Software Metrics: A Survey
Aline Lopes Timoéted Alexandre Alvard, Eduardo Santana de Almefd8&ilvio Romero de
Lemos Meird 2
Centro de Informética — Universidade Federal de Pernambuco (UFPEYRBedife Center for
Advanced Studies and Systems (C.E.S.A.R), Brazil
{alt, aa2 }@cin.ufpe.br, {esa, silvio}@cesar.org.br

Abstract others [8; 9; 10].However, we will foccus in me#ric
related to source code, because, we want to antilgze
Software metrics were defined to be a method to€Xistents software metrics and verifies the evoiutf

qguantify attributes in software processes, prodactd this area.

projects. The software metrics area has a lack of We could identify some other surveys in software
reports about metrics usage and real applicabitify ~ code metrics area [13; 17; 29; 56]. They not preaen
those metrics. In this sense, the main goal ofthjser ~ 90od view about this area at the time, they preaent
is briefing review research in software metrics view about specific goups of metrics on their time.
regarding source code in order to guide our reskarc They not identify why some metrics could not sueviv
in software quality measurement. The metrics reiiew and how the software code metrics area had been
organized in two ages: before 1991, where the main evaluate at the time.

focus was on metrics based on the complexity of the In this work we will evaluate the state-of-the-amt
code: and after 1992, where the main focus was onSOftware metrics related to source code, whichrta
metrics based on the concepts of Object Oriente@) (O 902l is to analyze the existents software metriwd a
systems (design and implementation). The mainVerifies the evolution of this area and why somérice
contribution of this work is a large overview about could not survive. Thus, we can understand how the
software code metrics that can show us the evalutio ~ source code quality evaluates throughout of thesyea
this area, and a critical analysis about the main The remainder of this paper is organized as follows

metrics founded on the literature. Section 2 software metrics knowledge necessary to
understand the metrics analysis. Section 3 is garve

1. Introduction the state-of-the-art related to software code w®tri
Section 4 presents the concluding remarks and €utur
directions.

The management of software development is an
integral part of industry today but most software .
organizations face significant barriers in managhig 2. Software Metrics Knowledge
activity. An Information Week survey found that 62
percent of the respondents feel that the software Quality is a phenomenon which involves a number
industry has troble producing good quality software of variables that depend on human behavior and can
[1]. Losses due to inefficient development pratieesl ~ Not be controlled easily. The metrics approachighim
to inadequate quality that cost the US industry measure and quantify this kind of variables.
approximately $60 billion per year [2]. One appivac Some definitions for software metrics can be found
that has been shown to result in improved qualiy a ©On the literature [5; 11; 12]. The most common W
reduced costs is the use of software improvementadopted in this paper, according to Daskalantonakis
activities. “Software metrics is a method to quantify attrilsuie

One of the important determinants of success in Software processes, products and projects”.
software process improvement is the presence afanet [N agreement with Daskalantonakis in [12] we can
programs. Many reports about metrics program hadfound the best motivation to measures, it is f|gdm
been found on the industry [3; 4; 5]. numerical value for some software product attrisute

In the past few years, there have been a number ofpoftware process attributes. Then, those valuesbean
papers addressing software metrics, like: metrics compared against each other and with standards
related to performance [6], productivity [7], among @applicable in an organization. Through these datadc

be draw conclusions about quality of the product or
quality of the software process used.

In the recent literature, a large number of measure
have appeared for capturing software attributes in
guantitative way. However, few measures have
survived and are really used on the industry. A loeim
of problems are responsible for the metrics fajlure
some of them are identified in [13; 14]. We sekrne

of these problems to analyze the set of metrics

presented on this survey. The main problems are:
* Metrics automation;
» Metrics Validation;

e Empirical validation, a large number of
measures have never been subject to an
empirical validation.

This set of problems about validation will be used
on our analysis. In next section we will be presdra
survey about software metrics.

3. Software Metrics: A Survey

This section will present a survey related to the
state-of-the-art in software metrics research.
Sommerville [12] classifies metrics

in two

In the next sections we will present some aspectscategories: (i) Control Metrics generally assodate

related by these problems, the section 2.1. present
view about metrics automation; the section 2.2.

presents some comments about metrics validation and

the last section, 2.3. presents some aspects lmsed
measurement goal or metrics definition.

2.1. Metrics Automation

We identified little work in developing tools for
metrics extraction [13; 15; 16; 17; 18; 19; 20;.21{
occurs because a large number of metrics is desd]op
but they don’t have a clear definition. Normallg@de
metric is defined in a large context and it is ¢ated
only for a few set of programmer languages.

In our critical analysis we will verify if the seleed
metrics are implemented in a tool and the industria
relevance of this tool.

2.2. Metrics Validation

There are a number of problems related to
theoretical and empirical validity of many measures
[13; 14; 22], the most relevant of which are
summarized next.

with software process; and (i) Predict Metrics,
normally associated with software product.
In this work we focus is Predict Metrics, becauwe t
predict metrics measures the static and dynamic
characteristics of the software [12]. According hwit
some characteristic is possible calculate complexit
the code, instability, coupling, cohesion, inharie,
among others product attributes. Analyzing this
attributes is possible infer about the quality bgt
products and suggest improvement points around
effort, manutenability, testability and reusability

In this paper we will present a timeline about
software metrics, and it can be “divided” into 2eag
section 3.1 presents the Age 1, before 1991, wihere
main focus was on metrics based on the compleXity o
the code; section 3.2 presents the Age 2, afte2,199
where the main focus was on metrics based on the
concepts of Object Oriented (OO) systems (desigh an
implementation) and 3.3 section presents a summary
about the this area.

3.1. Age 1: Metrics-Based on Code Complexity

According to [23; 24; 25] the first key metric used

e Measurement goal, sometimes measurers areto measure programming productivity and effort was

not defined in an explicit and well-defined
context;

» Experimental hypothesis, sometimes the
measure don't have a explicit experimental
hypothesis, e.g. what do you expect to learn
from the analysis?;

* Environment or the

context, measure

Lines of Code (LOC or KLOC for thousands of linds o
code) metric. It still is used routinely as the ibder
measuring programmer productivity.

Zuse and Fenton [24; 25] agree that in the mid-
1970, there was a need for more discriminating
measures rather than only LOC measure, especially
with the increasing diversity of programming

sometimes can be applied in an inappropriate languages. After all, a LOC in an assembly language

context;
* Theoretical Validation, a reasonable
theoretical validation of the measure is often

not comparable in effort, functionality, or complgx
to a LOC in a high level language. Also, there easy
identify the main problems in this measure,

not possible because the metrics attributes areEnvironment or context and Measurement goal, the

not well defined.

ruler not specify what kind of context the metrande
used.

Nowadays, the LOC metric is implemented in many increase during testing may be the sign of a britil
used metrics tools [15; 21] and it can be used to high-risk module.
calculate other metrics. Halstead metric have been criticized for a vgrie

The 1970's started with an explosion of interest in of reasons, among them the claim that they areak we
measures of software complexity. Many works about metric because they measure lexical and/or textual
software complexity can be found in literature [2@; complexity rather than the structural or logic flow
28]. The complexity metrics can be divided in two complexity exemplified by Cyclomatic Complexity
categories [29]: in section 3.1. we will presene th metric.

program complexity metrics and in section 3.2. vik w Halstead metric [33] which is different of the

present the system complexity metrics. McCabe metrics [26], because the McCabe metric
determines code complexity based on the number of

3.1.1. Program Complexity Metrics control paths created by the code and this onassd

on mathematical relationships among the number of
The most referenced program complexity metric is variables, the complexity of the code and the tgpe
the Cyclomatic Complexity, v(G), [26]. The programming language statements.
Cyclomatic Complexity is derived from a flow graph Nowadays, Halstead metric is not used frequently,
and is mathematically computed using graph theorybecause in your measurement goals are clearlyecelat
(i.e. it is found by determining the number of chém to the program language used, it doesn't have gelar

statements in a program). validation by industrial works [27; 31]. We findrse
The cyclomatic complexity can be applied in several tools implementing this metric [21].
areas, including [30]: (i) Code development risk In next section are presented more important

analysis, which measures code under development tgystem complexity metrics.
assess inherent risk or risk buildup; (i) Changsk r
analysis in maintenance, where code complexitysend 3.1.2. System Complexity Metrics
to increase as it is maintained over time; angl {iést
Planning, mathematical analysis has shown that In the age 1, before 1991, we identify few works in
cyclomatic complexity gives the exact number ofdes system design metrics area. Yin and Winchested, [34
needed to test every decision point in a program fo created two metric groups called: primary metriod a
each outcome. secondary metrics. The primary metric are expressed
This measure is based upon the premise thatthrough extracted values of the specification cfigie
software complexity is strongly related to various These metrics are based on two design attributes:
measurable properties of program code. Nowadaigs, th coupling and simplicity. These metrics have beesdus
measure is strongly used for measure complexity inin some organizations [29] and all reports indi¢atsr
industry and academy, because it has a clearsuccess in pinpointing error-prone areas in thggdes
measurement goal, McCabe specify clearly what is The secondary metrics can provide an indication
complexity and how to quantify complexity using about the main system module or database table. The
Cyclomatic Complexity metric. This metric measure secondary metrics as: fan-in and fan-out, are tsed
complexity in a structural context, it is great hese compute a worst-case estimate of the communication
the measure is not dependent of technology or progr complexity of this component. This complexity
language used. This metric have been implemented ifrmeasure attempts to measure the strength of the
many metrics tools [15; 19; 21] and it had been component’s communication relationship each other.
validated in many industrial works [27; 31; 32]. The validation of this metric is poor, because this
Another program complexity metric found on measure ignores the use of modules on the system
literature is Halstead metric [33], it was creaited977 design. Some researches obtained a high correlation
and it was determined by various calculations v between values of the metric and error countsphlyt
the number of operators and the number of operends when the analyzed system has small number of
a program. The Halstead measures are applicable tanodules. One aspect to note about this work isithat
development efforts once the code has been written,gave rise to the first reported example of a saftwa
because maintainability should be a concern duringtool used for design [35].
development. The Halstead measures should be Another complexity metric was defined by McClure
considered for use during code development toviollo [36]. This work focuses on the complexity assocate
complexity trends. A significant complexity measure with the control structures and control variablesdito
direct procedure invocation in a program. In thitnic

a small invocation complexity is assigned to a next section we will presented the main works in
component which, for example, is invoked software metrics area, after 1992 until today.
unconditionally by only one other component. A ldgh

complexity is assigned to a component which is 32 Age 2: Metrics-Based on the Concepts of
invoked conditionally and where the variables ie th Object Oriented

condition are modified by remote ancestors or

descendents of the component. We don't find reports |, 90's occurred many changes in metrics research.
about tools that implements this metric and we ¢bun Initially, in 70’s and 80’s, the research was about
some researches about this metric application [27]. complexity metrics. In 90's some events like the

After sometime, Woodfield [37] publish another 51rity of the software engineering techniques tied

complexity system metric. He (_)bserves that a_given use accomplish of paradigm Object Oriented, OO, was
component must be understood in each context where responsible by a new direction in software metrics

is called by another component or affects a vak@u yagearch. Some new metrics were created and your
in another component. In each new context the givenyain target was reflecting the impact of the new
component must be reviewed. Due to the learning fro techniques and paradigms in the software developmen

previous reviews, each review takes less effor tha In this paper we will focus in software code metrior
previous ones. Accordingly, a decreasing functien i o
used to weight the complexity of each review. Tatalt The first suites of OO design metrics was proposed

of all of these weights is the measure assignetth¢o by Chidamber and Kemerer [39], which proposed six

component. Woodfield applied this measure ;jasspased design metrics for OO system (CK
successfully in a study of multiprocedure student Metrics).

programs. We don't find reports about tools that However, the CK metrics can be used to analyse
implements this metric. We found some reports abOUtcoupIing, cohesion and complexity very well, bué th
this metric application [27]. CK metrics suffer from unclear definition and adeé

In 1981, Henry and Kafura [38] created another i capture OO specifics attributes. The attributés
system complexity metric. Henry and Kafura’'s metric data-hiding, polymorphism and abstraction not
determine the complexity of a procedure, which measyred all and the attributes of inheritance and
depends on two factors: the _complexny of the encapsulation are only partially measured.
procedu_re code_z and 'Fhe complexity of the procedure’ The CK metrics are the most referenced [40; 41]
connections to its environment. _ . and most commercial metrics collection tools awdéa

Henry and Kafura's approach is more detailed ¢ the time of writing also collect these metrit:s;[19;

than Yin and Winchester, [34] metric, because it p1) The CK metrics validation catch our attention

observes all information flow rather than just flow pocause is a complete work if we compare to other
across level boundaries. It has another major dd9@n etrics. We could find researches in industry and

in that this information flow method can be comelgt academy [42; 43; 44], using many programmer
automated. languages. ' ' '
However, some definitions, like flows definitiondan Sometimes ago, Lorenz and Kidd created a set of

modules definition, are confusing. Consequently 5 design metrics [45]. They divided the classes-
different researches have interpreted the metric iNpased metric in 4 categories [11]: size, inherianc

different ways thus disturb the comparison of mssul jniernals and externals. Size-oriented metrics ther
[27]. According to [13] another problem in Henrydan 0 classes focus on counts of attributes and
Kafura’s approach is the validation, because theg,perations. Inheritance-based metrics focus on the
algebraic expression on the metric definition i6M® manner in which operations are reused in hierarchy
arbitrary and the application of parametric testsldta ¢j555. Metric for internal class look at cohesiom a
which is skewed is questionable. We don't find mstr ,qe_griented issues, and the external metrics ieeam
tools implementing this metric. coupling and reuses.

This section presented an overview of the main Probably CK metrics [39] are more known and

works in software metrics area even 90'years. This omplete then Lorenz and Kidd metrics [45] because
analysis show that the large worry of the reseaviti include more OO attributes in its analysis.

some project aspects like productivity, maintaifighi To our knowledge no worked related to the

testability and effort, and how the complexity was theoretical validation of this metric has been sitgd.
considered the main form of measure these asgacts. According to [17], a tool called OO Metric was

developed to collect these metrics, applied to code

written in Smalltalk and C++.

Chatzigeorgiou validate your metric comparing it
with classics OO software metrics. In the first lgsia

In [46] was defined to measure the use of OO designwas verified the ability to account for the sigcéfhce
mechanisms such as inheritance metrics, informationof the related classes and the ability to consiuh

hiding, polymorphism and the consequent relatioth wi

incoming and outgoing flows of messages. The Lorenz

software quality and development productivity. The and Kidd [45] these metrics not fulfilled to theildf

validation for this set of metrics is questionalite

to account for the significance of the related sdas

Polymorphism Factor metric (PF), because it is not but, although it fulfils ability to consider bothdoming

valid, in a system without inheritance the valud&fis
not defined, being discontinuous. According to [t
MOODKIT is a tool for metrics extraction from soerc
code, which supports the collection for C++, Srailt
and Eiffel code.

and outgoing flows of messages. We could find & too
for this for metrics extraction.

This section presented the main works based on OO
source code metrics available on literature. Some
problems were identified, analyzed and discussed in

The [47] metrics are the measurement of the order to provide insights to our metric proposal in

coupling between classes. Their empirical validatio
conclude that if one intends to built quality mcdef
OO design, coupling will very likely be an importan
structural dimension to consider. We could findal t
for this for metrics extraction.

Henry and Kafura Metric |
[Henry , 1981]

'-M.céﬁa Iﬂ—atIIc-l
l[McCabe, 19761

software quality. In the next section we will suntiza
this research and present it in a timeline.

3.3. Summary

Predict predict maintenance effort
and refectory effort with

i
Chidamber and
Ry an K Metrics [Aalshayeb, 2003]

Halstead Metric 1

Relation between

TR \ l[H alstead. 1 gﬂl

I Kemerer Metrics |
Chidamber, 1995]

e

Lorenz and Kidd
Metrics
[Lorenz , 199<]

Chatzigeorgiou Metric
[Chatzigeorgou, 2003]

—

and Halstead Metrics
[Lind. 1989]

r McClure Metric
l [MeClure, 1978]

[Zuse, 1991]
b

\

()

98T 987 1989/9%7
Relation between McCabe
Metric and maintenance

[Gill, 1991]

Woodfield Metrics
[Woodfield, 1980]

/[

Relation between
effort and complexity
Metrics [Kafura, 1987] |

Yin and Winchester
Metric [Yin, 1978]

I
I
I
I
I
effort, McCabe Metric :
I
I
I
I
I

Harrison Metric
[Harrison, 1888]

Metrics Frogram
[Gopal, 2005]

Marchesi Metrics
[Marchesi, 1998]

éam
\] \ l;iam:l‘ 2002) Associaion between
\ [MOOD Metrics | [Vaidation Meirics %= — —|cKmetrics and Cfrt
[Brito, 1994] [Briand 1999] el P
R b NASA Metrics
I i l“_"‘“':“" T | Program I
etrics Program 1
s 2001

| [Daskalantonakis, 1882)

Figurel. Summarize thetimeline about code metrics.

The research in software metrics continue intense i The timeline about software metrics can be clearly
90’s decade. Some other OO metrics were created lik divided in two main ages: before 1992, when the
[48; 49], many works analyzing the metrics [50; 51] researches where about complexity and the influefice
and about validating metrics [52; 53; 54] were it in quality attributes like maintenance, produit,
published. testability, effort.

The software metrics scenario, after 2000, present After 1992 when the researches were affected by the
little reports about new metrics. The proposed imatr internet revolution and the advent of the new
[55] is not based in the classical metrics framéwor technologies like OO, with the growing of the OO
The Chatzigeorgiou’s work is innovative becausdyapp technology usage it was necessary develop metics t
a web algorithmic from verify the relation between measure coupling, cohesion, inheritance, and all
design classes and not use the traditional andeetss important aspects of the OO technology. Howeves, th
metrics. 2000 years we could find a large diversity of

researches. We found reports about metrics creation

and many works about validation, institutional rieetr
program and approaches to create metrics.

The Figure 1 summarizes the timeline of research on[1)

References

M. Hayes, “Precious Connection”,

software metrics area. There is a dotted line which |nformationweek, 2003, pp. 34-50.

marks the main change in this research area; somgp] p. Thibodeau, L. Rosencrance, “Users Losing
works were innovative in that time (representedaby Billions Due to Bugs”, Computerworld, vol. 36, 2002

W

referential (represented by aA” character on the
timeline).

4. Conclusions

e” character on the timeline) and the works more pp. 1-2.

[3] Software Engineering Laboratory, “Software
Assurance Technology Center”, online, last update:
06/1995, available:
http://satc.gsfc.nasa.gov/metrics/index.html

[4] T. Kilpi, “Implementing a Software Metrics

This paper presented a survey about software codeProgram at Nokia”, IEEE Software, 2001, pp. 72-77.

metrics, providing an overview on what has beenedon
in recent years, and it will also help researcheiget a
comprehensive view of the direction of works inaare
of measurement.

According to this paper we can see the evolution of

the software code metrics area by the time. In @0t
80’s years, the researches tried quantify the tyuali
attributes by metrics strongly related with the duse
technology. It was a problem especially with the
increasing diversity of programming languages.

In 90°s years, we can se the revolution in thisare
with advent of the new technologies like internet a
OO0. Many metrics used on the past could not suraive

new time. Many new metrics were created and the

[5] M. K. Daskalantonakis, “A Pratical View of Safare
Measurement and Implementation Experiences Within
Motorola”, IEEE Transactions on Software Enginegrivol

18, 1992, pp. 998-1010.

[6] B. N. Corwin, R. L. Braddock, "Operational penfhance
metrics in a distributed system", Symposium on Agipl
Computing, Missouri - USA, 1992, pp. 867-872.

[71 R.Numbers, "Building Productivity = Through
Measurement”, Software Testing and Quality Engineer
Magazine, vol 1, 1999, pp. 42-47

[8] IFPUG - International Function Point Users Gppu
online, last update: 03/2008, available: http://wifpug.org/

[9] B. Boehm, “Cost Models for Future Software LiEycle
Processes: COCOMO 2.0", U.S.Center for Software
Engineering, Amsterdam, 1995, pp. 57-94.

[10] N. E. Fenton, M. Neil, “Software Metrics: Raadp”,

researches had more variety then the other time. Wepernational Conference on Software Engineeririgietick
found few reports about metrics creation and many - |reland, 2000, pp. 357-370.

works about validation, institutional metrics pragr
and approaches to create metrics.

[11] R. S. Pressman, "Software engineering a piacér's
approach”, 4th.ed, McGraw-Hill, New York - USA, 189

However, the same problems can be founded in allpp. 852.

code metrics history. Lots of metrics did not suevi
the proposal phase. The identified reasons forates
theoretical and empirical validation problems, the
metrics have not been built by using a clear dedjni

[12] 1. Sommerville, “Engenharia de Software”, Addi-
Wesley, 6° Edi¢édo, Sao Paulo — SP, 2004.

[13] D. C. Ince, M. J. Sheppard, "System designriceta
review and perspective”, Second IEE/BCS Conference,
Liverpool - UK, 1988, pp. 23-27.

process, and the metrics don’t have a large support[14] L. C. Briand, S. Morasca, V. R. Basili, “An ©mtional

(tools) for metrics extraction.
Although, one of the main contribution of this pape

Process for Goal-Driven Definition of Measures” ft®are
Engineering - IEEE Transactions, vol 28, 2002, pp06-

is identify that some metrics get the success and1125.

confidence of the industry and they are largelyduse
like: cyclomatic complexity and Chindember and
Kemerer metrics.

Based on this survey we will build a tool to analyz
source code quality. The first step is selectirgpitof
software metrics. The second step is to do an sisaly
of the existent tools that implements the initiat of
metrics and relate the selected metrics with qualit
attributes chooses. In future papers we will previde
survey about the software metrics tool and,
consecutively, our proposal tool.

[15] Refactorit tool, online, last update: 01/20@8ailable:
http://www.agris.com/display/ap/Refactorlt

[16] O. Burn, CheckStyle, online, last update: 022,
available: http://eclipse-cs.sourceforge.net/inslebl

[17] M. G. Bocco, M. Piattini, C. Calero, "A Surveyf
Metrics for UML Class Diagrams”, Journal of Object
Technology 4, 2005,pp. 59-92.

[18] JDepend tool, online, last update: 03/2006|alke:
http://www.clarkware.com/software/JDepend.html

[19] Metrics Eclipse Plugin, online, last update:/ZD05,
available: http://sourceforge.net/projects/metrics

[20] Coverlipse tool, online, last update: 07/2088ailable:
http://coverlipse.sourceforge.net/index.php

[21] JHawk Eclipse Plugin, online, last update: 2087,
available: http://www.virtualmachinery.com/jhawkprbtm

[22] S. Morasca, L. C. Briand, V. R. Basili, E.\@eyuker,
M. V. Zelkowitz, B. Kitchenham, S. Lawrence PfleggH.
Fenton, "Towards a framework for software
measurementvalidation”, Software Engineering, |EEE
Transactions, vol 23, 1995, pp. 187-189.

[23] H. F. Li, W. K. Cheung, “An Empirical Study of
Software Metrics”, |EEE Transactions on Software
Engineering, vol 13, 1987, pp. 697-708.

[24] H. Zuse, “History of Software Measurement” liog,
last update: 09/1995, lavailable: http://irb.cs.tu-
berlin.de/~zuse/metrics/History _00.html

[25] N. E. Fenton, M. Neil, “Software Metrics: Raadp”,
International Conference on Software Engineeririelick

- Ireland, 2005, pp. 357-370.

[26] T. J. McCabe, “A Complexity Measure”. IEEE
Transactions of Software Engineering, vol SE-2,69p.
308-320.

[27] D. Kafura, G. Reddy, “The Use of Software Cdexjity
Metrics in Software Maintenance”, IEEE Transactiams
Software Engineering archive, vol 13 , New JerséySA,
1987, pp. 335-343.

[28] B. Ramamurty, A. Melton, “A Syntheses of Scdie

[39] S. R. Chidamber, C. F. Kemerer, “A Metrics t8ufor
Object Oriented Design”, IEEE Transactions on Safewv
Engineering, vol 20, Piscataway - USA, 1994, p6-493.

[40] M. Alshayeb, M. Li, "An Empirical Validation fo
Object-Oriented Metrics in Two Different Iterati@oftware
Processes", |IEEE Transactions on Software Engimgeri
archive, vol 29, 2003, pp. 1043-1049.

[41] R. Subramanya, M. S. Krishnan, “Empirical Ayss of
CK Metrics for Object-Oriented Design Complexity:
Implication for Software Defects”, IEEE Transacsoon
Software Engineering, vol 29, 2003, pp. 297-310.

[42] L. C. Briand, S. Morasca, V. R. Basili, "Propebased
software engineering measurement”, Software Engimge
IEEE Transactions, vol 22, 1996, pp. 68 - 86.

[43] S. R. Chidamber, D. P. Darcy, C. F. Kemerer,
"Managerial use of metrics for object-oriented wafte:
anexploratory analysis”, Software Engineering, |EEE
Transactions, vol 24, 1998, pp. :629-639.

[44] Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen, fiA
empirical study on object-oriented metrics", Softva
Metrics Symposium, 1999, pp. 242-249.

[45] M. Lorenz, J. Kidd, “Object-Oriented Softwaketrics:

Science Measure and The Cyclomatic Number”, IEEE A Practical Guide”, Englewood Cliffs, New JerseyJSA,

Transactions on Software Engineering, vol 14, Nevsely -
USA, 1988, pp. 1116-1121.

[29] J. K. Navlakha, “A Survey of System Complexity
Metrics”, The Computer Journal, vol 30, Oxford - UKO87,

pp. 233-238.
[30] E. VanDoren, K. Sciences, C. Springs, “Cycltima
Complexity”, online, last update: 01/2007, avaitabl

http://www.sei.cmu.edu/str/descriptions/cyclomaliody.ht

ml

[31] R. K. Lind, K. Vairavan, “An Experimental
Investigation of Software Metrics and Their Relasbip to
Software Development Effort”, IEEE Transactions on
Software Engineering, New Jersey - USA, 1989, p{P-6
653.

[32] G. K. Gill, C. F. Kemerer, “Cyclomatic Compligx
Density and Software Maintenance Productivity”, EE
Transactions on Software Engineering, 1981, pp412338.
[33] M. H. Halstead, Elements of Software Science,
Operating, and Programming Systems, vol 7, New York
USA, 1977, page(s): 128.

[34] B. H. Yin, J. W. Winchester, "The establishrmemd
use of measures to evaluate the quality of softwasgns”,
Software quality assurance workshop on Functiorad a
performance, New York - USA, 1978, pp. 45-52.

[35] R. R. Willis, "DAS - an automated system tgopart
design analysis", 3rd international conference oftvire
engineering, Georgia - USA, 1978, pp. 109-115.

[36] C. L. McClure, “A Model for Program Complexity
Analysis”, 3rd International Conference on Software
Engineering, New Jersey - USA, 1978, pp. 149-157.

[37] N. Woodfield, "Enhanced effort estimation bytending
basic programming models to include modularity dest,
West-Lafayette, USA, 1980.

[38] S. Henry, D. Kafura, "Software Structure MesriBased
on Information Flow", Software Engineering, IEEE
Transactions, 1981, pp. 510-518.

1994.

[46] A. F. Brito, R. Carapuca, "Object-Oriented Safre
Engineering: Measuring and controlling the develeptn
process”, 4th Interntional Conference on Softwaralify,
USA, 1994.

[47] L. Briand, W. Devanbu, W. Melo, "An investigat
into coupling measures for C++", 19th International
Conference on Software Engineering, Boston - US#971
pp. 412-421.

[48] R. Harrison, S Counsell, R. Nithi, "Couplingelics for
Object-Oriented Design”, 5th International Softwsfetrics
Symposium Metrics, 1998, pp. 150-156.

[49] M. Marchesi, "OOA metrics for the Unified Moldeg
Language", Second Euromicro Conference, 1998, p{7.36
[50] T. Mayer, T. Hall, “A Critical Analysis of Cuent OO
Design Metrics”, Software Quality Journal, vol 898, pp.
97-110.

[51] N. F. Schneidewind, "Measuring and evaluating
maintenance process using reliability, risk, arsd teetrics”,
Software Engineering, IEEE Transactions, vol 299 9p.
769-781.

[52] V. R. Basili, L. C. Briand, W. L. Melo, "A Vadation of
Object-Oriented Design Metrics as Quality IndicatptEEE
Transactions on Software Engineering, vol 22, Nevsely -
USA, 1996, pp. 51-761.

[53] L. C. Briand, S. Morasca, V. R. Basili, "Deifiig and
validating measures for object-based high-leveligigs
Software Engineering, IEEE Transactions, vol 299 Qp.
722-743.

[54] K. E. Emam, S. Benlarbi, N. Goel, S. N. Rarhe
Confounding Effect of Class Size on the Validity@lbject-
Oriented Metrics", |EEE Transaction on Software
Engineering, vol 27, 2001, pp. 630-650.

[55] A. Chatzigeorgiou, “Mathematical Assessment of
Object-Oriented Design Quality”, IEEE Transactions
Software Engineering, vol 29, 2003, pp. 1050-1053.

[56] D. Kafura, "A survey of software metrics", AChhnual
conference on The range of computing, New York AUS
1985, pp. 502-506.

