
Software Metrics: A Survey
Aline Lopes Timóteo1, Alexandre Álvaro1, Eduardo Santana de Almeida2, Silvio Romero de

Lemos Meira1, 2
1Centro de Informática – Universidade Federal de Pernambuco (UFPE) and 2Recife Center for

Advanced Studies and Systems (C.E.S.A.R), Brazil
{alt, aa2 }@cin.ufpe.br, {esa, silvio}@cesar.org.br

Abstract

Software metrics were defined to be a method to
quantify attributes in software processes, products and
projects. The software metrics area has a lack of
reports about metrics usage and real applicability of
those metrics. In this sense, the main goal of this paper
is briefing review research in software metrics
regarding source code in order to guide our research
in software quality measurement. The metrics review is
organized in two ages: before 1991, where the main
focus was on metrics based on the complexity of the
code; and after 1992, where the main focus was on
metrics based on the concepts of Object Oriented (OO)
systems (design and implementation). The main
contribution of this work is a large overview about
software code metrics that can show us the evolution in
this area, and a critical analysis about the main
metrics founded on the literature.

1. Introduction

The management of software development is an
integral part of industry today but most software
organizations face significant barriers in managing this
activity. An Information Week survey found that 62
percent of the respondents feel that the software
industry has troble producing good quality software
[1]. Losses due to inefficient development pratices lead
to inadequate quality that cost the US industry
approximately $60 billion per year [2]. One approach
that has been shown to result in improved quality and
reduced costs is the use of software improvement
activities.

One of the important determinants of success in
software process improvement is the presence of metric
programs. Many reports about metrics program had
been found on the industry [3; 4; 5].

In the past few years, there have been a number of
papers addressing software metrics, like: metrics
related to performance [6], productivity [7], among

others [8; 9; 10].However, we will foccus in metrics
related to source code, because, we want to analyze the
existents software metrics and verifies the evolution of
this area.

We could identify some other surveys in software
code metrics area [13; 17; 29; 56]. They not present a
good view about this area at the time, they present a
view about specific goups of metrics on their time.
They not identify why some metrics could not survive
and how the software code metrics area had been
evaluate at the time.

In this work we will evaluate the state-of-the-art in
software metrics related to source code, which the main
goal is to analyze the existents software metrics and
verifies the evolution of this area and why some metrics
could not survive. Thus, we can understand how the
source code quality evaluates throughout of the years.

The remainder of this paper is organized as follows:
Section 2 software metrics knowledge necessary to
understand the metrics analysis. Section 3 is surveys
the state-of-the-art related to software code metrics.
Section 4 presents the concluding remarks and future
directions.

2. Software Metrics Knowledge

Quality is a phenomenon which involves a number
of variables that depend on human behavior and can
not be controlled easily. The metrics approaches might
measure and quantify this kind of variables.

Some definitions for software metrics can be found
on the literature [5; 11; 12]. The most common will be
adopted in this paper, according to Daskalantonakis:
“Software metrics is a method to quantify attributes in
software processes, products and projects”.

In agreement with Daskalantonakis in [12] we can
found the best motivation to measures, it is finding a
numerical value for some software product attributes or
software process attributes. Then, those values can be
compared against each other and with standards
applicable in an organization. Through these data could

be draw conclusions about quality of the product or
quality of the software process used.

In the recent literature, a large number of measures
have appeared for capturing software attributes in a
quantitative way. However, few measures have
survived and are really used on the industry. A number
of problems are responsible for the metrics failure,
some of them are identified in [13; 14]. We select some
of these problems to analyze the set of metrics
presented on this survey. The main problems are:

• Metrics automation;
• Metrics Validation;

In the next sections we will present some aspects
related by these problems, the section 2.1. presents a
view about metrics automation; the section 2.2.
presents some comments about metrics validation and
the last section, 2.3. presents some aspects based on
measurement goal or metrics definition.

2.1. Metrics Automation

We identified little work in developing tools for
metrics extraction [13; 15; 16; 17; 18; 19; 20; 21]. It
occurs because a large number of metrics is developed,
but they don’t have a clear definition. Normally a code
metric is defined in a large context and it is validated
only for a few set of programmer languages.

In our critical analysis we will verify if the selected
metrics are implemented in a tool and the industrial
relevance of this tool.

2.2. Metrics Validation

There are a number of problems related to
theoretical and empirical validity of many measures
[13; 14; 22], the most relevant of which are
summarized next.

• Measurement goal, sometimes measurers are
not defined in an explicit and well-defined
context;

• Experimental hypothesis, sometimes the
measure don’t have a explicit experimental
hypothesis, e.g. what do you expect to learn
from the analysis?;

• Environment or context, the measure
sometimes can be applied in an inappropriate
context;

• Theoretical Validation, a reasonable
theoretical validation of the measure is often
not possible because the metrics attributes are
not well defined.

• Empirical validation, a large number of
measures have never been subject to an
empirical validation.

This set of problems about validation will be used
on our analysis. In next section we will be presented a
survey about software metrics.

3. Software Metrics: A Survey

This section will present a survey related to the
state-of-the-art in software metrics research.

Sommerville [12] classifies metrics in two
categories: (i) Control Metrics generally associated
with software process; and (ii) Predict Metrics,
normally associated with software product.

In this work we focus is Predict Metrics, because the
predict metrics measures the static and dynamic
characteristics of the software [12]. According with
some characteristic is possible calculate complexity of
the code, instability, coupling, cohesion, inheritance,
among others product attributes. Analyzing this
attributes is possible infer about the quality of the
products and suggest improvement points around
effort, manutenability, testability and reusability.

In this paper we will present a timeline about
software metrics, and it can be “divided” into 2 ages:
section 3.1 presents the Age 1, before 1991, where the
main focus was on metrics based on the complexity of
the code; section 3.2 presents the Age 2, after 1992,
where the main focus was on metrics based on the
concepts of Object Oriented (OO) systems (design and
implementation) and 3.3 section presents a summary
about the this area.

3.1. Age 1: Metrics-Based on Code Complexity

According to [23; 24; 25] the first key metric used

to measure programming productivity and effort was
Lines of Code (LOC or KLOC for thousands of lines of
code) metric. It still is used routinely as the basis for
measuring programmer productivity.

Zuse and Fenton [24; 25] agree that in the mid-
1970, there was a need for more discriminating
measures rather than only LOC measure, especially
with the increasing diversity of programming
languages. After all, a LOC in an assembly language is
not comparable in effort, functionality, or complexity
to a LOC in a high level language. Also, there are easy
identify the main problems in this measure,
Environment or context and Measurement goal, the
ruler not specify what kind of context the metric can be
used.

Nowadays, the LOC metric is implemented in many
used metrics tools [15; 21] and it can be used to
calculate other metrics.

The 1970’s started with an explosion of interest in
measures of software complexity. Many works about
software complexity can be found in literature [26; 27;
28]. The complexity metrics can be divided in two
categories [29]: in section 3.1. we will present the
program complexity metrics and in section 3.2. we will
present the system complexity metrics.

3.1.1. Program Complexity Metrics

The most referenced program complexity metric is
the Cyclomatic Complexity, v(G), [26]. The
Cyclomatic Complexity is derived from a flow graph
and is mathematically computed using graph theory
(i.e. it is found by determining the number of decision
statements in a program).

The cyclomatic complexity can be applied in several
areas, including [30]: (i) Code development risk
analysis, which measures code under development to
assess inherent risk or risk buildup; (ii) Change risk
analysis in maintenance, where code complexity tends
to increase as it is maintained over time; and (iii) Test
Planning, mathematical analysis has shown that
cyclomatic complexity gives the exact number of tests
needed to test every decision point in a program for
each outcome.

 This measure is based upon the premise that
software complexity is strongly related to various
measurable properties of program code. Nowadays, this
measure is strongly used for measure complexity in
industry and academy, because it has a clear
measurement goal, McCabe specify clearly what is
complexity and how to quantify complexity using
Cyclomatic Complexity metric. This metric measure
complexity in a structural context, it is great because
the measure is not dependent of technology or program
language used. This metric have been implemented in
many metrics tools [15; 19; 21] and it had been
validated in many industrial works [27; 31; 32].

Another program complexity metric found on
literature is Halstead metric [33], it was created in 1977
and it was determined by various calculations involving
the number of operators and the number of operands in
a program. The Halstead measures are applicable to
development efforts once the code has been written,
because maintainability should be a concern during
development. The Halstead measures should be
considered for use during code development to follow
complexity trends. A significant complexity measure

increase during testing may be the sign of a brittle or
high-risk module.

 Halstead metric have been criticized for a variety
of reasons, among them the claim that they are a weak
metric because they measure lexical and/or textual
complexity rather than the structural or logic flow
complexity exemplified by Cyclomatic Complexity
metric.

 Halstead metric [33] which is different of the
McCabe metrics [26], because the McCabe metric
determines code complexity based on the number of
control paths created by the code and this one is based
on mathematical relationships among the number of
variables, the complexity of the code and the type of
programming language statements.

Nowadays, Halstead metric is not used frequently,
because in your measurement goals are clearly related
to the program language used, it doesn’t have a large
validation by industrial works [27; 31]. We find some
tools implementing this metric [21].

 In next section are presented more important
system complexity metrics.

3.1.2. System Complexity Metrics

In the age 1, before 1991, we identify few works in

system design metrics area. Yin and Winchester, [34]
created two metric groups called: primary metrics and
secondary metrics. The primary metric are expressed
through extracted values of the specification of design.
These metrics are based on two design attributes:
coupling and simplicity. These metrics have been used
in some organizations [29] and all reports indicate their
success in pinpointing error-prone areas in the design.

 The secondary metrics can provide an indication
about the main system module or database table. The
secondary metrics as: fan-in and fan-out, are used to
compute a worst-case estimate of the communication
complexity of this component. This complexity
measure attempts to measure the strength of the
component’s communication relationship each other.

The validation of this metric is poor, because this
measure ignores the use of modules on the system
design. Some researches obtained a high correlation
between values of the metric and error counts, but only
when the analyzed system has small number of
modules. One aspect to note about this work is that it
gave rise to the first reported example of a software
tool used for design [35].

Another complexity metric was defined by McClure
[36]. This work focuses on the complexity associated
with the control structures and control variables used to
direct procedure invocation in a program. In this metric

a small invocation complexity is assigned to a
component which, for example, is invoked
unconditionally by only one other component. A higher
complexity is assigned to a component which is
invoked conditionally and where the variables in the
condition are modified by remote ancestors or
descendents of the component. We don’t find reports
about tools that implements this metric and we found
some researches about this metric application [27].

After sometime, Woodfield [37] publish another
complexity system metric. He observes that a given
component must be understood in each context where it
is called by another component or affects a value used
in another component. In each new context the given
component must be reviewed. Due to the learning from
previous reviews, each review takes less effort than the
previous ones. Accordingly, a decreasing function is
used to weight the complexity of each review. The total
of all of these weights is the measure assigned to the
component. Woodfield applied this measure
successfully in a study of multiprocedure student
programs. We don’t find reports about tools that
implements this metric. We found some reports about
this metric application [27].

In 1981, Henry and Kafura [38] created another
system complexity metric. Henry and Kafura´s metric
determine the complexity of a procedure, which
depends on two factors: the complexity of the
procedure code and the complexity of the procedure’s
connections to its environment.

 Henry and Kafura´s approach is more detailed
than Yin and Winchester, [34] metric, because it
observes all information flow rather than just flow
across level boundaries. It has another major advantage
in that this information flow method can be completely
automated.

However, some definitions, like flows definition and
modules definition, are confusing. Consequently
different researches have interpreted the metric in
different ways thus disturb the comparison of results
[27]. According to [13] another problem in Henry and
Kafura´s approach is the validation, because the
algebraic expression on the metric definition is seems
arbitrary and the application of parametric tests to data
which is skewed is questionable. We don’t find metrics
tools implementing this metric.

This section presented an overview of the main
works in software metrics area even 90´years. This
analysis show that the large worry of the research with
some project aspects like productivity, maintainability,
testability and effort, and how the complexity was
considered the main form of measure these aspects. In

next section we will presented the main works in
software metrics area, after 1992 until today.

3.2. Age 2: Metrics-Based on the Concepts of
Object Oriented

In 90’s occurred many changes in metrics research.
Initially, in 70’s and 80’s, the research was about
complexity metrics. In 90´s some events like the
maturity of the software engineering techniques and the
use accomplish of paradigm Object Oriented, OO, was
responsible by a new direction in software metrics
research. Some new metrics were created and your
main target was reflecting the impact of the new
techniques and paradigms in the software development.
In this paper we will focus in software code metrics for
OO.

The first suites of OO design metrics was proposed
by Chidamber and Kemerer [39], which proposed six
class-based design metrics for OO system (CK
Metrics).

However, the CK metrics can be used to analyse
coupling, cohesion and complexity very well, but the
CK metrics suffer from unclear definition and a failure
to capture OO specifics attributes. The attributes of
data-hiding, polymorphism and abstraction not
measured all and the attributes of inheritance and
encapsulation are only partially measured.

The CK metrics are the most referenced [40; 41]
and most commercial metrics collection tools available
at the time of writing also collect these metrics [15; 19;
21]. The CK metrics validation catch our attention
because is a complete work if we compare to other
metrics. We could find researches in industry and
academy [42; 43; 44], using many programmer
languages.

Sometimes ago, Lorenz and Kidd created a set of
OO design metrics [45]. They divided the classes-
based metric in 4 categories [11]: size, inheritance,
internals and externals. Size-oriented metrics for the
OO classes focus on counts of attributes and
operations. Inheritance-based metrics focus on the
manner in which operations are reused in hierarchy
class. Metric for internal class look at cohesion and
code-oriented issues, and the external metrics examine
coupling and reuses.

Probably CK metrics [39] are more known and
complete then Lorenz and Kidd metrics [45] because
include more OO attributes in its analysis.

To our knowledge no worked related to the
theoretical validation of this metric has been published.
According to [17], a tool called OO Metric was

developed to collect these metrics, applied to code
written in Smalltalk and C++.

In [46] was defined to measure the use of OO design
mechanisms such as inheritance metrics, information
hiding, polymorphism and the consequent relation with
software quality and development productivity. The
validation for this set of metrics is questionable for
Polymorphism Factor metric (PF), because it is not
valid, in a system without inheritance the value of PF is
not defined, being discontinuous. According to [17] the
MOODKIT is a tool for metrics extraction from source
code, which supports the collection for C++, Smalltalk
and Eiffel code.

The [47] metrics are the measurement of the
coupling between classes. Their empirical validation
conclude that if one intends to built quality models of
OO design, coupling will very likely be an important
structural dimension to consider. We could find a tool
for this for metrics extraction.

The research in software metrics continue intense in

90´s decade. Some other OO metrics were created like
[48; 49], many works analyzing the metrics [50; 51]
and about validating metrics [52; 53; 54] were
published.

The software metrics scenario, after 2000, present
little reports about new metrics. The proposed metric in
[55] is not based in the classical metrics framework.
The Chatzigeorgiou´s work is innovative because apply
a web algorithmic from verify the relation between
design classes and not use the traditional and existents
metrics.

Chatzigeorgiou validate your metric comparing it
with classics OO software metrics. In the first analysis
was verified the ability to account for the significance
of the related classes and the ability to consider both
incoming and outgoing flows of messages. The Lorenz
and Kidd [45] these metrics not fulfilled to the ability
to account for the significance of the related classes,
but, although it fulfils ability to consider both incoming
and outgoing flows of messages. We could find a tool
for this for metrics extraction.

This section presented the main works based on OO
source code metrics available on literature. Some
problems were identified, analyzed and discussed in
order to provide insights to our metric proposal in
software quality. In the next section we will summarize
this research and present it in a timeline.

3.3. Summary

The timeline about software metrics can be clearly

divided in two main ages: before 1992, when the
researches where about complexity and the influence of
it in quality attributes like maintenance, productivity,
testability, effort.

After 1992 when the researches were affected by the
internet revolution and the advent of the new
technologies like OO, with the growing of the OO
technology usage it was necessary develop metrics to
measure coupling, cohesion, inheritance, and all
important aspects of the OO technology. However, the
2000 years we could find a large diversity of
researches. We found reports about metrics creation

Figure1. Summarize the time line about code metrics.

and many works about validation, institutional metrics
program and approaches to create metrics.

The Figure 1 summarizes the timeline of research on
software metrics area. There is a dotted line which
marks the main change in this research area; some
works were innovative in that time (represented by a
“●” character on the timeline) and the works more
referential (represented by a “

▲
” character on the

timeline).

4. Conclusions

This paper presented a survey about software code
metrics, providing an overview on what has been done
in recent years, and it will also help researchers to get a
comprehensive view of the direction of works in area
of measurement.

According to this paper we can see the evolution of
the software code metrics area by the time. In 70´s and
80´s years, the researches tried quantify the quality
attributes by metrics strongly related with the used
technology. It was a problem especially with the
increasing diversity of programming languages.

In 90´s years, we can se the revolution in this area
with advent of the new technologies like internet and
OO. Many metrics used on the past could not survive a
new time. Many new metrics were created and the
researches had more variety then the other time. We
found few reports about metrics creation and many
works about validation, institutional metrics program
and approaches to create metrics.

However, the same problems can be founded in all
code metrics history. Lots of metrics did not survive
the proposal phase. The identified reasons for this are
theoretical and empirical validation problems, the
metrics have not been built by using a clear defining
process, and the metrics don’t have a large support
(tools) for metrics extraction.

Although, one of the main contribution of this paper
is identify that some metrics get the success and
confidence of the industry and they are largely used,
like: cyclomatic complexity and Chindember and
Kemerer metrics.

Based on this survey we will build a tool to analyze
source code quality. The first step is selecting a set of
software metrics. The second step is to do an analysis
of the existent tools that implements the initial set of
metrics and relate the selected metrics with quality
attributes chooses. In future papers we will provide the
survey about the software metrics tool and,
consecutively, our proposal tool.

References

[1] M. Hayes, “Precious Connection”,
InformationWeek, 2003, pp. 34-50.
[2] P. Thibodeau, L. Rosencrance, “Users Losing
Billions Due to Bugs”, Computerworld, vol. 36, 2002,
pp. 1-2.
[3] Software Engineering Laboratory, “Software
Assurance Technology Center”, online, last update:
06/1995, available:
http://satc.gsfc.nasa.gov/metrics/index.html
[4] T. Kilpi, “Implementing a Software Metrics
Program at Nokia”, IEEE Software, 2001, pp. 72-77.
[5] M. K. Daskalantonakis, “A Pratical View of Software
Measurement and Implementation Experiences Within
Motorola”, IEEE Transactions on Software Engineering, vol
18, 1992, pp. 998–1010.
[6] B. N. Corwin, R. L. Braddock, "Operational performance
metrics in a distributed system", Symposium on Applied
Computing, Missouri - USA, 1992, pp. 867-872.
[7] R.Numbers, "Building Productivity Through
Measurement", Software Testing and Quality Engineering
Magazine, vol 1, 1999, pp. 42-47
[8] IFPUG - International Function Point Users Group,
online, last update: 03/2008, available: http://www.ifpug.org/
[9] B. Boehm, “Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0”, U.S.Center for Software
Engineering, Amsterdam, 1995, pp. 57-94.
[10] N. E. Fenton, M. Neil, “Software Metrics: Roadmap”,
International Conference on Software Engineering, Limerick
- Ireland, 2000, pp. 357–370.
[11] R. S. Pressman, "Software engineering a practitioner's
approach", 4th.ed, McGraw-Hill, New York - USA, 1997,
pp. 852.
[12] I. Sommerville, “Engenharia de Software”, Addison-
Wesley, 6º Edição, São Paulo – SP, 2004.
[13] D. C. Ince, M. J. Sheppard, "System design metrics: a
review and perspective", Second IEE/BCS Conference,
Liverpool - UK, 1988, pp. 23-27.
[14] L. C. Briand, S. Morasca, V. R. Basili, “An Operational
Process for Goal-Driven Definition of Measures”, Software
Engineering - IEEE Transactions, vol 28, 2002, pp. 1106-
1125.
[15] Refactorit tool, online, last update: 01/2008, available:
http://www.aqris.com/display/ap/RefactorIt
[16] O. Burn, CheckStyle, online, last update: 12/2007,
available: http://eclipse-cs.sourceforge.net/index.shtml
[17] M. G. Bocco, M. Piattini, C. Calero, "A Survey of
Metrics for UML Class Diagrams", Journal of Object
Technology 4, 2005,pp. 59-92.
[18] JDepend tool, online, last update: 03/2006,available:
http://www.clarkware.com/software/JDepend.html
[19] Metrics Eclipse Plugin, online, last update: 07/2005,
available: http://sourceforge.net/projects/metrics
[20] Coverlipse tool, online, last update: 07/2006, available:
http://coverlipse.sourceforge.net/index.php
[21] JHawk Eclipse Plugin, online, last update: 03/2007,
available: http://www.virtualmachinery.com/jhawkprod.htm

[22] S. Morasca, L. C. Briand, V. R. Basili, E. J. Weyuker,
M. V. Zelkowitz, B. Kitchenham, S. Lawrence Pfleeger, N.
Fenton, "Towards a framework for software
measurementvalidation", Software Engineering, IEEE
Transactions, vol 23, 1995, pp. 187-189.
[23] H. F. Li, W. K. Cheung, “An Empirical Study of
Software Metrics”, IEEE Transactions on Software
Engineering, vol 13, 1987, pp. 697-708.
[24] H. Zuse, “History of Software Measurement”, online,
last update: 09/1995, lavailable: http://irb.cs.tu-
berlin.de/~zuse/metrics/History_00.html
[25] N. E. Fenton, M. Neil, “Software Metrics: Roadmap”,
International Conference on Software Engineering, Limerick
- Ireland, 2005, pp. 357–370.
[26] T. J. McCabe, “A Complexity Measure”. IEEE
Transactions of Software Engineering, vol SE-2, 1976, pp.
308-320.
[27] D. Kafura, G. Reddy, “The Use of Software Complexity
Metrics in Software Maintenance”, IEEE Transactions on
Software Engineering archive, vol 13 , New Jersey - USA,
1987, pp. 335-343.
[28] B. Ramamurty, A. Melton, “A Syntheses of Software
Science Measure and The Cyclomatic Number”, IEEE
Transactions on Software Engineering, vol 14, New Jersey -
USA, 1988, pp. 1116-1121.
[29] J. K. Navlakha, “A Survey of System Complexity
Metrics”, The Computer Journal, vol 30, Oxford - UK, 1987,
pp. 233-238.
[30] E. VanDoren, K. Sciences, C. Springs, “Cyclomatic
Complexity”, online, last update: 01/2007, available:
http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.ht
ml
[31] R. K. Lind, K. Vairavan, “An Experimental
Investigation of Software Metrics and Their Relationship to
Software Development Effort”, IEEE Transactions on
Software Engineering, New Jersey - USA, 1989, pp. 649-
653.
[32] G. K. Gill, C. F. Kemerer, “Cyclomatic Complexity
Density and Software Maintenance Productivity”, IEEE
Transactions on Software Engineering, 1981, pp. 1284-1288.
[33] M. H. Halstead, Elements of Software Science,
Operating, and Programming Systems, vol 7, New York -
USA, 1977, page(s): 128.
[34] B. H. Yin, J. W. Winchester, "The establishment and
use of measures to evaluate the quality of software designs",
Software quality assurance workshop on Functional and
performance, New York - USA, 1978, pp. 45-52.
[35] R. R. Willis, "DAS - an automated system to support
design analysis", 3rd international conference on Software
engineering, Georgia - USA, 1978, pp. 109-115.
[36] C. L. McClure, “A Model for Program Complexity
Analysis”, 3rd International Conference on Software
Engineering, New Jersey - USA, 1978, pp. 149-157.
[37] N. Woodfield, "Enhanced effort estimation by extending
basic programming models to include modularity factors",
West-Lafayette, USA, 1980.
[38] S. Henry, D. Kafura, "Software Structure Metrics Based
on Information Flow", Software Engineering, IEEE
Transactions, 1981, pp. 510-518.

[39] S. R. Chidamber, C. F. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on Software
Engineering, vol 20, Piscataway - USA, 1994, pp. 476-493.
[40] M. Alshayeb, M. Li, "An Empirical Validation of
Object-Oriented Metrics in Two Different Iterative Software
Processes", IEEE Transactions on Software Engineering
archive, vol 29, 2003, pp. 1043–1049.
[41] R. Subramanya, M. S. Krishnan, “Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity:
Implication for Software Defects”, IEEE Transactions on
Software Engineering, vol 29, 2003, pp. 297-310.
[42] L. C. Briand, S. Morasca, V. R. Basili, "Property-based
software engineering measurement", Software Engineering,
IEEE Transactions, vol 22, 1996, pp. 68 - 86.
[43] S. R. Chidamber, D. P. Darcy, C. F. Kemerer,
"Managerial use of metrics for object-oriented software:
anexploratory analysis", Software Engineering, IEEE
Transactions, vol 24, 1998, pp. :629–639.
[44] Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen, "An
empirical study on object-oriented metrics", Software
Metrics Symposium, 1999, pp. 242-249.
[45] M. Lorenz, J. Kidd, “Object-Oriented Software Metrics:
A Practical Guide”, Englewood Cliffs, New Jersey - USA,
1994.
[46] A. F. Brito, R. Carapuça, "Object-Oriented Software
Engineering: Measuring and controlling the development
process", 4th Interntional Conference on Software Quality,
USA, 1994.
[47] L. Briand, W. Devanbu, W. Melo, "An investigation
into coupling measures for C++", 19th International
Conference on Software Engineering, Boston - USA, 1997,
pp. 412-421.
[48] R. Harrison, S Counsell, R. Nithi, "Coupling Metrics for
Object-Oriented Design", 5th International Software Metrics
Symposium Metrics, 1998, pp. 150-156.
[49] M. Marchesi, "OOA metrics for the Unified Modeling
Language", Second Euromicro Conference, 1998, pp. 67-73.
[50] T. Mayer, T. Hall, “A Critical Analysis of Current OO
Design Metrics”, Software Quality Journal, vol 8, 1999, pp.
97-110.
[51] N. F. Schneidewind, "Measuring and evaluating
maintenance process using reliability, risk, and test metrics",
Software Engineering, IEEE Transactions, vol 25, 1999, pp.
769-781.
[52] V. R. Basili, L. C. Briand, W. L. Melo, "A Validation of
Object-Oriented Design Metrics as Quality Indicators", IEEE
Transactions on Software Engineering, vol 22, New Jersey -
USA, 1996, pp. 51-761.
[53] L. C. Briand, S. Morasca, V. R. Basili, "Defining and
validating measures for object-based high-level design",
Software Engineering, IEEE Transactions, vol 25, 1999, pp.
722-743.
[54] K. E. Emam, S. Benlarbi, N. Goel, S. N. Rai, "The
Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics", IEEE Transaction on Software
Engineering, vol 27, 2001, pp. 630-650.
[55] A. Chatzigeorgiou, “Mathematical Assessment of
Object-Oriented Design Quality”, IEEE Transactions on
Software Engineering, vol 29, 2003, pp. 1050-1053.

[56] D. Kafura, "A survey of software metrics", ACM annual
conference on The range of computing, New York - USA,
1985, pp. 502-506.

