD-N generate less stains (penalized
Wolf T-CCD-L T-CCD-N T-DF-L T-DF-N

20 0.33 14 0.18 13 0.18 17 0.22 11 0.14

52 0.78 20 0.34 23 0.41 29 0.45 22 0.39

40 0.61 21 0.30 27 0.38 25 0.36 24 0.35

38 0.54 19 0.26 20 0.27 25 0.32 17 0.25

– 14 0.20 17 0.23 21 0.28 13 0.20

56 0.80 – 29 0.62 24 0.60 27 0.54
56 0.77 18 0.38 – 28 0.52 23 0.47

53 0.72 16 0.40 26 0.48 – 25 0.42

53 0.80 23 0.46 26 0.53 34 0.58 –

he highest values are shown in bold.

Wolf T-CCD-L T-CCD-N T-DF-L T-DF-N

32 0.41 20 0.24 21 0.25 21 0.25 21 0.25

51 0.64 32 0.42 31 0.42 37 0.49 30 0.43

45 0.56 28 0.34 31 0.38 26 0.31 33 0.40

34 0.41 19 0.23 20 0.25 24 0.29 20 0.24

– 25 0.31 27 0.33 27 0.33 26 0.33

55 0.69 – 40 0.59 31 0.58 38 0.58
55 0.67 28 0.41 – 33 0.49 32 0.52

54 0.67 22 0.42 35 0.51 – 34 0.50

53 0.67 28 0.42 30 0.48 34 0.50 –

he highest values are shown in bold.

greater than

0.85 0.80 0.75 0.70 0.60 0.50

0.21 0.37 0.50 0.55 0.65 0.78

0.47 0.59 0.73 0.80 0.90 0.91

0.34 0.56 0.64 0.70 0.83 0.88

0.28 0.42 0.47 0.55 0.77 0.81

0.34 0.47 0.57 0.60 0.74 0.84

0.48 0.67 0.76 0.84 0.91 0.95
0.45 0.67 0.76 0.79 0.90 0.95
0.51 0.65 0.76 0.79 0.87 0.95
0.51 0.63 0.72 0.81 0.92 0.94
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Fig. 12. Ordered AC efficacy graphs of transition algorithms. Visually, all four are almost indistinguishable from each other. However, T-CCD-L and T-CCD-N have the

highest mean and lowest variance. Details of the left graph are shown in central and right graphs. Otsu’s graph is plotted as a graph of reference.

0

0.2

0.4

0.6

0.8

1

0

0.16

0.32

0.48

0.64

0.8

0.8

0.9

1

0.75

0.8

0.85

A
C

 E
ff

ci
en

cy

Otsu and Portes
T-CCD-L-A
T-CCD-L-B
T-CCD-L-C
T-CCD-L

i/n 0 0.70 0.50.2 0.4 0.6 0.8 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 13. Ordered AC efficacy graphs of T-CCD-L and variants. The area between Otsu’s and Portes’s graphs is plotted in light gray as reference.

Table 7
Mean, variance and quantiles of AC efficacy for T-CCD-L and variants.

Mean Var. Values i/n such that yzi ,j equal to or greater than

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60 0.50

T-CCD-L-A 0.771 0.213 0.06 0.09 0.24 0.44 0.64 0.73 0.79 0.87 0.92

T-CCD-L-B 0.758 0.186 0.3 0.05 0.15 0.33 0.55 0.69 0.76 0.88 0.93

T-CCD-L-C 0.771 0.175 0.5 0.06 0.16 0.36 0.59 0.70 0.73 0.93 0.95
T-CCD-L 0.805 0.175 0.08 0.13 0.30 0.48 0.67 0.76 0.85 0.91 0.95

The best values are shown in bold.
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UV measurements) than T-DF-L and T-DF-N. Therefore, they
have the highest AC efficacy, see means and variances in
Fig. 12. On the other hand, transition algorithms based on
lognormal threshold have a sharper foreground contour than
those based on the normal threshold. Although these
differences are visually minimal, they are reflected on the UV
measurements.

We only present the influence of transition operator in T-CCD-L
and variants A, B and C because the rest of transition methods are
influenced in a similar manner.

The relative high variance of T-CCD-L-A and the graph
behavior of the AC efficacy, see central-right graph of Fig. 13
and Table 7, suggest that T-CCD-L-A resists moderate noise.

Incidence and isolate transition operators increase the AC
efficacy in images with high noise level at the cost of dropping the
cardinality of transition set and, in consequence, the AC efficacy
decreases in images whose foreground contains small connected
component like punctuation marks and small characters. How-
ever, the incidence operator does not remove dense salt and
pepper noise. Thus, it has to be applied after isolate transition
operators.

Dilation transition operator counterbalances the unwanted
effect of the incidence and isolate transition operators by
increasing the cardinality of diminished transition sets. We
should remark that this operator has to be applied in images
with low noise level, or after isolate and incidence transition
operators. Otherwise, the noise is magnified.
6. Conclusions

Our double-linear method is able to compute an accurate
threshold which selects a representative samples of both fore-
ground and background. We introduced three transition opera-
tors: both incidence and dilation transition operators refine
transition set approximations, while the simple edge transition
operator detects foreground edges.

Our test used a large database of text extracted from historical
maps with different levels of degradation. We evaluated our
experiments with four measures: an unsupervised evaluation
method based on gray-intensity variances (UV measure) and
three OCR measures (AC, PR measure and AC efficacy).

Our results point out that the transition method resists highest
levels of noise. These tables also indicate that the complementary
cumulative distribution function decreases the impact of outliers
on the double-linear threshold and the use of lognormal threshold
generates sharper foreground contours. Moreover, while the
incidence transition operators can remove noise that isolate
operators cannot, the dilation transition operator improves the
performance of normal and lognormal thresholds.
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