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Abstract

case. Routh himself has devised some techniques to cope
with singular cases, leading to axtended Routh-Hurwitz

This note presents an elementary proof of the familiar test (see [1]).

Routh-Hurwitz test. The proof is basically one continu-  The authoritative reference for the R-H-test and exten-
ity argument, it does not rely on Sturm chains, Cauchy sjons is Gantmacher [1]. In [1] the proof depends on
index and the principle of the argument and itis fully self cauchy indices and Sturm Chains. In most papers on re-
contained. In the same style an extended Routh-Hurwitz|ated issues, at some stage a Sturm chain, Cauchy index

test is derived, which finds the inertia of polynomials.
Keywords: Routh-Hurwitz test, stability theory.

1

One of the most famous results from stability theory is the
Routh-Hurwitz test (R-H-test) which states that all zeros
of a polynomialp(s) = pos”+ p18" 1 +---+ pn (pi € R)

lie in the open left-half plane iff a certain set of algebraic
combinations of its coefficients have the same sign. In full:

I ntroduction

Theorem 1.1 (Routh-Hurwitz test). A polynomial
P(S) = Pos” + P11+ -+ + Pn-1S+ Pn, (Pi€R, Po#
0), is stable iff alln + 1 elements of the first column of
the Routh table

Po P2 Psa  Pe
P1 Pz ps  pr
31 I32 I33
g1 Ta2 Ta3
M+1,1

and a principle of the argument enter the story (see, for
example, [2—4]). In [3, 5] Sturm chains are not required,
however, the proofs in [3, 5] are still rather elaborate, and
in [5] the results are only applicable to stable polynomi-
als. Our presentation has links with [3] and the root locus
arguments of [6].

We derive in this note an easier proof of the R-H-test and
an extended R-H-test, using only a continuity argument.
The R-H-test is proved in Section 2, and in Section 3 we
derive in a similar style an extended R-H-test that may be
used to find thénertia of a polynomialp, that is, the triple
of integers

n_(p), No(p), N+(p)

denoting the number of stable zeros,(p), the number

of zeros on the imaginary axigg(p), and the number of
antistable zerds n,(p) of p. The results resemble that
of [3] and are not new, but to our knowledge the proofs are
new and are much easier than other known proofs.

We consider only polynomials whose coefficients are
real-valued. The expressign(s) = q(s) usually means
that p(s) = q(s) for all complexs. A polynomial p is odd
if it may be written aga(s) = sk(s?) andpis eveniif it may

are nonzero and have the same sign. The Routh table hage written asp(s) = h(s?). Given a polynomiap, we use

n+ 1 rows, its first two rows are given bg as shown
above and the other rows are defined successively as

(rigri2 )= (ri—22r—23 )
_li-21

(ricz2fic13--+), (> 2).

li-11

In most cases the first column of the table is well defined
and has no zero elements, evempifs not stable. In this

Peven @nd pogq t0 denote the even and odd polynomials
such thatp = Pevent+ Podd-

2 TheRouth-Hurwitz test

The R-H-test is a result about polynomials, that, for the
sake of computation, is written in terms of operations on

casep has no imaginary zeros and the number of unstablethe coefficients of polynomials. In order to understand

zeros ofp equals the number of sign changes in the first
column of the table. O

In some unlikely cases—such as whghas imaginary
zeros—the R-H-test fails to come to an end due to a divi-
sion by zero. This is commonly referred to as shegular

the R-H-test we have to re-translate the results in terms of
polynomials.
Let p be a polynomial of degree In the same way as

1A zero isstableif it lies in the open left-half plane, arahtistable if
it lies in the open right-half plane.



the first two rows of the Routh table @f

Po P2 P4
P P Ps
1 r32

contain the coefficients gf, also the second and third row

of this table may be seen as containing the coefficients of

a polynomial: Define the polynomiglof degreen — 1 as

aes) i= (P + pas" 2 +-0) +
(rs,lsn_2+f3,25n_4+-")~

Using the definition of the third row, we may rewrite this
as

q(s) Pt + (p2— % P3)S" 2 + pas™ 3. ..

p(s) — %(pls“r pas™ 4.

The Routh table of) is precisely that ofp minus its first
row. Hence the first column of the Routh tablepiias no
sign changes iff the Routh table gthas no sign changes
and pp and p; have the same sign. The degreejdd less
than that ofp, and because the R-H-test is certainly correct
for polynomials of degree one, we have by induction that
the R-H-test is nothing but:

Theorem 2.1 (R-H-test). A nonconstant polynomial
p(s) = pos"+ P1s" 1+ + pn, (Pi € R, po # 0) is
stable iff p; is nonzero,py and p; have the same sign,
and the polynomial of degree— 1

a(s) == p(s) — %(pls” + paS" 24 P54 )

is stable.

Furthermore, in most casgs is nonzero even ip is
not stable. In this case the inertia pfequals that ofj
with one extra stable (antistable) zerop§ and p; have
the same (different) sign. In fach andq have the same
imaginary zeros, counting multiplicities. O

Proof. Assumep; is nonzero. Define theth degree poly-
nomialg, depending; € R as

qy(s) = p(S)—n(p1s"+ pss"C+---)
_ p(S) — 7S Poad(S)  if nis even,
= | p(s) = nSpever(s) if nis odd.

Fory = 0 we havey, = p and fory equal to

My = pO/ P1

we haver), = 0, = 0. A remarkable property of the fam-
ily of polynomials{q,} is that they all have the same imag-
inary zeros, counting multiplicities. So, in particulgr,
andq have the same imaginary zeros.

(Proof: Suppose is even and writ|, as the sum of an
even and odd polynomial:

0y = [ Peven— #'S Poddl + Poda-

A jwis azero ofg, of at least multiplicityk iff it is a zero

of at least multiplicityk of both its odd and even part. This

is because on the imaginary axis the even part takes only
real values and the odd part only imaginary values. From
the above expression foy, it is clear that this is the case

iff jw is a zero of at least multiplicitk of both pogq and
Peven This is independent of, and, hence, the proof is
complete whem is even. The same arguments work for
the case that is odd, in which case the even and odd part
of g, are as i, = Peven+ [ Podd — #7'S Peved-)

Therefore, by a continuity argument, asvaries no
zero of g, can cross the imaginary axis. The only way
the inertia ofg, can change as a function gfis when
at a certain poing, drops degree. The only value of
n for which g, (s) = (po — #p1)s" + - - - drops degree is
n = n. = Po/ P1- As n approaches, from the origin—so
the inertia ofg, equals that ofp = go—one and only one
zero of

ay(S) = (po— 7p1)s" + p1s" 1+ - -

approaches- p1/(po — #p1) which goes to infinity, and
the othem — 1 zeros approach the zerosmpi = . (Re-
member that the imaginary zeros @f are fixed, so the
only zeros that wander around are the non-imaginary ones,
and they do not reach the imaginary axis.) The zero that
goes to infinity is stable ifpp — #p; and p; have the same
sign, that s, iffpp and p; have the same sign. O

We silently assumed in the proof thpt is nonzero if
p is stable. This is a well known fact and follows directly
from an expansion op(s) = [[i_,(s— 4i).

3 Extensions

In this section we extend the R-H-test so that it can handle
every polynomial, revealing its inertia. The results irsthi
section are practically a copy of [3].

It is convenient from this point on to call two polyno-
mials equivalent if they have the same inertia (notation:

p = g). A polynomial pos” 4+ p1s™t + - 4+ p, with
po # O isregular if p; # 0 andsingular if p; = 0.

The crucial step in the proof of Theorem 2.1 is to iden-
tify a family of polynomials equivalent t@ and then to
pick from this family a degenerate one that is essentially
of lower degree. This works as long pss regular. Ifpis
not regular it makes sense to switch to anotugiivalent
polynomial thaisregular and then continue the usual pro-
cedure with that polynomial. We show in this section that
this can easily be done {6 is not even or odd. The case
that p is even or odd is dealt with separately. Both cases
use the following rather general set of equivalent polyno-
mials:

Lemma3.1([3]). Leta polynomialp = podd+ Pevenbe
given.

1. If o is an even polynomial wittx(jw) > O for all
w € R, and de@apodd) < degpeven then

in
P = Pevent & Podd-



2. If a is an even polynomial witlx(jw) > 0 for all
w € R, and de@a Pever) < d€gpode, then

in
P = a Pevent Podd-
O

Proof. (This is practically the same as what we did in the
proof of Theorem 2.1.) We proof Item 1; Item 2 is essen-
tially equivalent.

Givena, defineq; asq; = Pevent ((1— 1) + A1) Podd-
Thenqgo = p and i = Peven+ aPods- FOr all 2, g, has
the same degree g5 so the proof is complete if we can
show that as! varies in the closed interval [Q] no zero
of g, can cross the imaginary axis. This we do by showing
that the imaginary zeros of, (counting multiplicities) are
independent of. € [0, 1].

Fixa4 € [0, 1] and supposé¢w is a zero ofy; of at least
multiplicity k. Then itis also zero of at least multipliciky
of pevenand [(1 — 1) + Aa] podq because on the imaginary
axis Peventakes only real values andl{— 1) + Aa] podd
takes only imaginary values. We know that on the imagi-
nary axis [1— 1) + Aa] is positive, nonzero for every
in [0, 1], hence,jw is a zero ofg, of at least multiplicity
kiff it is a zero of at least multiplicityk of both peyenand
Pode- This is independent of. O

Casel: When singular pisnot odd or even. Assume
first that the degree of singular polynomialp is even.
Singularity of p implies that the odd pafp.qq has degree
n—1— 2k for somek > 0. Then by Lemma 3.1 the poly-
nomial

r(s

Pever(S) + (1 + (=9)*) Podd(s)
P(S) + (—°)* Poad(S)
PoS" + pryakS 14 - -

is equivalent top because:(s) := 1+ (—s°)¥ is real and
strictly positive on the imaginary axis. The polynomial

Therefore by checking the inertia of for sufficiently
smalle > 0 we have in principle a means to perform the
degree reduction step while keeping track of the inertia of
p. The following shows we need not know how smalll
must be if all imaginary zeros g are simple (remember
that p is assumed even):

Fe (p+ p”+ )+e(p+ p”’+ -)

even odd

=

)+(|0+ p”/+ )
(by Lemma 3.1).

(p+ p”+

The last expression convergesper p’ whene goes to
zero. So ifp+ p’ does not have zeros on the imaginary

axis we get that for small enough> O, r, z p+p. If
p has multiple zeros on the imaginary axis a similar result
holds:

Lemma 3.2 (Case II, [3]). Supposep is odd or
even and that its degree is. Thenr = p+ p
is regular andn,(r) = n.(p). That is, the inertia

{n-(p), no(p), ny(p)} of pis equal to
{ny(r), n=2n,.(r), ny.(r) }.

O

Proof. Let p be even or odd. Regularity gf + p’ is triv-
ial. We examine the inertia of:= p+ p’. By Lemma 3.1
the inertia ofp+ p’ equals that ofj. := p+ ep’ for every
€ > 0. We may therefore as well examine the inertia of
g. for an arbitrary small positive, and, hence, we need
only worry about the root locus of the imaginary zeros of
gc arounde = 0.

If jois a zero ofgy = p of multiplicity k, then it is
a zero ofq. # p of multiplicity k — 1. Therefore ag

is regular and we may therefore proceed with the degreeincreases from 0, only one zerogfmoves (continuously

reduction step with this.

Similarly, if p is singular and hasdd degree, then
p is equivalent to the regular polynomie{s) := (1 +
(—5%)%) Pever(S) + Podd(S), Wherek is defined through
degpPevent 2k = degpoga — 1

Casell: When pisevenor odd. The regularization as
described above fails only ip is even or odd. An even

or odd polynomialp has as many stable zeros as it has
antistable zeros becaupés) =: s*h(s?) = £ p(—s). This
symmetry implies that the inertia of an even or odd polyno-
mial is completely determined by its degree and its number
of, say, antistable zeros. As an introduction to the follow-
ing lemma we assumpis even and we define depend-
ingone > 0 as

re(s) = p(s+e).

This amounts to a shift of the zeros to the lefte i 0 is
small enough we have thatis regular and that

Ny (p) =ny(re).

as function ok) away fromjw. A Taylor series expansion

of gc arounds = jw is
) 5k—1
A(jo+9d) = e &—11" (Jw)+ p K(jo) +
5k
€ p“1(jw) + higher order terms
ot
= — (o) x
[ " k+l(] ) ]
ek+o+ 657 + h.o.t
pe(jw)
Solving g, (jw + 6) = 0 for 6§ shows—apart from the ob-

vious k — 1 fixed zerosd = 0—that the remaining zero
o is approximately—ke for smalle. This means that the
remaining zero moves into the open left-half planecas
increases from zero. Henee (p) = n.(g.) = ny(p+

p). 0

This completes the second singular case, and in com-
bination with Case | we may now formulate an extended



Routh-Hurwitz-test. We do this in the form of a Matlab
macro. The validity of this extended test is easily checked
by translating the operations on the coefficients as demon-
strated in this macro in terms of the polynomial manipu-
lations derived earlier. The macro is meant to be easy to
read, it is not very sophisticated.

function inertia=erh(p)
% Finds the inertia of p=[p_0 p_1 .. ]
ind=find(abs(p) > 1e-11);
p(L:ind(1)-1)=[l;
degree=max(size(p))-1;
inert=[0 0 O];
wehavehadcase2=0;
for n=degree:-1:1 % Reduce the degree to 1
k=find(abs(p(2:2:n+1)) > le-11);
if k == % Case-2: Differentiate.
p(2:2:n+1)=p(1:2:n) . * (n:-2:1);
wehavehadcase2=1;
elseif k(1)>1 % Case-1: Add polynomial.
ind=0:2:(n+1-2 *K(1));
f=(-1)"k(2);
p(ind+2)=p(ind+2)-f *p(ind+2 *k(1));
end
eta=p(1)/p(2);
if wehavehadcase?2
inert=inert+[(eta<0) 0 (eta<0)];
else inert=inert+[(eta>0) 0 (eta<O0)];

end
p(1:2:n)=p(1:2:n)-eta *p(2:2:n+1);
p()=[; % Reduce degree to n-1

end
inertia=inert+[0 degree-sum(inert) 0];
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