
A back-end for GHC based on Categorical
Multi-Combinators

Ricardo Massa F. Lima
Dept. Sistemas
Computacionais

Universidade de Pernambuco

ricardo@upe.poli.br

Rafael Dueire Lins
Dept. Eletrônica e Sistemas

Universidade Federal de
Pernambuco

rdl@ee.ufpe.br

André L. M. Santos
Centro de Informática

Universidade Federal de
Pernambuco

alms@cin.ufpe.br

ABSTRACT
µΓCMC is an abstract graph reduction machine for the
implementation of lazy functional languages. Categorical
multi-combinators served as a basis for the evaluation model
of µΓCMC. This paper presents the implementation of a
Haskell compiler, using the front-end of the Glasgow Haskell
Compiler (GHC) and a new back-end based on the µΓCMC
abstract machine. A number of code optimisations are intro-
duced to µΓCMC. The performance of our implementation
is benchmarked against the Glasgow Haskell Compiler, one
of the most efficient Haskell compilers available.

1. INTRODUCTION
Haskell [7] is a general purpose, pure functional program-

ming language incorporating many recent innovations in pro-
gramming language research, including higher-order func-
tions, non-strict semantics, static polymorphic typing, user-
defined algebraic datatypes, automatic garbage collection,
pattern-matching, list comprehension, a module system, mon-
ads, and a rich set of primitive datatypes, including ar-
rays, arbitrary and fixed precision integers, and floating-
point numbers. Haskell has now become a de facto standard
for the non-strict functional programming community, with
several compilers available.

Functional languages seem to be harder to implement
than conventional imperative ones. At execution time, they
maintain complex structures, such as unevaluated function
applications, which allow us to work with higher-order func-
tions and infinite lists. Traditionally, lazy functional lan-
guages were implemented using graph interpretation of com-
binators, as introduced by Turner [22]. The understanding
of the evaluation mechanisms of these languages allowed im-
plementations to move from interpretation towards compi-
lation, with gains in performance. Cardelli’s abstract ma-
chine FAM[1], developed for the compilation of strict func-
tional languages, was an important step in this quest for
efficiency. Johnsson [9] developed a strategy for compiling

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage,
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SAC’04, March 14-17, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04...$5.00

lazy functional languages, described as an abstract machine,
called G-machine. The basic principle of the G-machine is
to avoid generating graphs. The G-machine method of con-
trolling the execution flow and evaluation was followed by
other implementations, including those based on different
abstract machines such as the spineless G-machine[18].

µΓCMC is a new abstract machine for the implementa-
tion of functional languages which inherited features of the
ΓCMC machine [14, 15] and introduces new characteristics
and optimisations to support an efficient implementation of
Haskell. In µΓCMC, C was used as a macro-assembler and
the ‘execution flow control’ is transfered to C, as much as
possible. The object code generated by C compilers is very
fast. These factors lead us to translate some function defi-
nitions into procedures in C. It is obvious that not all func-
tions may be translated into C if a lazy functional language
is aimed at. However, it is safe to translate strict func-
tion on all its arguments that produce unboxed results of
basic type (integer, floating-point, character, etc.) as pro-
cedures in C. A higher-level abstract machine is still needed
to glue together procedure calls, unevaluated expressions,
data-structures, etc. Categorical multi-combinators (CM-
C) [21, 12] served as a basis for the evaluation model of the
µΓCMC abstract machine. The experience with GM-C [17],
CM-CM[16, 21] and ΓCMC[14, 15] was fundamental for the
design, implementation and optimisation of µΓCMC.

This work describes the new abstract machine µΓCMC.
Section 2 introduces the categorical multi-combinators. The
foundation of the µΓCMC machine is presented in Section
3. The elimination of the environment cells by pushing the
environment directly in the reduction stack distinguishes
the new machine from the ΓCMC machine. Amongst other
things, such a modification demands a special mechanism
to compile higher-order functions, which is detailed in Sec-
tion 4. The Haskell front-end used in our implementation is
described in Section 5. Section 6 details an example of the
compilation of a Haskell program into µΓCMC. The evalu-
ation of the resulting µΓCMC code is described in Section
7. Some optimisations and the performance evaluation are

Table 1: translating λ-expressions into categorical
multi-combinators

(T .1) R[]λxn . . . λx0.a = Ln(Rxn...x0a)
(T .2) Rxn...x0a . . . b = Rxn...x0a . . . Rxn...x0b
(T .3) Rxn...x0b = b ,if b is a constant
(T .4) Rxn...x0xi = i

Table 2: Compiling the λ-calculus into the categorical multi-combinators
λ-calculus code Environment Construction categorical multi-combinator

S = λa.λb.λc.ac (bc)
K = λk.λl.k
I = λi.i

SKKI

S → R[] [[λa.λb.λc.ac (bc)]]

K → R[] [[λk.λl.k]]

I → R[] [[λi.i]]

SKKI → R[] [[SKKI]]

S → L2 (2 0 (1 0))
K → L1 (1)
I → L0 (0)
SKKI → SKKI

Table 3: Categorical multi-combinator rewriting laws

(M1) 〈n, (xm, · · · , x1, x0)〉 ⇒ xn

(M2) 〈x0x1x2 . . . xn, y〉 ⇒ 〈x0, y〉 . . . 〈xn, y〉
(M3) Ln(y)x0x1 · · ·xnxn+1 · · ·xm ⇒ 〈y, (x0, · · · , xn)〉 xn+1 · · ·xm

(M4) 〈f , y〉 ⇒ 〈fb , y〉

presented in Section 8. The conclusions and future work are
discussed in Section 9.

2. CATEGORICAL MULTI-COMBINATORS
This section briefly introduces the categorical multi-combina-

tors [21, 12], a rewriting system which provides the compu-
tational model of µΓCMC.

Categorical combinators represent a formal system similar
to combinatory logic. The original system was developed
by Curien [3] inspired by the equivalence of the theories of
typed λ-calculus and cartesian closed categories as shown by
Lambek [11] and Scott [20]. One approach to the execution
of categorical combinators which uses a stack machine is
described in [2].

Lins developed a new system of categorical combinators to
implement lazy functional languages efficiently, called cat-
egorical multi-combinators. A project with similar aims to
the system of categorical multi−combinator is Hughes’ sys-
tem of supercombinators [8]. Both systems have the power
to perform the equivalent of several β-reductions in a sin-
gle rewriting step and in both of them an expression needs
to have all its arguments present before evaluation. There
are, however, differences between these two systems. Cat-
egorical multi-combinators work with a fixed set of com-
binators which permits hardware implementation. On the
other hand, supercombinators are generated during the com-
pilation process. The compilation algorithm for categorical
multi-combinators is extremely simple and generates expres-
sions with size linear to the source code. Supercombinators
use a more complex compilation algorithm due to the neces-
sity of detecting maximal free expressions in the code. The
supercombinator translation of a program of size N has size
O(NlogN) in the worst case. Supecombinators are fully
lazy. This means that any sub-expression will be reduced
at most once. Categorical multi-combinators are not fully
lazy. If in our code we have a shared occurrence of a par-
tial application of a function. This sub-expression cannot be
evaluated before being copied and therefore it may be eval-
uated more than once. This drawback is removed by using
partial categorical multi-combinators [13].

2.1 Compiling the λ-calculus into categorical
multi-combinators

In categorical multi-combinators, function application is

denoted by juxtaposition, taken to be left-associative. The
compilation algorithm for translating λ-expressions into cat-
egorical multi-combinators (Table 1) is given by the function
Rx0...xj where xi is a variable, and the corresponding i its
depth in the environment, i.e. the corresponding DeBruijn
[4] number. Top level expressions are translated using an

empty environment, denoted by R[]. For a matter of uni-
formity, combinators will be represented as composed with a
dummy frame, (), which can be seen as the identity frame.
Combinator names are treated as constants.

Table 2 presents an example of translations of a program
into the categorical multi-combinators using the compilation
schemes described.

2.2 Categorical multi-combinator rewriting
laws

The core of the categorical multi-combinator machine is
presented on page 71 of Reference [12]. For a matter of
convenience, the multi-pair combinator, which forms evalu-
ation environments, will be represented as (x0, . . . , xn) and
closures will be written as 〈a, b〉, where b represents the en-
vironment. Using this notation the kernel of the categorical
multi-combinator rewriting laws is described on Table 3.

The state of computation of a categorical multi-combinator
expression is represented by the expression itself. Rule (M.1)
performs environment look-up. This is the mechanism by
which a variable fetches its value in the corresponding en-
vironment. (M.2) is responsible for environment distribu-
tion. The rule (M.3) performs environment formation. It is
equivalent to λ-calculus β-reduction, in which substitutions
are performed on demand. If a combinator reaches the left-
most position of the code during rewriting, it proceeds with
a script look-up and enters the corresponding code in the
definition environment. (M.4) expresses this situation.

2.3 Example of evaluation
The expression SKKI, where S, K and I correspond to

the CM-C code presented on Table 2, is evaluated as pre-
sented on Table 4.

3. THE µΓCMC MACHINE
Amongst the implementations of compiled functional lan-

guage based on categorical multi-combinators there are CM-
CM [16, 21] and GM-C [17]. ΓCMC is an evolution of these

...

...

...

...
Stack E

...

indirection

Environment CellStack T

heap

...

...
...

...

...

Stack Eheap

Environment

δ

Stack T

(b)(a)

Figure 1: (a) ΓCMC: indirection to access the environment. (b) µΓCMC: environment stored directly in the
reduction stack

Table 5: State transition rules for the categorical multi-combinators
(1) 〈〈n, e〉.c, H[e = (xm, · · · , x0)]〉 ⇒ 〈xn.c, H[e = (xm, · · · , x0)]〉
(2) 〈〈x0 · · ·xn, e〉.c, H[e = · · ·]〉 ⇒ 〈〈x0, e〉 · · · 〈xn, e〉.c, H[e = · · ·]〉
(3) 〈〈Ln(y), ei〉x0 · · ·xnxn+1 · · ·xm.c, H〉 ⇒ 〈〈y, ej〉xn+1, · · · , xm.c, H[ej = 〈x0 · · ·xn, ei〉]〉
(4) 〈〈f, e〉.c, H[e = · · ·]〉 ⇒ 〈fb, e〉.c, H[e = · · ·]〉

Table 4: Example of evaluation
S K K I

⇒M4 L2(2 0 (1 0)) KKI
⇒M3 〈2 0 (1 0), KKI〉
⇒M2 〈2, KKI〉 〈0, KKI〉 〈1 0, KKI〉
⇒M1 K 〈0, KKI〉 〈1 0, KKI〉
⇒M4 L1(1) 〈0, KKI〉 〈1 0, KKI〉
⇒M3 〈1, 〈0, KKI〉 〈1 0, KKI〉 〉
⇒M1 〈0, KKI〉
⇒M1 I

machines in which the execution flow control is transferred
to C, as much as possible. A new abstract, µΓCMC, has
been created to support the implementation of programs
written in the functional language Haskell.

3.1 Translating CM-C into µΓCMC
For convenience, the categorical multi-combinator expres-

sion will be structured in two parts: the reduction stack T
and the heap H, where evaluation environments are placed.
The transition 〈T, H〉 ⇒ 〈T ′, H ′〉 must be interpreted as:
‘whenever the machine arrives at state 〈T, H〉, it can get to
state 〈T ′, H ′〉. It is easy to see that the rewriting laws of
the categorical multi-combinators can be expressed as state
transition rules (Table 5).

Instead of manipulating references to the environment di-
rectly, there is a stack which keeps references to the current
environment. Variables on the top position of the reduction
stack fetch their values from the current environment. The
current environment changes whenever a variable fetches a
closure from the current environment or by creating a new
environment via β-reduction.

The ΓCMC abstract machine contains a stack, called E,
the top of which points to the current environment. The
use of this stack creates an extra indirection level to access
the environment. One of the main innovations brought by
the machine µΓCMC was to avoid such indirection level by
eliminating the environment cell. The environment is now
stored directly onto the reduction stack T (see Figure 1).

In ΓCMC, an index corresponding to the DeBruijn num-
ber provides the depth of a value in the environment cell.
The strategy of storing the environment in the reduction

stack has the advantage of reducing the access time. The
index used to fetch a value in the environment is computed
by adding the DeBruijn number to the distance, called δ,
between the environment and the top of stack T . δ changes
whenever the expression on top of T is computed. It is
important to say that the control over δ is performed stat-
ically. Therefore, it does not affect the performance. Ta-
ble 6 presents the rewriting laws of the categorical multi-
combinator in this new evaluation model. The laws (4) and
(5) were included to remove the environment from the eval-
uation stack in two distinct situations.

The evaluation of the expression SKKI through the new
machine µΓCMC is presented on Table 7. The symbol ‘ε’
designates the empty environment. A set of terms separated
by the symbol ‘.’ indicates the order in which terms were
pushed onto the stack. For instance, the sequence ‘a.b.c’
indicates that ‘a’ was pushed in front of b, and b was pushed
in front of c.

4. HIGHER-ORDER FUNCTIONS
Due to the elimination of the environment cell by storing

the environment directly in the reduction stack, the com-
pilation of higher-order function requires special attention.
Consider the function f#2, of arity 2, which is applied to
three parameters: f#2 x y z. The extra parameter z is con-
sumed by the partial function returned from the evaluation
of f#2 x y. However, the evaluation of f#2 x y may call
other functions before returning the partial function. There-
fore, when the evaluation finishes, the parameter z will be
in a position of the reduction stack which cannot be stati-
cally predicted. Consequently, the evaluation of the partial
function must be postponed until the required parameter
becomes accessible again at the top of stack T . µΓCMC
creates a closure for this partial function. The code of the
closure fetches the missing parameters at the top of the re-
duction stack and applies the partial function to them.

In some cases it is not possible to know in advance the
number of arguments a function will consume. For instance,
consider the variable x of type A → B. One could think that
x consumes a single argument. However, since the type vari-
ables A and B can represent other functions, the application
of x can consume an unpredictable number of arguments.

µΓCMC uses a macro called eval to force the evaluation

Table 6: New rewriting laws of the categorical multi-combinators
(1) 〈(n+δ).y1.y2. . . . yδ.e.c, H[e=(〈x0,e0〉.〈x1,e1〉···〈xm,em〉)]〉 ⇒ 〈xn.en.y1.y2 . . . yδ.e.c, H[e=(〈x0,e0〉.〈x1,e1〉....〈xm,em〉)]〉
(2) 〈〈Ln(y), ei〉.x0 · · ·xn.xn+1 · · ·xm.ei.c, H〉 ⇒ 〈y.ej .xn+1 · · ·xm.ei.c, H[ej=(〈xn,ei〉···〈x1,ei〉.〈x0,ei〉)]〉
(3) 〈〈f, e〉.c, H〉 ⇒ 〈〈fb, e〉.c, H〉
(4) 〈n.e.c, H[e = (〈x0, e0〉.〈x1, e1〉 · · · 〈xm, em〉)]〉 ⇒ 〈xn.en.c, H[e = (〈x0, e0〉.〈x1, e1〉 . . . 〈xm em〉)]
(5) 〈〈f, e〉x0 · · ·xn.e.c, H〉 ⇒ 〈〈Ln(y), e〉.x0 · · ·xn.c, H〉

of structures at the top of stack T. This instruction is in-
voked whenever it is not possible to predict the behaviour
of the program. It can be thought as a transition from the
compilation to the interpretation level. eval starts an itera-
tive process which finishes only when the element on top of
stack T is completely evaluated. Notice that the semantics
of eval is not compatible with the case where the number of
arguments consumed by an application cannot be predicted.
If the function does not consume the complete set of applied
parameters, its evaluation will return a partial application.
Such partial application cannot be evaluated in the next it-
eraction step of eval because the missing arguments are on
unknown (statically unpredictable) positions of stack T. In
this case, µΓCMC uses the macro eval’, which avoids the it-
erative evaluation strategy adopted by eval. eval’ performs
a single evaluation step, removes the garbage left by the pre-
vious evaluated expression from stack T, and invokes eval
to open the closure representing the partial function. Notice
that it is safe to use eval after the first iteration, because at
this point it is already known where the missing parameters
are located.

5. REUSING A HASKELL FRONT-END
The Haskell functional language has several higher level

features [7]. Thus, constructing a Haskell front-end from
scratch is a very complex task. In addition, we are mainly
interested in evaluating a new abstract machine which im-
plements the back-end of a Haskell compiler. Therefore, it
has been decided to plug the abstract machine µΓCMC onto
an existing Haskell front-end, namely the Glasgow Haskell
Compiler (GHC) version 0.29 front-end [23]. The interme-
diate language Shared Term Graph (STG) [10] has been
used as the interface between the GHC front-end and the
µΓCMC. The GHC front-end was slightly modified to in-
corporate type information and function arity in the STG
code. This intermediate code is output to a file, and read
by the back-end.

The idea of reusing GHC’s front-end threfore has three ob-
jectives: first to avoid reimplementing all the front-end of a
Haskell compiler, a daunting task itself; second, to allow the
compilation of real, large programs, which would be difficult
to develop with a simple compiler that did not implement
full Haskell; and finally to allow a direct, fair comparison,
using the same source program, of the two back-ends, taking
the same benefits from higher level program optimisations
that exist in GHC’s front-end [19]. Reimplementing all these
optimisations would also be a major programming effort.

6. COMPILING HASKELL INTO µΓCMC
The compilation of Haskell programs into the kernel of

the µΓCMC abstract machine is presented in this section
through an example. The compilation schemes to trans-
late STG programs into µΓCMC are available at the URL
http://www.upe.poli.br/simdsc/mgcmc.

Table 7: Example of evaluation using the µΓCMC
machine

〈S K K I, H〉
⇒3 〈〈L2(2 0 (1 0)), ε〉 KKI, H〉
⇒2 〈2.0.(1 0).e1, H[e1 = I.K.K]〉
⇒1 〈K.0.(1 0).e1, H[e1 = I.K.K]〉
⇒5 〈〈L1(1), e1〉.0.(1 0), H[e1 = I.K.K]〉
⇒2 〈1.e2, H[e2 = 〈(1 0), e1〉.〈0, e1〉][e1 = I.K.K]〉
⇒4 〈0.e1, H[e2 = 〈(1 0), e1〉.〈0, e1〉][e1 = I.K.K]〉
⇒4 〈I, H[e2 = 〈(1 0), e1〉.〈0, e1〉][e1 = I.K.K]〉

Consider the following Haskell program:

twice f x = f (f x)
succ n = n +# 1#
main = print (I# (twice twice twice succ 3#))

Figure 2 presents the equivalent program written on the
intermediate language STG. The translation of functions
main and f2 into µΓCMC is shown in Figure 31.

7. EXAMPLE OF EVALUATION
Appendix A presents the µΓCMC machine as a state tran-

sition machine. The kernel of µΓCMC is defined by a set
of state transition laws. This section applies these laws to
evaluate the µΓCMC code described in Figure 3.

During the evaluation, µΓCMC instructions are referred
by their respective lines in the µΓCMC code presented in
Figure 3. Due to the lack of space, only a few evaluation
steps are presented2. The initial state of the µΓCMC ma-
chine for the code in Figure 3 is given by: 〈26.27.28, T, C, FV, H, O〉.
Starting at this point, the evaluation takes place by apply-
ing, step-by-step, the state transition law associated with
the leftmost instruction in the sequence of code. For in-
stance, the first instruction to be executed - nvol - is lo-
cated on the 26th line of the µΓCMC code. Therefore, the
2nd transition law (see Appendix A) must be applied (this
is indicated by the symbol ⇓2)

3. The next steps of the eval-
uation process are depicted on Table 8.

8. OPTIMISATIONS AND PERFORMANCE
This section describes a set of optimisations introduced to

µΓCMC yielding better performance figures. The execution
time of the final version of µΓCMC is compared against the
Glasgow Haskell compiler which uses the spineless tagless
G-machine[18].

1The remaining code is available at the URL
http://www.upe.poli.br/∼dsc/mgcmc.
2The complete sequence of execution may be obtained at
the URL http://www.upe.poli.br/∼dsc/mgcmc.
3the symbol ⇓ without index denotes the execution of a C
instruction.

Table 8: Exemple of evaluation
〈26.27.28, T, C, FV, H, O〉 ⇓2

〈27.28, e0.T, C, FV, H[e0=(f.t.[])], O〉 ⇓3

〈4.5.6.7.8.9.10.11.12.13...23.28, e0.T, C, FV, H[e0=(f.t.[])], O〉 ⇓13

〈5.6.7.8.9.10.11.12.13...23.28, e0.T, e1.C, FV, H[e0=(f.t.[])][e1=P0], O〉 ⇓13

〈6.7.8.9.10.11.12.13...23.28, e0.T, e2.e1.C, FV, H[e0=(f.t.[])][e1=P0][e2=〈P2,ø〉], O〉 ⇓
〈7.8.9.10.11.12.13...23.28, e0.T, e2.e1.C, FV, H[e0=(f.t.[])][e1=P0][e2=〈P2,e1〉], O〉 ⇓13

〈8.9.10.11.12.13...23.28, e0.T, e3.e2.e1.C, FV, H[e0=(f.t.[])][e1=P0][e2=〈P2,e1〉][e3=〈P3,ø〉], O〉 ⇓
〈9.10.11.12.13...23.28, e0.T, e3.e2.e1.C, FV, H[e0=(f.t.[])][e1=P0][e2=〈P2,e1〉][e3=〈P3,e2〉], O〉 ⇓21

〈10.11.12.13...23.28, e0.T, e3.e2.e1.C, e3.FV, H[e0=(f.t.[])][e1=P0][e2=〈P2,e1〉][e3=〈P3,e2〉], O〉 ⇓3

...

Table 9: Figures of performance for pseudoknot
Compiler time (sec.) No

¯
garbage collection calls

µΓCMC (original) 8.5 19
µΓCMC (otm. Section 8.1) 7.1 19
µΓCMC (otm. Section 8.2) 5.5 19
µΓCMC (otm. Section 8.3) 4.5 14
GHC 0.29 2.3 –
GHC 4.08 1.5 –

8.1 Avoiding unnecessary bindings
In the intermediate STG language, dictionaries containing

methods of a type-class are represented as tuples. Whenever
a given method is required, the complete set of methods in
the dictionary is bound to variables of a type constructor.
Then the method is selected by referencing the correspond-
ing variable. This strategy may lead to inneficiencies since
it often binds variables that are not going to be used. For
example, consider the implementation of the list equality
class in Haskell:

Eq.List dictEq =
(Eq.List.(==) dictEq, Eq.List.(/=) dictEq)

The overloaded operation == in the context [x] == [y] is
transformed into (==) (Eq.List dictEq) x y. Here, equa-
lity operation is selected from the dictionary Eq.List dictEq

using the selector verb+(==)+. The operation is then ap-
plied to operands x and y. The STG code for this selection
is:

case (Eq.List dictEq) of
{ Tup2 [eq_fn , diff_fn] -> eq_fn x y }

Only the eq_fn function is required in the right-hand side
expression, but both eq_fn and diff_fn are bound to the
respective operations in the list equality class dictionary.

The extra cost to bind unused variables to the respec-
tive parts of the dictionary may be avoided by analysing
the right-hand expression. µΓCMC identifies those variables
which are used in the scope of the right-hand side, and only
binds those variables that are used. In the example above,
eq_fn is bound to the first element of the tuple, but won’t
bind diff_fn

This optimisation can always be applied whenever a given
pattern-matching binding is not used on its the right-hand
side expression, therefore it is not restricted to dictionaries
or tuples.

8.2 Automatic generation of garbage collec-
tion code

The µΓCMC machine implements the copy algorithm by
Fenichel and Yochelson [5]. The implementation considers
basic type cells (integer, floating-point, character, etc.), type
constructor cells and closure cells. The two latter are struc-
tured cells containing subcells. A generic recursive routine
was used to copy different type of cells. Such routines test
the cell type in order to apply the appropriate copy proce-
dure. In the case of structured cells, a recursive call to the
copy routine is performed for each subcell bound to them.
This strategy was adopted because it is impossible to pre-
dict the complete set of different cells which will be actually
required during program execution.

Such a homogeneous treatment is a source of inefficiency.
In order to avoid additional costs for recursive calls and
tag testing one must provide specific routines for different
types of cells. The information provided by the type-checker
was used to generate specific copy routines for each type of
cell that may be created in the heap. Such specific copy
routines avoid recursive calls and type tests performed by
the previous generic routine during the copying of structured
cells.

8.3 Simplifying structured cells
The automatic generation of specific copy routines brought

the opportunity for a new optimisation, which aims to de-
crease the demand for heap space by reducing the size of
structured cells.

In the original µΓCMC abstract machine structured cells
contain tags to identify types of subcells. These tags were
only checked in the generic copy routine to decide which
copy procedure should be applied for each subcell. As the
subcell checking was eliminated in the new copy routines,
subcells’ tags may be removed from structured cells. This
simplification in the structured cell organization decreases
the demand for heap space and, consequently, reduces the
number of calls to the garbage collector.

succ{1}(Int#->Int#) =
[] \r [n#{0}(Int#)] plusInt# [n# 1#];

f1{2}((Int#->Int#)->Int#->Int#) =
[] \r [f{0}(Int#->Int#) x#{0}(Int#)]

case f x# of { v#{0}(Int#) -> f v#;};

f2{0}(Int) =
[] \r []

let { l1{1}(Int#->Int#) =
[] \r [v1#{0}(Int#)] f1 f1 succ v1#;}

in let { l2{1}(Int#->Int#) =
[l1] \r [v2#{0}(Int#)] f1 l1 v2#;}

in let { l3{1}(Int#->Int#) =
[l2] \r [v3#{0}(Int#)] f1 l2 v3#;}

in case l3 3# of {
v4#{0}(Int#) ->

case l3 v4# of {
v5#{0}(Int#) -> I# v5#;};};

main{0}([Response]->[Request]) =
[] \u [] print_Int f2{0}(Int);

Figure 2: STG Code
01 void f2() {
02 int v4;
03 int v5;
04 MKCcomp(&P0, 0);
05 MKCcomp(&P2, 1);
06 (∗topC+1) → graph = (∗(topC-1));
07 MKCcomp(&P3, 1);
08 (∗topC+1) → graph = (∗(topC-1));
09 pushFV (∗(topC-0));
10 pl3(3);
11 popFV ;
12 v4 = (∗topT) → Ivalue;
13 popT ;
14 pushFV (∗(topC-0));
15 pl3(v4);
16 popFV ;
17 v5 = (∗topT) → Ivalue;
18 popT ;
19 MKTcons(15, 2);
20 MKTIctel(v5, 1);
21 popC n(1);
22 popC n(1);
23 popC n(1);
24 }
25
26 void main() { nvol;
27 f2();
28 printf(“%d”, (∗topT +1) → Ivalue); popT ; popT ; }

Figure 3: Compiling an STG program into µΓCMC

8.4 Performance Analysis
A floating-point intensive application taken from molec-

ular biology named pseudoknot is used in the performance
analysis. Over 25 implementations of different functional
languages were benchmarked using pseudoknot[6]. The per-
formance figures for the initial version of µΓCMC along with
results after each optimisation are presented on Table 9. The
performance is measured in terms of execution time - given
in seconds - and heap space demand - given in numbers of
garbage collection calls.

The measurements were taken on a machine with a Pen-
tium II 300Mhz processor, 64MB of RAM, running Linux
(Debian 2.1). For GHC versions 0.29 and 4.08 optimisation
-O2 was used. To compile µΓCMC the option gcc -O3 was
used. A heap of 30MB was adopted.

On Table 9, the final version of µΓCMC compiler is also
compared against GHC versions 0.29 and 4.08. The com-
parison with GHC version 0.29 is the fairest, since in this
case GHC and µΓCMC share the same front-end, which is
from GHC 0.29 itself. Results demonstrate that GHC 0.29
is twice as fast as the µΓCMC compiler. One must empha-
size that the version of GHC used in the test exploits the
set of registers of the target machine and includes assembly
routines in its runtime system. On the other hand, µΓCMC
uses ordinary C variables instead of registers. In addition
to that, the runtime system of µΓCMC is completely imple-
mented in C. Moreover, µΓCMC consists of a six man-month
work and there is much room for new optimisations. Tak-
ing into account these observations, one may consider the
performance of µΓCMC rather satisfactory.

9. CONCLUSIONS
In this paper, a new back-end for GHC based on the cate-

gorical multi-combinators was presented. The abstract ma-
chine for graph reduction named µΓCMC implements this
new back-end. It has been shown how to express the rewrit-
ing rules of the categorical multi-combinators as state tran-
sition rules and, then, how such state transition rules can
be defined in the evaluation model of the µΓCMC machine.
In this new machine, the environment is stored directly onto
the reduction stack. In particular, the compilation of higher-
order functions into this new scenario was detailed. In gen-
eral, the gains obtained by eliminating the indirection level
to access the environment outweight the need for special
treatment for higher-order functions.

The GHC front-end was connected to the back-end through
the intermediate language Shared-Term Graph (STG). The
translation of a Haskell program into µΓCMC as described.
The resulting code was then evaluated using the state tran-
sition laws which implement the kernel of µΓCMC.

µΓCMC is the first abstract machine based on the cate-
gorical multi-combinator to be used in the implementation
of a powerful functional language like Haskell. With the
implementation of this compiler it was possible to migrate
from small and unrealistic benchmarks like fibonacci, sieve,
prime, queens, etc. onto programs containing thousands of
lines, created for real applications. Therefore, now it is pos-
sible to evaluate with more accuracy the qualities of the
µΓCMC machine for the implementation of lazy functional
languages.

The NoFib Haskell benchmark suite was used for the per-
formance analysis. In particular the performance figures for
the pseudoknot, a floating point intensive application taken
from molecular biology, were presented. After optimisations
the performance of µΓCMC is only twice as slow as that

Table 10: State transition laws
1. 〈ε.c, T, C, FV, H, O〉 ⇒ 〈c, T, C, FV, H, O〉
2. 〈nvol.c, T, C, FV, H, O〉 ⇒ 〈c, e.T, H[e=false.true.[]], C, FV, O〉
3. 〈f.c, T, C, FV, H, O〉 ⇒ 〈fb.c, T, H, C, FV, O〉
4. 〈print.c, e.T, C, FV, H[e=cte], O〉 ⇒ 〈c, T, C, FV, H[e=cte], cte.O〉
5. 〈eval.c, e.T, C, FV, H[e=cte], O〉 ⇒ 〈c, e.T, C, FV, H[e=cte], O〉
6. 〈eval.c, e.T, C, FV, H[e=〈S, fv, p0〉][p1], O〉 ⇒ 〈S.c, T, C, FV, H[e=〈S, fv, p0〉][p1], O〉
7. 〈MKTPC(P).c, T, C, FV, H, O〉 ⇒ 〈c, P.T, C, FV, H, O〉
8. 〈MKTcte(cte).c, T, C, FV, H, O〉 ⇒ 〈c, e.T, C, FV, H[e=cte], O〉
9. 〈MKCcte(cte).c, T, C, FV, H, O〉 ⇒ 〈c, T, e.C, FV, H[e=cte], O〉
10. 〈MKTcons(id, n).c, T, C, FV, H, O〉 ⇒ 〈c, e.T, C, FV, H[e=(id ø1..øn)], O〉
11. 〈MKCcons(id, n).c, T, C, FV, H, O〉 ⇒ 〈c, T, e.C, FV, H[e=(id ø1..øn)], O〉
12. 〈MKTcomp(S, n).c, T, C, FV, H, O〉 ⇒ 〈c, e.T, C, FV, H[e=〈S, ø1..øn〉], O〉
13. 〈MKCcomp(S, n).c, T, C, FV, H, O〉 ⇒ 〈c, T, e.C, FV, H[e=〈S, ø1..øn〉], O〉
14. 〈MKTctel(cte, i).c, e.T, C, FV, H[e=(..øi..)], O〉 ⇒ 〈c, e.T, C, FV, H[e=(..cte..)], O〉
15. 〈MKCctel(cte, i).c, T, e.C, FV, H[e=(..øi..)], O〉 ⇒ 〈c, T, e.C, FV, H[e=(..cte..)], O〉
16. 〈MKTconsl(id, i).c, e.T, C, FV, H[e=(..øi..)], O〉 ⇒ 〈c, e.T, C, FV, H[e=(..id..)], O〉
17. 〈MKCconsl(id, i).c, T, e.C, FV, H[e=(..øi..)], O〉 ⇒ 〈c, T, e.C, FV, H[e=(..id..)], O〉
18. 〈MKTcomp PC(P, i).c, e.T, C, FV, H[e=(..øi..)], O〉 ⇒ 〈c, e.T, C, FV, H[e=(..P..)], O〉
19. 〈MKCcomp PC(P, i).c, T, e.C, FV, H[e=(..øi..)], O〉 ⇒ 〈c, T, e.C, FV, H[e=(..P..)], O〉
20. 〈pushT (v).c, T, C, FV, H[v], O〉 ⇒ 〈c, v.T, C, FV, H[v], O〉
21. 〈pushFV (v).c, T, C, FV, H[v], O〉 ⇒ 〈c, T, C, v.FV, H[v], O〉
22. 〈popT .c, v.T, C, FV, H[v], O〉 ⇒ 〈c, T, C, FV, H[v], O〉
23. 〈popC n(n).c, T, e.C, FV, H[e=v1.v2..vn], O〉 ⇒ 〈c, T, C, FV, H[v1.v2..vn], O〉
24. 〈popFV .c, d.T, C, v.FV, H[v], O〉 ⇒ 〈c, T, C, FV, H[v], O〉
25. 〈popTU n(n).c, v.b1.b2..bn.T, C, FV, H[vb1..bn], O〉 ⇒ 〈c, v.T, C, FV, H[vb1..bn], O〉

of the GHC compiler which adopts the spineless tagless G-
machine [18]. GHC is probably the most efficient Haskell
Compiler available. In addition, µΓCMC does not exploit
target machine features. It is completely implemented in
the C language and has been easily migrated to distinct ar-
chitectures (Sun SparcStation, IBM AIX/RS6000 and Intel
Pentium). Moreover, our back-end is the result of a six man-
months’ work and there is much room for new optimisations.

The extension of the IO library, which is required to sup-
port a larger number of Haskell applications is currently
been worked on. This is a very time consuming task, since
such a library must be carefully hand crafted. New opti-
misations to improve the performance of the new Haskell
back-end based on µΓCMC are being studied.

The abstract machine µΓCMC, along with other informa-
tions, is available on the Web page:
http://www.upe.poli.br/~dsc/mgcmc.

10. REFERENCES
[1] L. Cardelli. The Functional Abstract Machine.

Polimorphism, 1(1), 1983.

[2] G. Cousineau, P. L. Curien, and M. Mauny. The
Categorical Abstract Machine. Functional
Programming Languages and Computer Architecture,
LNCS 201, 1985.

[3] P. L. Curien. Combinateurs Categoriques, Algorithmes
Sequentiels et Programmacion Applicative. Thése de
Doctorat d’Etat, Université Paris VII, LITP, 1983.

[4] N. G. De Bruijn. Lambda Calculus Notation with
Nameless Dummies, a Tool for Automatic

Manipulation. Indag. Math., (34):381–392, 1972.

[5] R. R. Fenichel and J. C. Yochelson. A Lisp Garbage
Collector for Virtual Memory Computer Systems.
Communication of ACM, 11(12):611–612, November
1969.

[6] P. H. Hartel and et al. Benchmarking Implementation
of Functional Languages with ‘Pseudoknot’, a
Floating-Intensive Benchmark. Journal of Functional
Programming, 6(4):621–655, July 1996.

[7] P. Hudak, J. Peterson, and J. Fasel. A Gentle
Introduction to Haskell. , 1997.

[8] R.J.M. Hughes. The design and implementation of
programming languages. Ph.D. Thesis, The Oxford
University Comp. Lab., 1983.

[9] T. Johnsson. Compiling Lazy Functional Languages.
PhD Thesis, Chalmers Tekniska Högskola, Göteborg,
Sweden, 1987.

[10] S.Peyton Jones. Implementing Lazy Functional
Languages on Stock Hardware: The Spineless Tagless
G-Machine. Journal of Functional Programming,
2(2):127–202, 1992.

[11] J. Lambek. From Lambda-Calculus to Cartesian
Closed Categories. Haskell B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism,
1980.

[12] R. D. Lins. Categorical Multi-Combinators. Functional
Programming Languages and Computer Architecture,
Springer-Verlag, LNCS 274, pages 60–79, 1987.

[13] R. D. Lins. Partial Categorical Multi-Combinators and
Church-Rosser Theorems. submitted for publication.

[14] R. D. Lins and B. O. Lira. ΓCMC: A Novel Way of
Implementing Functional Languages. Journal of
Programming Languages, 1:19-39, Chapmann & Hall,
January 1993.

[15] R.D. Lins, G. Neto, and R. MLima. Implementing and
Optimising ΓCMC. Euromicro’94, IEEE Computer
Society Press, pages 353–361, 1994.

[16] R. D.Lins and S.J. Thompson. Implementing SASL
using Categorical Multi-Combinators. Software —
Practice and Experience, 20(8):163–166, 1990.

[17] M. A. Musicante and R. D. Lins. GMC: A Graph
Multi-Combinator Machine. Microprocessing and
Microprogramming, 31:31–35, 1991.

[18] S. Peyton Jones and J. Salkild. The Spineless Tagless
Gmachine. In MacQueen, editor, Functional
Programming and Computer Architecture. Addisson
Wesley, 1989.

[19] A. L. M. Santos. Compilation by Transformation in
Non-Strict Functional Languages. PhD thesis,
Department of Computer Science, University of
Glasgow, July 1995.

[20] D. Scott. Relating Theories of the Lambda-Calculus.
Haskell B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, 1980.

[21] S. Thompson and R. D. Lins. The Categorical
Multi-Combinator Machine: CMCM. The Computer
Journal, 35(2):170–176, 1992.

[22] D. A. Turner. A New Implementation Technique for
Aplicative Languages. Software Practice and
Experience, 9:31–49, 1979.

[23] GHC Team. The Glasgow Haskell Compiler User’s
Guide, Version 4.01. 1998.

APPENDIX

A. STATE TRASITION LAWS
µΓCMC is now presented as a state transition machine.

A state of µΓCMC is a 6-tuple 〈c, T, H, C, FV, O〉 in which
each component is interpreted in the following way:

c is the µΓCMC code sequence currently being
executed.

T is the reduction stack. The top of T points at the part
of the graph to be evaluated. T also holds references to
environment cells (see Section 3).

H is the heap of cells where graphs are stored.
H[d = e1...en] means that there is in H a n-component
cell named d. The fields of d are filled with e1...en in
this order.

C is the closure stack. This stack also holds references
to closures representing local functions defined
in let-expressions.

FV is the free variable stack. The top of FV points at
a cell with the fields are filled with free variables of
the current redex.

O is the output stack. It can be thought of as a
standard output terminal.

µΓCMC is defined as a set of transition rules. The transi-
tion: 〈c, T, H, C, FV, O〉 ⇒ 〈c′, T ′, H ′, C′, O′〉 is interpreted

as when the machine reaches the state 〈c, T, H, C, FV, O〉, it
can get to state 〈c′, T ′, H ′, C′, FV ′, O′〉. A particular nota-
tion is adopted in the set of transition rules described below:

ε is the empty code;
øi is an empty cell in the ith field of a closure/type

constructor cell.
cte stands for a constant value;
f invokes function f ;
fb is the body of function f ;
fv are free variables;
S is a suspension;
P is a pointer to a static code block;
p0 are partially applied parameters;
p1 stands for the complementary parameters a partial

application expects;
pn is set of parameters applied to a saturated function;
id is a type constructor identifier;
bi is ith element bound to a type constructor;
n stands for a constant integer value representing

the number of elements to be removed from a stack;
and also the arity of functions and type constructors;

i is the index of a field in a closure/type constructor
cell;

v is a generic value bound to a variable;
. separates elements stored in the stack;

(a.b.c indicates that ‘a’ was pushed in front
of b, and b was pushed in front of c.

The complete set of state transition laws for the kernel of
µΓCMC is presented on Table 10.

