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a b s t r a c t

This paper introduces a novel binarization method based on the concept of transition pixel, a

generalization of edge pixels. Such pixels are characterized by extreme transition values computed

using pixel-intensity differences in a small neighborhood. We show how to adjust the threshold of

several binary threshold methods which compute gray-intensity thresholds, using the gray-intensity

mean and variance of the pixels in the transition set. Our experiments show that the new approach

yields segmentation performance superior to several with current state-of-the-art binarization

algorithms.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Binarization is a crucial pre-processing used in most image
systems for document analysis and recognition. It consists in
labeling each pixel in an image either as foreground or background.
The former is a pixel subset F that represents a region of interest
containing forms and objects used for further analysis and
recognition, while the latter B is the complement of F .

Few binarization researchers work with color images directly
[1], the rest transforms an image from color to gray levels before
applying the binarization algorithm [2,3]. We follow the latter
approach taking a gray-level image I as input and returning a
binary image B where pixels in white represent the background
and pixels in black represent the foreground.

What constitute foreground depends on the objects to be
recognized. While in document analysis one is interested in the
location and extraction of ink with high contrast [4,5], in other
contexts the information to be extracted can depend on the
objects and their relationships. Fig. 1, for instance, shows (a) a
triangle and (b) grid lines with similar gray intensity. Both images
contain dark pixels which belong to the foreground for sure.
However, in (a) we may keep the triangle in the binary image, in
ll rights reserved.
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(b) we could possibly remove the grid. This example shows that
binarization is a complex problem if one considers only gray
intensities in order to segment the foreground. Contextual
information is needed in order to solve problems similar to
those in Fig. 1.

We can identify three categories of binarization algorithms
[6,7]. Global algorithms label a given pixel using information from
the whole image, while local algorithms rely on information from
the pixel neighborhood. Hybrid algorithms combine information
from the whole image and from the neighborhood. Note that
global algorithms can be converted into local versions by
restricting the analysis to the pixel’s neighborhood. All algorithms
considered in this article are hybrid and local, even though some
of them were originally formulated for global analysis. Local
versions usually perform better than global ones [8].

Thresholding binarization algorithms label a pixel as foreground
if its gray value is darker than a threshold. Sezgin and Sankur [9]
present an exhaustive categorization of image thresholding
methods. They affirm Kittler’s minimum error thresholding [10]
and Sauvola’s thresholding [7] are the best-performing document
binarization algorithms for images uniformly illuminated and
degraded with noise and blur. In essence, Kittler’s criterion
maximizes the likelihood of the joint distribution of gray
intensities assuming that foreground and background are nor-
mally distributed with different variances. The well-known Otsu’s

algorithm [11] also handles background and foreground as
normally distributed. This method minimizes the gray-intensity
variances of both foreground and background.
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Fig. 1. The context changes the definition of foreground.

M.A. Ramı́rez-Ortegón et al. / Pattern Recognition 43 (2010) 1233–12431234
Sauvola’s method is actually an improved version of Niblack’s

algorithm [12]. Both algorithms assume that the gray-intensity
histogram of the background is approximately normally distrib-
uted and select a threshold as the lower limit of an interval
centered in the mean of the gray-intensity histogram.

The key ideas in the methods mentioned above are the
following: Niblack and Sauvola use statistics from a neighborhood

of the pixel of interest, while Otsu and Kittler assume a priori

statistical distribution for background and foreground. However, all
four algorithms disregard edge information and this leads to small
false foreground spots or diminishing foreground boundaries.

Li [13] and Chen [14], on the other hand, exploit edge
information. Li’s algorithm uses the Laplace operator and the gray-
level covariance matrix to compute a gray-intensity threshold.
Chen’s method applies the Canny edge detector [15] for generating the
edge image. Subsequently, several morphological operators help
to generate an enhanced binary image. Both algorithms apply a

criterion for selecting pixels with high information content.
A different approach to the binarization problem consist

in postulating smooth gray-intensity surfaces for foreground and

background in small neighborhoods. Kavallieratou’s algorithm

[16,17] uses an iterative variant of the local white algorithm [18].
Kavallieratou sets to white those pixel values above the local
mean while the rest of pixels is normalized. The process is iterated
until a stopping criterion is satisfied. Instead of using a gray-
intensity average Lu’s method [19] computes a polynomial gray-
intensity surface for modeling shading fluctuations.

Our method assumes that both background and foreground
vary smoothly, exhibiting high contrast at the boundary. We
propose a criterion to select pixels by modeling statistically the
gray-intensity histograms of those pixels. We also introduce the
term ideal image based on smooth surfaces and contrast. Later on,
the concepts of the transition pixel and the transition set are used
as an extension of edge pixels and the edge set, respectively.
Transition pixel’s properties are analyzed in an ideal image
providing the mathematical foundations for deriving discriminant
functions which we named transition functions. Each pixel is thus
associated with a transition value (varying from negative to
positive) computed by a corresponding transition function.

We describe the quantile method for transition values, which
selects pixels with extreme transition values to approximate the
transition set. We prove that the positive transition set, that is,
the intersection of foreground and transition set, is approximated
by the set of pixels with high positive transition values, while
the negative transition set, the intersection of background and
transition set, is approximated by the set of pixels with high
negative transition values. Hence, the positive transition set is a
sample of the foreground and the negative transition set is a
sample of the background. The transition set approximation is
refined with morphological operators which remove isolated
pixels and add pixels surrounded by pixels within the transition
set approximation. Our last contribution is to use the lognormal
and normal distributions, among other methods, to model the
gray-intensity histograms of the transition sets.
Also, we derive expressions for gray-intensity mean and
variance based on integral images [20] in order to quickly compute
statistical thresholds.

Even though the transition method has the potential to deal
with uneven illumination, this paper will focus only on images
without sudden illumination changes in small neighborhoods.

The rest of this paper is organized as follows. Section 2
introduces the main concepts and introduces the concept
of transition. The transition method is developed in Section 3.
Section 4 deals with the algorithm’s complexity. In Section 5
experimental results are shown. Conclusions are presented in
Section 6.
2. Preliminary concepts

2.1. Notation

We denote images with capital italics, such as I and B. An
ordered pair ði; jÞ represents the pixel located in the i-th row and
j-th column. Iði; jÞA ½0; l� is an integer that represents the gray
intensity of ði; jÞ. Bði; jÞAf0;1g represents the binarized image,
where one is considered as foreground. Local binarization
algorithms compute a threshold surface T over the whole image:
Bði; jÞ ¼ 1 if Iði; jÞ is lower than the threshold Tði; jÞ. The information
to compute Tði; jÞ is gathered from the pixels within a square
N rði; jÞ centered at the pixel ði; jÞ of sides with length 2rþ1: For
simplicity, we refer to ði; jÞ just as p and it will be used when none
of the indexes can be confused.

PðpAAÞ denotes the probability that a pixel p belongs to A. The
mean and variance of any variable v are denoted as mv and s2

v ,
respectively.
2.2. Image model

The ideal situation for any binarization algorithm occurs when
the gray-intensity difference between foreground and background
pixels is large and the gray-intensity difference of a pair of pixels
within the same class is small (Fig. 2). In small neighborhoods we
expect the foreground to correspond to pixels with maximum
gray intensity, and the background to correspond to pixels with
the minimal gray intensity. Under these assumptions, Bersen’s

method [21] localize the regions in the image with large gray-
intensity differences by computing a threshold that lays between
their maximum and minimum gray intensities.

We summarize the above ideas with the following concepts:
�
 Foreground tendency: Locally, the pixel’s probability of being
foreground increases when its gray-intensity value gets closer
to zero. Conversely, the pixel’s probability of being background
tends to increase when its gray-intensity value gets closer to l.

�
 Smoothness: The gray-intensity difference between two pixels

from the same set is close to zero in small neighborhoods N s.
Mathematically, I is a smooth image if

max
qAB\N sðpÞ

IðqÞ � min
qAB\N sðpÞ

IðqÞods

and

max
qAF\N sðpÞ

IðqÞ� min
qAF\N sðpÞ

IðqÞods;

with probability close to 1 where ds is a small value with
respect to l.

�
 Local contrast: Locally, the difference between a pair of pixels

from different set is greater than the difference between a pair
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Fig. 2. The image (a) is an ideal image whose gray-intensity histogram is shown in (b).

Fig. 3. (a) Representation of the random variables x, y and z into N sðpÞ. (b) In a neighborhood with low contrast, F and B have a gray-intensity range of overlap between

their gray intensities.
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of pixels from the same set. Mathematically

min
qAB\N sðpÞ

IðqÞ � max
qAF\N sðpÞ

IðqÞ4dc ;

with probability close to 1, where dc is a large positive number
with respect to ds.
1 The analysis of the sampling bias is beyond the scope of this paper.
It should be emphasized that, compared to N rðpÞ;N sðpÞ is a
small neighborhood. Typically, so5. We simplify our notation

IBmaxðpÞ ¼ max
qAB\N sðpÞ

IðqÞ and IBminðpÞ ¼ min
qAB\N sðpÞ

IðqÞ:

Similarly IFmaxðpÞ and IFminðpÞ are defined.
The previous concepts can be expressed statistically. Let xs be a

random variable with mean mxs
and variance s2

xs
representing the

gray-intensity difference between any pair of pixels
p;qAB \N sðpÞ. From now on, we will omit the subindex s.
A low mean mx, combined with a small variance s2

x , represents a
smooth background surface. Likewise, a smooth foreground surface

is obtained when y has a low mean my and a small variance s2
y

where y is defined analogously to x but considering fore-
ground pixels, see Fig. 3(a). Finally, the random variable z

represents the difference between the minimum background
and maximum foreground gray intensities in same neighboor-
hood N sðpÞ. We will refer to x, y and z as the random variable
of background differences, foreground differences and contrast

differences, respectively.
If z is negative, the foreground and background histograms

overlap. Therefore, a misclassification may occur in any thresh-
olding method (Fig. 3(b)). For example, the image in Fig. 4(a) is
split in dark and bright areas. The foreground and background
histograms are bimodal curves. The first mode of the fore-
ground (background) histogram is formed by the foreground
(background) in the light area while the second is formed
by pixels in the dark area. Misclassifications stem from an
overlapping of the second foreground peak with the background
modes. Thus, any thresholding method misclassifies either the
pixels in the first background mode or the pixels in the second
foreground peak Fig. 4(b).
2.3. Transition set

Pixel p is a t-transition pixel if its neighborhood N tðpÞ contains
foreground and background pixels. The set of those pixels is
named T t and this group extends along the whole foreground
contour. If t¼ 1, then the t-transition pixel is an edge pixel.

In particular, a neighborhood that contains a dense subset of
T t also contains a significant subset of the foreground contour.
Furthermore, the statistical distribution of F \ T t approximates
the distributions of F since it is a large foreground sample.
Analogously, the distribution of B \ T t approximates the dis-
tributions of B.1

Four neighborhood types help to characterize the transition
pixels. Fig. 5 shows neighborhoods of type 1 (NT 1) which have
only background pixels. Neighborhoods of type 2 (NT 2) have
their central pixels in the background and has foreground pixels.
Analogously, NT 3 and NT 4 correspond to NT 2 and NT 1:

The most outstanding feature of transition pixels is easy to
appreciate in a binary image. The difference between the central
pixel of neighborhoods NT 1 (NT 4) and any pixel contained
within is zero, because all pixels have the same value (either all
zero or all one). However, the neighborhoods NT 2 and NT 3
contain, besides pixels with differences of 0, pixels with
differences of �1 and 1, respectively. The value �1 is reached in
NT 2 when the central pixel is compared with a foreground pixel.
Likewise, 1 is reached in NT 3 when the central pixel is compared
numerically with a background pixel. Extending the same
argument to non-binary but ideal images, NT 1 and NT 4 have
differences close to zero, unlike NT 2 and NT 3 whose differences
are large in absolute magnitude. Table 1 is constructed taking ds

and dc from the ideal image definitions and the fact that, the pixel
of maximal gray intensity in NT 2 is a background pixel while the
pixel of minimal gray intensity in NT 3 is a foreground pixel.

A transition function F is a discriminant function taking extreme
values only when a transition pixel is evaluated: Positive for
foreground pixels and negative for background pixels. Moreover,
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Fig. 4. (a) The histograms of foreground and background pixels are separately drawn. (b) Otsu’s method (above) and Sauvola’s method with parameters a¼ 0:25 and b¼ 128

(below).

Fig. 5. N tðpÞ has four cases considering the pixels contained and its central pixel.

Table 1
Differences in an ideal image.

Difference NT 1 NT 2 NT 3 NT 4

max
qAN s ðpÞ

IðqÞ-IðpÞ ods ods 4dc ods

IðpÞ- min
qAN s ðpÞ

IðqÞ ods 4dc ods ods

max
qAN s ðpÞ

IðqÞþ min
qAN s ðpÞ

IðqÞ-2IðpÞ 4-ds and ods o-dcþds 4dc-ds 4-ds and ods
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pixels in T c
t take values close to zero. In terms of conditional

probabilities:

PðpAF \ T tjFðpÞZtþ Þ41�eþ ; ð1Þ

PðpAB \ T tjFðpÞr�t�Þ41�e�; ð2Þ

PðpA ðT tÞ
c
j�t�oFðpÞotþ Þ � 1�e; ð3Þ

where eþo0:5; e�o0:5, and eo0:5, but the closer they are to
zero, the better. Eqs. (1)–(2) mean p is pre-classified as foreground
when FðpÞ is greater than tþ . In contrast, p is pre-classified as
background when FðpÞ is lower than �t�. Note that there is no
information to pre-classify p if �t�oFðpÞotþ .

The previous equations suggest some functions we can use to
measure a transition value:

Max2min : VðpÞ ¼ max
qAN sðpÞ

IðqÞþ min
qAN sðpÞ

IðqÞ�2IðpÞ; ð4Þ

Discrete Laplace : Lði; jÞ ¼ 1
4ðIði�1; jÞþ Iðiþ1; jÞþ Iði; j�1Þ

þ Iði; jþ1ÞÞ�Iði; jÞ and ð5Þ
Linear kernel : GðpÞ ¼
X

qAN t

fwðqÞ � IðqÞg�IðpÞ; with
X

qAN t

wðqÞ ¼ 1:

ð6Þ

Note that V : fN sg-½�l; l�: Figs. 6(b)–(d) are computed from
Fig. 6(a) applying the transition function. Pixels with negative
transition value are shown in red, a pixel with a �x transition
value is associated with a x-red intensity. The pixels with positive
transition value are shown in blue.

2.4. Max–min function
Proposition 1. Given an image I, suppose that their random

variables of background differences x, foreground differences y and

contrast differences z have probability densities approximately

Gaussian in N s, such that mz415s where s¼maxfsx;sy;szg. Then,
the max–min function is a transition function in N t when trs.

Proof. To prove the theorem is sufficient to find t� and tþ such
that
�
 PðVðpÞo�t�Þ � 1 if pANT 2,
PðVðpÞ4�t�Þ � 1 if pAðNT 2Þc ,

�
 PðVðpÞ4tþ Þ � 1 if pANT 3 and

PðVðpÞotþ Þ � 1 if pAðNT 3Þc ,
where ðNT iÞc represents pixels in all type of neighborhoods,
except neighborhood of type NT i:

We know that practically all the observations drawn from x are

within ðmx�3sx;mxþ3sxÞ. Explicitly:

Pð�3sxoxo3sxÞ ¼ 1�ex;

Pð�3syoyo3syÞ ¼ 1�ey; and

Pð�3szozo3szÞ ¼ 1�ez; ð7Þ

where ex; ey; and ez are close to zero. Then, in the cases described

by Fig. 5 we have:

Neighborhood type 1. All the pixels within N tðpÞ are background.

We can rewrite (4) as

VðpÞ ¼ IBmaxðpÞ�IðpÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
a1

�ðIðpÞ�IBminðpÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
a2

: ð8Þ
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Fig. 6. (a) Original image. (b) GðpÞ with Gaussian weights (s2 ¼ 1 in N 2ðpÞ). (c) Laplace operator. (d) Max–min in N 2ðpÞ.

Fig. 7. (a) Original image. (b) Transition image. (c) In red the pixels p that satisfy

VðpÞr-1 and in blue VðpÞZ1. (d) The transition image after filtering by tþ ¼ 22

and t- ¼ 10. (e) Transition image restored by morphological operators. (f) Binary

image. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Observe that

Pða1r6sxÞZPðjIBmaxðpÞjo3sx; jIðpÞjo3sxÞ ¼ ð1�exÞ
241�2ex

and Pða2r6sxÞ41�2ex. Then

Pð�6sxrVðpÞr6sxÞZ1�4ex: ð9Þ

Neighborhood type 2. Both background and foreground pixels

within N tðpÞ and p is background. Regardless of outliers, we can

assume that the pixel of maximal gray intensity is background and

the pixel of minimal gray intensity is foreground. Splitting (4) as:

VðpÞ ¼ IBmaxðpÞ�IðpÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
a1

�ðIðpÞ�IBminðpÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
a2

�ðIBminðpÞ�IFmaxðpÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a3

�ðIFmaxðpÞ�IFminðpÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a4

:

ð10Þ

Notice that Pða1r6sxÞ41�4ex, Pða2Z0Þ ¼ 1, Pða3Zmz�3szÞ4

1�ez, and Pða4Z0Þ ¼ 1. Then

PðVðpÞr�mzþ6sxþ3szÞ41�4ex�ez: ð11Þ

Replacing mzZ15s in (11)

PðVðpÞr�6sÞ41�4ex�ez: ð12Þ

From (9) and (12) we conclude that there exists t�r6s that

satisfies (2). The proof of cases three and four are analogous to the

proof of case one and two. &

3. Description of the transition method

The gray-intensity histogram’s distribution of B and F are
approximated from the gray-intensity histogram’s distribution of
B \ T and F \ T . The problem lies in defining a criterion to
identify the sets B \ T and F \ T : Since B \ T and F \ T are dual
sets, we will explain only the criterion for F \ T leaving out
details for B \ T :

We simplify the notation by omitting r as subindex of T ;
writing T ðpÞ ¼N rðpÞ \ fT þ [ T �g, T þ ðpÞ ¼N rðpÞ \ T þ and
T �ðpÞ ¼N rðpÞ \ T �:

Our method computes the transition values for all pixels. Once
it has managed to find a proper threshold tþ , it denotes by T þ the
set of pixels for which transition values are above tþ : Then, T þ is
refined by morphological operators in IðpÞ and VðpÞ which are
applied to gray-intensity images and the image of transition
values. Finally, the refined T þ ðpÞ is used to approximate
F \N rðpÞ if its set cardinality is equal or greater than nþ .

The complete method consists of the following steps:
1.
 Compute the transition values for each pixel with a transition
function. We suggest the max–min function using neighbor-
hoods of radius 2 (Fig. 7(b)).
2 An explanation of the small gray peak in the left of HV ;B[F is beyond the
2.

scope of this paper.
Calculate the thresholds tþ and t� (Section 3.1). Take T þ ¼ fp j
VðpÞZtþ g and T � ¼ fp j VðpÞrt�g (Figs. 7(c) and (d)).
3.
 Refine T þ and T � (Section 3.2), see Fig. 7(e).

4.
 Label p using information from T þ and T � (Section 3.3).

5.
 Compute TðpÞ (Section 3.3.2).

6.
 Remove noise by standard algorithms.

3.1. Transition threshold

The significance of a high transition value depends on the
statistical distributions of background, foreground and contrast
differences. Unfortunately, those distributions are only known
when a prior information is available. Even if we know the
distribution’s model, their parameters are hardly fixed.

Several kind of histograms HF;S will be used to keep track of
the pixels in relation to their transition value or gray intensity. We
have to specify the function F that is used on the pixel set S. Then,
HF;SðxÞ is the cardinality of fpASjFðpÞ ¼ xg.

To compute a positive transition threshold, only the positive
part of HV ;B[F is considered. Since the frequency of positive
transition values into B \ T is not significant (most of them have
high negative values), HV ;B[F is made out of pixels within
ðB [ F Þ\T and F \ T set (see Fig. 8). The histogram HV ;B[F in
Fig. 8 shows the frequency of positive transition values in the
whole image, observe that ðB [ F Þ\T constitutes most of the first
histogram values while F \ T forms most of the last histogram
values.2
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Fig. 8. (a) Original image. (b) Histogram HV ;B[F of positive transition values.
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3.1.1. Quantile model for transition threshold

We showed in the previous section that values from F \ T are
shifted toward the right of the transition-values histogram, see
Fig. 8(b). Hence, discarding the pixels with the lowest aþ percent
of transition values approximates F \ T . It implies that an 1�aþ
percent of the highest transition values remain in T þ (Fig. 9(c)).
This thresholding is called Quantile threshold.

Given a value aþ and HV ;B[F , we choose tþ as the minimum
value that satisfies

1

k

Xt þ
i ¼ 1

HV ;B[F ðiÞZaþ ; with k¼
Xl

i ¼ 1

HV ;B[F ðiÞ: ð13Þ

3.2. Restoration of transition set

The restoration of transition set is the process to add and remove
pixels from T with the aim of increasing the cardinality while
reducing the noise. In the following sections, the morphological
operators use N k neighborhood, cross neighborhood (left, right,
top, and bottom neighbors), diagonal neighborhood (left-top, right-
top, left-bottom, and right-bottom neighbors), two positive
integer a and b, and two positive real values c and d.

Isolation operator:
Given pAT þ , set T þ’T þ \fpg if jT þ ðpÞjoa.
Given pAT �, set T �’T �\fpg if jT �ðpÞjob.
Expansion operator:
Given p=2T þ and p=2T � set:
(1)
 T þ’T þ [ fpg if jT þ ðpÞjZa and jT �ðpÞjob.

(2)
 T �’T � [ fpg if jT þ ðpÞjoa and jT �ðpÞjZb:
Relative operator:
Given p=2T þ and p=2T � set:
(1)
 T þ’T þ [ fpg if VðpÞ=mI;N r ðpÞ
ZmV ;T þ =mI;B[F and VðpÞZc:
(2)
 T �’T � [ fpg if VðpÞ=mI;N r ðpÞ
rmV ;T �=mI;B[F and VðpÞr�d:
Fig. 10(c) was computed with seven transition operators:
expansion (k¼ 2; a¼ 3; b¼ 3), isolation (cross neighborhood),
expansion (k¼ 2; a¼ 3; b¼ 13), isolation (diagonal neighbor-
hood), isolation (cross neighborhood), expansion (k¼ 1; a¼ 5;
b¼ 5), and expansion (k¼ 2; a¼ 13; b¼ 2). All the isolate
operators set a¼ b¼ 1.
3.3. Positive and negative sets

Only the pixels in T þ ðpÞ and T �ðpÞ are considered to compute
TðpÞ. It is expected that T ðpÞ ¼ | if N ðpÞ is either NT 1 or NT 4
while T ðpÞmay have a large cardinality if p is a transition pixel. In
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the same way, most of the outliers and small stains are discarded
by labeling as background those pixels p that satisfies either
jT þ ðpÞjonþ or jT �ðpÞjon�. The integer values nþ and n�

depend on the size of r and objects of interest. In general,
as high nþ as large objects from the foreground will be removed.
For instance, consider a horizontal line with height 1 as the
foreground. The line’s extremes are evaluated if nþrrþ1.
Otherwise, the line’s extremes are labeled as background without
even compute the TðpÞ. We suggest nþ ¼ n� ¼ 5, if we have small
foreground objects.

A second criterion to discard outliers uses the difference
between the gray-intensity means of the transition set. The pixel
p is labeled as background if

mI;T �ðpÞ�mI;T þ ðpÞoc; with mI;T þ ðpÞ ¼
1

jT þ ðpÞj
X

qAT þ ðpÞ
IðqÞ: ð14Þ

The positive value c depicts the minimum contrast expected
between the background and foreground. We suggest c¼ 15.
3.3.1. Classic thresholding with transition set

Algorithms like Otsu’s [11] and Kittler’s [10] increase their
accuracy as much as the gray-intensity histogram approximates a
bimodal curve. Those algorithms compute TðpÞ using HI;N r ðpÞ, we
propose using HI;T ðpÞ instead. Moreover, keeping a track of HI;T þ ðpÞ
and HI;T �ðpÞ we are able to determine classification error functions
(see Fig. 11). The constant

kþ ¼
Xl

i ¼ 0

HI;T þ ðpÞðiÞ and k� ¼
Xl

i ¼ 0

HI;T �ðpÞðiÞ ð15Þ

are used in both of the following thresholds.
Fig. 10. (a) Original image. (b) Filtered image using tþ ¼ 14 and t- ¼ 16: (c)

Restored image by isolation and expansion transition-operators. Blue pixels depict

pixels with positive transition value above tþ : In red, those pixels with high

negative transition value below t-. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Fig. 11. (a) HI;B[F of Fig. 9(a). (b) Histograms of the image filtered by tþ ¼ 11 and t- ¼

modeled by normal and lognormal functions. (For interpretation of the references to c
�

12

olor
Minimum-error-rate threshold:
Given a threshold t, its error function is defined as

Errorðp; tÞ ¼
1

k�

Xt

i ¼ 0

HI;T �ðpÞðiÞþ
1

kþ

Xl

i ¼ tþ1

HI;T þ ðpÞðiÞ ð16Þ

and its optimal threshold is

TðpÞ ¼ argmin
tA ½1;l�1�

fErrorðp; tÞg: ð17Þ

Maximum-rate threshold:
�
Given a threshold t, its rate classification is defined as

Accuðp; tÞ ¼
1

kþ

Xt

i ¼ 0

HI;T þ ðpÞðiÞþ
1

k�

Xl

i ¼ tþ1

HI;T �ðpÞðiÞ ð18Þ

and its optimal threshold is

TðpÞ ¼ argmax
tA ½1;l�1�

fAccuðp; tÞg: ð19Þ

3.3.2. Statistical thresholds

The probability density function which models the gray-
intensity histogram of the positive transition pixels in T þ ðpÞ,
must approximate the gray-intensity histogram of the foreground
pixels in N rðpÞ (see Fig. 11(b)):

HI;T þ ðpÞðiÞ

jT þ ðpÞj
�

HI;F\N r ðpÞðiÞ

jF \N rðpÞj
: ð20Þ
�

:

Normal threshold:
Given DI;T þ ðpÞðiÞ � cþfði;mþ ;s2

þ Þ where fði;mþ ;s2
þ Þ denotes

the normal probability density function. Then, DI;T þ ðpÞ approx-
imates HI;T þ ðpÞ when

cþ ¼ jT þ ðpÞj;
mþ ¼ mI;T þ ðpÞ;

s2
þ ¼maxðs2

I;T þ ðpÞ;1Þ; ð21Þ

where

s2
I;T þ ðpÞ ¼

1

jT þ ðpÞj�1

X
qAT þ ðpÞ

ðIðqÞ�mI;T þ ðpÞÞ
2: ð22Þ

The intersection of those curves is the root mþox0om� of a
quadratic equation with coefficients a, b and c given by

a¼
1

s2
þ

�
1

s2
�

;

b¼
2m�
s2
�

�
2mþ
s2
þ

;

c¼
m2
þ

s2
þ

�
m2
�

s2
�

�2 ln
s�c�
sþ cþ

� �
: ð23Þ
HI;T þ [T - is split in HI;T þ (blue curve) and HI;T - (red curve). Each histogram is

in this figure legend, the reader is referred to the web version of this article.)
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Lognormal threshold:
�
Fig. 12. (a) Using the integral image the area is computed as 1þ3-2-4. (b)

HI;T þ ðiþ1;jÞ is computed adding and removing pixels from HI;T þ ði;jÞ .
Given DI;T þ ðpÞðiÞ � cþlði;mþ ;s2
þ Þ where lði;m;s2Þ denotes the

lognormal probability density function:

lðx;m;sÞ ¼ 1

x
ffiffiffiffiffiffi
2p
p

s
exp �

ðlnðxÞ�mÞ2

2s2

 !
:

The intersection is computed using the root x0 of the quadratic
equations with coefficients given by (23). This corresponds to
expðx0Þ.
In practice, the parameters mþ and s2

þ are estimated based on
the estimated mean and variance of the lognormal distribution
using the relations:

mþ ¼ lnðmI;T þ ðpÞÞ�
1

2
s2
þ and s2

þ ¼ ln 1þ
s2

I;T þ ðpÞ

½mI;T þ ðpÞ�
2

 !
: ð24Þ

Linear mean-variance threshold:
�
TðpÞ ¼
mI;T þ ðpÞ þasI;T þ ðpÞ þmI;T �ðpÞ�bsI;T �ðpÞ

2
; ð25Þ

where a and b are two tuning parameters.

�
 Autolinear threshold:

TðpÞ ¼ mI;T þ ðpÞ þ
sþ

sþ þs�
ðmI;T �ðpÞ�mI;T þ ðpÞÞ; ð26Þ

where sþ and s� are computed as (21).

4. Complexity

Since the transition method requires a standard storage, we
will only show the running-time complexity of the transition
method. Hence, we estimate the running time of the algorithms in
terms of the number of pixels of the image that is input. If FðAÞ

denotes the total amount of computational labor that the
algorithm does in order to compute A. Then, using the conven-
tional Big�O notation:

FðVÞ; FðGÞAOðjB [ F j � jN sjÞ;

where G and V are defined by (6) and (4). In the practice, V has a
higher running-time than G. It is a consequence of the conditional
operations that are involved in the calculation of V.

The quantile threshold has a computational order of OðjB [ F jÞ
because it needs read I once to compute HV ;F[B. All morphological
our transition-operators and statistical gray thresholds, have
complexity OðjB [ F jÞ. An outline proof is shown in Section 4.2.

If a classification rate thresholding is used, the complexity
raises to Oðl � jB [ F jÞ or Oðr � jB [ F jÞ (Section 4.2). In conclusion,

Transition method complexity¼

Oðl � jB [ F jÞ if l�244rþ2; jN sj;

Oðr � jB [ F jÞ if 4rþ24 l�2; jN sj;

OðjB [ F j � jN sjÞ otherwise:

8><
>:

4.1. Integral matrix for a pixel sample

We extend the integral image [20] to compute any statistical
moment efficiently. To compute the mean and variance of any
neighborhood given S � B [ F . Define the image S

Sði; jÞ ¼
1 if ði; jÞAS;
0 otherwise:

(

The integral image of S is

~Sði; jÞ ¼ Sði; jÞþ ~Sði; j�1Þþ ~Sði�1; jÞ� ~Sði�1; j�1ÞðFig: 12Þ:

Then, the cardinality of N rði; jÞ is computed as

jN rði; jÞj ¼ ~Sðiþr; jþrÞ� ~Sði�r�1; jÞ� ~Sði; j�r�1Þþ ~Sði�r�1; j�r�1Þ:
Similarly, considering only the pixels in S, ~I is the integral image
of gray intensities of I given by

~Iði; jÞ ¼ Iði; jÞ � Sði; jÞþ ~Iði; j�1Þþ ~Iði�1; jÞ�~Iði�1; j�1Þ:

The gray-intensity mean mði; jÞ of N rði; jÞ is given by

mði; jÞ ¼
~Iðiþr; jþrÞ�~Iði�r�1; jÞ�~Iði; j�r�1Þþ ~Iði�r�1; j�r�1Þ

jN rði; jÞj
:

The second integral matrix

~I
2
ði; jÞ ¼ ½Iði; jÞ�2 � Sði; jÞþ ~I

2
ði; j�1Þþ ~I

2
ði�1; jÞ�~I

2
ði�1; j�1Þ

is needed to compute the gray-intensity variance of N rði; jÞ. The
computational formula for the variance follows in a straightfor-
ward manner from the linearity of expected values

s2ðXÞ ¼ EðX2Þ�½EðXÞ�2;

where E is the expected value. Then

s2ðpÞ ¼
1

jN rði; jÞj
ð~I

2
ðiþr; jþrÞ�~I

2
ði�r�1; jÞ�~I

2
ði; j�r�1Þ

þ ~I
2
ði�r�1; j�r�1ÞÞ�½mði; jÞ�2: ð27Þ

In fact, we can extend the integral image’s definition as

~I
n
ði; jÞ ¼ ½Iði; jÞ�n � Sði; jÞþ ~I

n
ði; j�1Þþ ~I

n
ði�1; jÞ�~I

n
ði�1; j�1Þ

and compute any statistical moment.

4.2. Gray-threshold complexity

Statistical thresholds use the mean and variance of local gray-
intensity histogram. In order to achieve those values, six integral
matrices are computed over the binary images of T þ and T �
(three for each one). Then, all of them have a complexity
OðjB [ F jÞ.

We can compute HI;N r ði;jþ1Þ from HI;N r ði;jÞ with effort 4rþ2. This
is: 2rþ1 additions to add the pixels next to the right side of
N rði; jÞ plus 2rþ1 subtractions to remove the first column of
N rði; jÞ; see Fig. 12(b). Thus, keep a track of the histograms HI;T þ ðpÞ
has a cost of OðrjB [ F jÞ. However, for each pixel, the minimum-
error rate and maximum rate thresholds search the optimal
threshold between l�2 values having both a complexity
Oðl � jB [ F jÞ.
5. Experimental results

We compare Otsu’s, Sauvola’s and Kavallieratou’s methods
with three variants of the transition method: quantile autolinear,
quantile lognormal and quantile normal. It must be remarked we
implemented Otsu’s in the local version to increase the accuracy,
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despite this implementation raised dramatically the running-
time. We implemented all the algorithms with integral matrix
method to compute local values but Otsu’s method, which uses
histogram tracking as in Fig. 12(b).

Table 2 presents the parameter’s values used in our tests. We
post-process all binarized images removing from the foreground
small stains (connected components containing four or less
pixels) before computing any comparison measure. Only the
highest measure score is reported for each pair image-algorithm.

Quantile autolinear, quantile lognormal and quantile normal
are composite algorithms with the following operations:
�

Tab
Par

A

K

Q

Q

Q

Sa
Max–min function using N 2 because it obtains the largest and
sharply defined transition set among the transition functions
described.

�
 Quantile threshold.

�
 Two isolation operators (a¼ b¼ 1). The former using cross

neighborhood, the later using diagonal neighborhood.

�
 Autolinear or lognormal or normal thresholding. Setting

nþ ¼ n� ¼ 5 and c¼ 15.

5.1. Description of the experiments

Historical documents present several kind of image degrada-
tions, such as ink stains, burned areas, weak ink strokes and wide
variations in background. That is why, we tested the binarization
algorithms with the historical atlas ‘‘Theatrum orbis terrarum, sive,

Atlas novus’’ (Blaeu Atlas) [22]. Those maps contain no-text areas,
headers, region’s labels, map’s comments and digits. The non-text
areas are measurable by segmentation criteria, while the rest may
be recognized by an optical character recognition (OCR) system.
This paper reports three experiments: the first measures the
segmentation quality in no-text areas, the second measures the
recognition rate of an OCR system, the third experiment compares
the algorithm’s running-time.

The first and third experiments use 61 maps that were scanned
from the Blaeu Atlas at 150 dpi resolution. The second uses 83
text-images extracted from the 61 maps. The text-images are
Fig. 13. Example of header, labels a

le 2
ameter’s range.

lgorithm From/to Increment

avallieratou’s 0=9 1

. Autolinear a : 0:1=0:975 0.025

. Lognormal a : 0:1=0:975 0.025

. Normal a : 0:1=0:975 0.025

uvola’s a : 0:025=0:6, b : 128 a : 0:025
composed mainly by map headers, map comments and region
labels lacking of city labels or handwriting text, see Fig. 13.

Since there is not an available standard benchmark for
binarization, this article measures the segmentation accuracy
with a variant of the region non-uniformity (NU) measure [9]. We
named our measure uniform variance (UV) which is defined as

UV ¼
X

pAB[F

½sBðpÞ � jB \N rðpÞjþsF ðpÞ � jF \N rðpÞj�

jN rðpÞj
;

where sBðpÞ is the gray-intensity standard deviation of pixels
within B \N rðpÞ or zero if the intersection is empty. Similarly
sF ðpÞ is defined. Unlike NU, UV measure is locally well-defined
and penalize the gray-intensity variance in both foreground and
background. Notice the UV measure is zero in binary images if the
foreground match with the set of black pixels. If any black pixel is
classified as background, the UV measure increases its value. It is
easy to see UV measure behaves similarly in binary images as in
gray images. Nevertheless, the UV measure cannot be compared
between two different images, because there is not uniform
compensation between them. For that reason, only tables of
pairwise comparison are reported.

Besides of the UV measure, we used TopOCR [23] to recognize
the text from the text-images. Our evaluation’s measures are
accuracy (AC) and precision (PR) [24] computed as

AC ¼
#ðcharacters of TmatchÞ

#ðcharacters of TinÞ
and PR¼

#ðcharacters of TmatchÞ

#ðcharacters of ToutÞ
;

where Tin is the original text in the image, Tout denotes the
recognized text from the OCR, and Tmatch denotes the maximum
matching text between Tin and Tout. Tmatch is computed using
Needleman–Wuntsh algorithm [25]. AC measure is an important
measure for OCR’s system, because a high AC’s value increases the
possibility to extract, by further algorithms, relevant information.

We implemented the algorithms in Cþþ and ran our tests on
a computer with 3.2 GHz Pentium IV Dual core processor and
2 GB in RAM. Table 4 presents the 95% confidence intervals
for algorithm’s running-time expressing the interval limits on
millisecond/megapixel.
5.2. Pairwise tables

Quantile lognormal performed the best in the first experiment
(Table 3) having a reasonable running-time lower than
3 s/megapixel (Table 4). Otsu’s and quantile normal performed
in 2nd and 3rd place. However, Otsu’s running-time (over 30 min)
is a disadvantage when the system’s running-time is limited like
in reader systems.
comment in a historical map.
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Table 3
Pairwise comparison for 61 maps.

Kavallieratou Otsu Q.

Autolinear

Q.

Lognormal

Q.

Normal

Sauvola

Kavallieratou – 8 14 2 4 0

Otsu 53 – 45 22 36 35

Q. Autolinear 47 16 – 10 1 7

Q. Lognormal 59 39 51 – 42 40

Q. Normal 57 25 60 19 – 34

Sauvola 61 26 54 21 27 –

Table 4
95% confidence intervals for binarization-running time.

Raw Normalized

Kavallieratou (1718,1727) (4.0,4.0)

Otsu (265 757,266 908) (630.9,630.9)

Q. Autolinear (1802,1813) (4.2,4.2)

Q. Lognormal (2568,2580) (6.1,6.1)

Q. Normal (2039,2051) (4.8,4.8)

Sauvola (421,423) (1.0,1.0)

The intervals are normalized respect Sauvola’s running-time (millisecond/mega-

pixel) which is the fastest.

Table 5
UV’s pairwise comparison for 83 text-images.

Kavallieratou Otsu Q.

Autolinear

Q.

Lognormal

Q.

Normal

Sauvola

Kavallieratou – 12 1 1 1 0

Otsu 71 – 6 3 3 0

Q. Autolinear 82 77 – 2 19 3

Q. Lognormal 82 80 81 – 56 8

Q. Normal 82 80 64 27 – 4

Sauvola 83 83 80 75 79 –

Table 6
Pairwise comparison for 83 text-images.

Kavallieratou Otsu Q.

Autolinear

Q.

Lognormal

Q.

Normal

Sauvola

Kavallieratou –/– 55/

36

8/7 10/3 4/6 10/5

Otsu 18/44 –/– 1/4 2/6 1/3 1/1

Q. Autolinear 58/74 70/

74

–/– 25/23 13/22 33/26

Q. Lognormal 56/76 71/

71

29/41 –/– 17/39 31/31

Q. Normal 61/74 71/

74

27/28 25/25 –/– 33/21

Sauvola 54/75 69/

76

21/41 22/39 16/39 –/–

In each cell, the left number is the AC measure, while PR measure is given by the

right value. The sum of complementary cells are not always the total of evaluated

images because some algorithms have even scores in several images.
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Unexpectedly, Sauvola’s has the highest UV’s score for text-
images (Table 5) but it scored, at the same time, poorly in the AC
measure. Quantile methods have performed better than other
algorithms in AC measure. Regarding PR measure, quantile
methods have performed only below Sauvola’s method (Table 6).
6. Conclusions

We proposed a new flexible framework capable of solving the
binarization problem more efficiently than classic binary thresh-
old methods. This methodology is based on the new concepts of
transition pixel, transition set and transition values. Transition
values are computed by transition functions that can be
specialized in any specific image. Particularly using N 2 neighbor-
hoods, max–min function (4) associates high values to transition
pixels in comparison with no-transition pixels. So that, the
quantile method is able to compute an accurate threshold, which
selects a representative samples of both background and fore-
ground sets. We presented a wide survey of gray-level thresh-
olding which were adapted to use the transition set
approximation. Even more, the transition method accepts new
models easily for each method’s step.

Our test used a large database of historical maps containing
text and pictorial document images under different levels of
degradations. Quantile lognormal performed the best in both
quality tests. On the other hand, quantile normal had a similar
performance compared with standard binarization algorithms.
The transition method has satisfactory running time processing 1
megapixel in 3 s or faster.
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