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Abstract. Safety assessment is a well-known process for assuring the 

trustworthiness of critical aeronautic systems. Inside it, quantitative safety 

assessment aims at providing precise information to show that the safety 

requirements for the certification of system design are met. In this paper we 

propose a quantitative model-based safety assessment process, fully automatic. 

It starts by translating safety information from Simulink diagrams into Prism 

models and properties. With the Prism model-checker, we can find whether a 

safety requirement was violated for the whole system as well as identify 

scenarios of safety maintenance tasks and intervals. We present our work using 

a representative aircraft case study. 

Keywords: Quantitative Safety Assessment, Prism, Model Checker, Markov 

Analysis, Safety Analysis of Aircraft Systems,  

1 Introduction 

Traditionally the Quantitative Safety Assessment of aircraft systems has been 

based on Fault Tree Analysis (FTA) [FTA Handbook] method, that despite its 

limitations, meets the ARP 4761 (Aerospace Recommended Practice) [ARP], a 

guidelines and methods for conducting the safety assessment process, and is followed 

and referenced by the certifying authority and the industrial applications. In practice, 

FTA has been widely used during this process mainly because it is conceptually 

simple and easy to understand [ARP]. However, this process is usually expensive and 

requires much time and effort to be validated, because it need the application of 

engineering and management principles, criteria, and techniques to optimize all 

aspects of safety within the constraints of operational effectiveness, time, and cost 

throughout all phases of the system life cycle [ARP 4754, McDermid_Towards].  

A critical point in this process is the use of the FTA to perform Quantitative 

analysis for failure conditions (potential failure that can affect some system function). 

The goal on this analysis, usually performed during the phases of PSSA (Preliminary 

System Safety Assessment) and SSA (System Safety Assessment) of the process, is to 
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satisfy the quantitative safety requirements (probability and criticality constraints) 

established for each critical failure condition to avoid or render unlikely the 

occurrence of each. Currently, the use of the FTA method provides no advantage in 

terms of cost-effective, because it have to generate the FT for each fault condition to 

be considered and if the proposed design does not satisfies just one of constraints, it 

have to be revised and improved to reduce the likelihood of the hazard occurring, 

restarting the analysis process and therefore causing much rework. A civil or military 

aircraft design are only allowed to operate whether corresponding certification 

authorities approve the system and one of the requirements for this is that the degree 

of safety of the system according to FAR 25.1309 [3], which requires that all safety 

requirements considered must be satisfied. Considering this scenario, a solution to 

improve and optimize this analysis is very relevant [Ref?]. 

In this paper, we propose an alternative to provide a cost-effective quantitative 

safety assessment based on a model-based approach supported by Prism []. Our 

solution acts on Quantitative analysis for failure conditions and a Safety related tasks 

and intervals over the Safety Assessment Process (during the PSSA and SSA stages) 

using Markov models []. Thus, safety constraints can be analyzed using probabilistic 

formal models specified in Prism, one can deal with Markov models indirectly and in 

a high-level representation [15]. This models results from the integration of analysis 

and information generated by all the steps involved in the safety assessment process 

(e.g.: FHA, CCA, PSSA, SSA, IF-FMEA [Ref], an extension of FMEA) that can be 

guided by a model-based solution like HiP-HOPS [X] or through a design tool such as 

Simulink [Ref?]. 

The work uses this idea by providing a rule-based mapping from a Simulink 

diagram, annotated with tabular system failure logic, to a Prism model, augmented 

with a set of probabilistic temporal logic formulas to analyze the safety aspects of the 

resulting model. The resulting artifact is a automatic quantitative safety assessment 

package, where by simply executing the Prism model checker one can check whether 

the system satisfies its safety constraints or not, without building any fault-tree []. 

Furthermore, as we are using Markov based formalism, we can also investigate 

scenarios of different phases and strategy maintenance. 

The main contributions of this paper are: 

─ A quantitative model-based safety assessment process, fully automatic; 

─ Simulink-based translation rules to create formal models in Prism; 

─ A cost-effective quantitative analysis to cover all fault conditions considered, 

allowing the checking of the violation from a single model checking; 

─ A way to use formal method as a support to verify and validate safety 

requirements of aircraft systems. 

This work is organized as follows. In the next section we present an overview 

about the Safety Assessment Process and model-based scenarios, in Section 3 we 

show our main contribution based on the probabilistic model checker Prism, where in 

Section 3.1 we briefly explain our Quantitative Safety Analysis using Markov models, 

in Section 3.2 we present our translation rules and in Section 3.3 we discuss the 

soundness and completeness of our strategy. In Section 4 we show the application of 
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our strategy in a simple aircraft subsystem and in Section 5 we discuss about some 

related works. Finally, in Section 6 we show our conclusions and future work. 

2 Quantitative Safety Assessment 

Safety Assessment process involves several complex and detailed phases and 

activities as can be seen in Figure 1. During this process, the safety requirements will 

decompose in parallel with the system design, and will typically introduces qualitative 

and quantitative safety requirements for the top-level and subsystem design. It is a 

systematic and hierarchical method used to define the high-level airplane as well as 

system safety goals (maximum tolerable probability) that must be considered in the 

proposed system architectures. Failure Hazard Analysis (FHA) identifies and 

classifies failure conditions1, generating requirements such as “show that failure 

condition X doesn’t shall to occur more frequently than 10-9 times per flying hour” or 

“No catastrophic failure condition result from a single failure". Failure rates will be 

allocated to different components and their failure conditions in such a way that 

satisfying the component level requirements (SSA) will satisfy the system level 

requirements (Integration cross check) [1, Towards].  

SSA is based on some top-down analysis techniques such FTA, Markov Analysis 

and Dependence Diagram and uses quantitative values obtained from the Failure 

Mode and Effects Analysis (FMEA) as well as also include results of the Common 

Cause Analysis (CCA). The safety analysis role is met these particular requirements 

and the justification for the design concept. Considering the failure conditions 

identified in the FHA, these techniques can be applied mainly to determine: 

 What single failures or combinations of failures can exist at the lower levels (basic 

events) that can cause each failure condition; 

 The average probability of occurrence per flight hour for each failure condition. 

So, at the certification of an aircraft, for each failure condition, should be 

determined if the rate targets are met. In accordance with the certification authorities, 

the proposed system design must assuring that hazardous and catastrophic failure 

conditions have an average failure probability inferior to 10-7 and 10-9 per hour. These 

kind of failure may be satisfactorily analyzed on a quantitative aspect (in addition to 

qualitative analysis), because they are more critical. So, the average probability of 

occurrence per flight hour for each failure condition must be calculated assuming a 

typical flight of average duration and considering the appropriate exposure time and 

at risk times [ARP]. 

                                                        
1 Hazards are identified and classified by its severity (the worst credible effects on aircraft 

operations: No Effect, Minor, Major, Hazardous, and Catastrophic). 
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2.1 Model-based Safety Assessment 

In the safety-critical systems domain there is an increasing trend towards model-

based safety assessment [5, mais…]. It proposes to extend the existing model-based 

development activities (e.g. simulation, verification, testing and code-generation) that 

based on a formal model of the system expressed in a notation such as Simulink [X] 

or SCADE [X]) to incorporate safety analysis. Thus artifacts such as FT, Markov 

diagrams and flowchart can be automatically generated. 

 

Fig. 1. Overview of Safety Assessment Process 

These new alternatives are very interesting because they are simple, compositional 

and do not need complex engineer's skills to be applied. In addition, they may become 

more powerful if they make use of formal methods [our new NUSMV-ISAAC, Anjali 

other?], since formal methods provides a set of effective tools (theorem provers, 

model checkers, static checkers, etc.) in order to automate the most of the analysis 

while attempting to guarantee the correctness of due process certification. It can act 

appropriately on support of verification and validation of the safety requirements [ ]. 
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Most of the solutions of model-based safety assessment incorporate the FMEA or 

IF-FMEA (Interface-Focused FMEA) analysis on its design using a hierarchical 

tabular structure (see Figure 2) [4, 17]. This is a graphical notation for the 

representation of the transformation and propagation of failure in a system, allowing 

that complex systems are modeled as hierarchies of architectural diagrams. This 

notation is semantically and syntactically linked to the design representation of the 

system.  

 

Fig. 2. IF-FMEA of a hypothetical component system [14] 

So considering the structure of the design model expressed in a tool (e.g.: 

Simulink, SAM), the component failure characterizations (IF-FMEA tables) are 

overlaid over the system model. This solution creates a failure logic model of the 

system based on the result of an FHA analysis and can be used to perform a 

systematic safety analysis.  

To illustrate this solution, we consider a hypothetical Actuator Control System 

showed in Figure 3. Its function is to control the displacement of an electrical actuator 

(Further details see Section 4). 

 

Fig. 3. Functional Model of the Actuator Control System 

To capture Figure 3 (organization and component interconnections) in tabular 

form, we use a topology table (see Table 1). For the sake of space, we have omitted 
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the table of Figure 2 (required for each component of the system). Part of the failure 

conditions of this example is given in Table 2. This table records the synthesis of the 

deviations present in each component. It contains the logic of failures propagation 

established in terms of input-output connections between components. 

Table 1. Topology table of the Actuator Control System 

Component Hierarquical Division Port Connected or Associated Port 

Monitor No 
In_1 PowerSource1-Out_1 

In_2 PowerSource2-Out_1 

Reference No In_1 Monitor-Out_1 

Controller Yes 

In_1 Monitor-Out_1 

In_2 Reference-Out_1 

In_3 Sensor-Out_1 

… … … … 

 

Following table states that a PowerSource can exhibit a LowPower deviation via its 

Out1 port when a PowerSourceFailure (a boolean condition) occurs. A more 

complicated situation occurs in the Monitor. A LowPower can also occur but its 

origin can be internal (SwitchFailure and one of the connected power sources also 

failed) or external (both power sources have failed). A OmissionSignal deviation can 

be exhibit in the Reference when a internal (ReferenceDeviceFailure) or external 

(LowPower via its In1 port) occur. Reference still can exhibit a CorruptedSignal 

deviation when a ReferenceDeviceDegradation occurs. 

Table 2. Set of deviation for the Actuator Control System 

Component Deviation Port Annotation 

PowerSource LowPower Out_1 PowerSourceFailure 

Monitor LowPower Out_1 

(SwitchFailure and (LowPower-In1 

or LowPower-In2)) or (LowPower-

In1 and LowPower-In2) 

Reference 
Omission Signal Out_1 

ReferenceDeviceFailure or 

LowPower-In1 

Corrupted Signal Out_1 ReferenceDeviceDegradation 

… … … … 

3 Proposed Strategy 

In this section we present a methodology that performs quantitative analysis of 

aircraft systems using probabilistic formal models specified in PRISM. By using the 

Prism model checker we can detect whether any critical safety requirements all failure 

conditions is violated without building any fault-tree. This work performs safety 

analysis based on Markov formal models. 
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Most of the techniques to create probabilistic formal models of aeronautic systems 

are highly subjective, because they are dependent on the skill of engineer that 

specifies the model in an ad hoc fashion [TimKelly, Pfmea]. But instead of creating a 

Prism specification implicitly via a tool, we follow a systematic strategy by providing 

formal translation rules that transform a failure logic model of a system into a Prism 

specification. Thus, the approach captures the failure behavior of components in the 

formal model, preserving the failure logic, the maintenance and monitoring strategy 

and the hierarquical system. This is alternative to easily integrate a safety assessment 

process supported by formal verification to some consolidated model-based tool used 

to design and simulation of aircraft systems like Matlab-Simulink. 

 

Fig. 4. Overview of proposed strategy 

Figure 4 presents an overview of our proposed strategy. It starts collecting the 

system description which contains the system block diagrams and its failure logic 

model. This model can be constructed from the IF-FMEA technique during the PSSA 

and SSA stages in an integrated fashion with traditional tools for modeling like 

Matlab-Simulink. During these steps, the corresponding tabular annotations of system 

are created and stored in this tool and are commonly accessed to provide some system 

analysis. Here they are extended and used as input to create a formal model of system. 

Appling our translation rules, we produce a formal model of system in a correct 

Prism specification. This model has a Markov representation and captures the 

semantics of failure logic model of system. And from the Prism specification, one can 

automatically perform quantitative analysis as well as check whether there is any 

failure condition violating its criticality level. 

3.1 Quantitative Safety Analysis using Markov Models 

Considering the verification means used for aircraft certification, we can calculate 

the average failure condition rate during finite time period, applying a steady-state or 

transient analysis over Markov models [Ref?]. Transient analysis represents the 

average instantaneous failure rate over a single period T and can be conducted on 

either closed-loop or open-loop models, i.e., models with or without repairs, whereas 

the steady-state analysis approximates the long-term average failure rate over multiple 
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intervals of duration T and can be only conducted on closed-loop models. See the 

solutions illustrated in Figure 5. 

The choice over these type of analysis depends on how are treated the system 

repairs. The close-loop solutions consider repair transitions as if they occur at 

constant rates, which can be conservatively represented by a constant repair rate of 

1/T per hour, where T is the inspection time. 

 

 

Fig. 5. Graph plotting the common behavior of different Markov analysis. 

Our Markov chains are a close-loop models (i.e., models with repairs), composed 

of a set of discrete states, each of them is the representation of the state (faulty, 

operational and degraded) of each component failure mode. The transition occurs 

over constant rates and represent which state changes are possible and that often they 

occur. Briefly, these models consist of representations of chains of events, i.e. 

transitions within the system that under the safety assessment, match the sequence of 

failures and repairs. This charge requires the use of exponential probability 

distributions for modeling of failure rates and repair. 

Considering the verification means used for system validation, we may calculate 

the average failure condition rate, applying a steady-state analysis over Markov 

models. It provides adequate accuracy for most practical purposes, because knowing 

that critical systems are modeled to deal with latency, almost all components affecting 

the functionality of a critical system are monitored or inspected at fairly short 

intervals of time, and repaired or replaced if they are found failed. Therefore the 

system is repeatedly restored to its operational state, and our main interest is in 

determining the long-term average failure condition rate over many such maintenance 

cycles. As a result, the steady-state solution of the closed loop model is usually what 

the analyst needs to determine [Falta referencia!]. 
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3.1.1 Prism as Support to modeling and analyzing  

Prism is a high-level abstract language that can be used to model the behavior of 

fault-tolerant system. Prism can be an alternative to compression of models and 

generates and analyzes, by a hidden way, the diagrams of transitions between states 

(Markov chains) [Ref]. 

Prism supports CSL [Ref], a temporal language used to generate the PRISM 

property specification to verify the system requirements on PRISM Model Checker. 

Using operators of Prism, such as P (transient) and S (steady-state), our strategy are 

able to perform transient or steady-state analysis over the model, allowing to reason 

about the probability of executions. The operator S checks the system behavior in the 

steady-state (long term). With the formula 

S<= 10
-9

 [ "Failure Condition" ] 

We can check if in the long term, the probability that a failure condition occurs 

could be less than 10-9. Note that such an expression answers "yes" or "no", based on 

quantitative analysis (the result value is implicit: average failure rate). We can also 

check the probability itself by using a slightly different question to Prism:  

P =? [ true U
<=3600

 "SystemFailure" ] 

This will return the instantaneous probability of the system will fully-failed within 

3600 time units. Therefore, Prism can support both Markov analysis solutions 

(steady-state or transient analysis) offering quantitative measures to safety 

requirements validation. Also experiments can be done to allow the user to investigate 

scenarios of different phases and strategy maintenance using graphs. 

Moreover, the used model checking has two advantages if compared to other 

formal verification methods. First it is fully automatic, and second is that the 

generated model in Prism covers all fault conditions considered, allowing the 

checking of the violation from a single model checking analysis2. 

The primary limitation of model-checking is the size of the reachable state space, 

though recent breakthroughs allow very large (> 107 reachable states) state spaces to 

be explored in reasonable time. 

3.1.2 Input Data Model 

Recall from Section 2.1 that the failure logic model of a system can be captured by 

hierarchical tabular structures (Figure 3, Table 1 and 2). Actually, these tables are a 

concrete representation of system failure model with utilizes some notation to 

modeling each component failure characterization and propagation. Despite all these 

information are very consistent and integrated with relation to system failure mode 

and propagation over its components hierarchy, it is not sufficient to create a 

                                                        
2 As we want an automatic way of analyzing the entire system at once, we can apply the Prism 

model checker in batch mode to check it each one of the formula corresponding to a failure 

condition being analyzed gradually. 
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probabilistic formal model and performs a quantitative analysis using Markov models. 

For represent aeronautical systems consistently and in accordance with the current 

scenario, we need we need more information to model the not monitored failures of 

the system. This involves whether the components can fail in a latent or evident way, 

if a component is monitored or not and how often repair for each one. Thus, we 

extend this modeling notation with the addition of such information. 

The first information to be incorporated was the classification of each basic 

component of the system about the monitoring of its faults. Some components are 

checked before each flight to confirm that it is working, and repaired if necessary. So, 

this type of component is called self-monitored because we need to know if it is 

working at the start of each flight. But, some aircraft systems include components 

which are not inspected every flight. Failures of this type of component are called 

latent because they are not detected unless another failure occurs or a scheduled 

maintenance. For this last type of component we must consider two situations: 

Component with external monitoring and unmonitored components. The first one type 

of components is monitored continuously by an independent monitor. If it fails and 

the monitor is working, the component can be repaired before the next dispatch. If the 

monitor is not working, the component can fail latently. The last one type represents 

all components that are not monitored. So, thus failure of these components can 

obviously be latent too. Its faults only are checked at its periodic maintenance 

interval. In short, we need to distinguish between a monitored failure and 

unmonitored failure of the component because the implications of unmonitored 

failure are likely to be more severe in safety analysis. 

Based on reliability and safety factors (dispatchability, MTBF, severity, 

redundancy, and other several reasons) the periodic inspection/repairs intervals for 

each component are defined. This is the second information that we incorporated to 

the input model. Next, we present a summary of this additional information: 

Table 3. Definition of the additional information 

Maintenance strategy Inspection Time 

Self-monitored 

Monitored 

Monitor 

Unmonitored 

It is the maximum exposure time which a component is 

submitted without inspection or repair. Ex.: 50 hours, 10 flights. 

 

Considering this assumptions, the tabular annotation was expanded to store this 

data. Table 1 shows its new additional information. 

Table 4. Additional information using a tabular notation 

Component Maintenance strategy External Component Inspection Time 

PoweSource_1 Monitored Monitor-In1 50 hours 

PoweSource_2 Monitored Monitor-In2 50 hours 

Monitor Monitor  100 hours 

Reference Self-monitored  5 hours 
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… … … … 

By the information showed on previous section, is possible to create systematically 

a formal specification in Prism to represent the system failure model. Applying a set 

of translation rules we can generate the probabilistic formal model. Before details the 

model construction, is necessary to represent the tabular template in a logical schema. 

So, we need to capture these tables as mathematical elements and defined its syntax. 

Just as the Simulink tool creates n-dimensional arrays to represent these values, here 

we define several typed structures - shown in Figure 5 - to better represent all 

information. This consists of set of structures, representing kinds of things of 

significance in the domain, and relationships assertions about associations between 

pairs of types. 

 

Fig. 6. Defined types based on tabular annotations 

We start by considering a system (System) as a structure that contains a name 

(System_Name), a list of subsystems (Seq(Subsystem)). Each subsystem can 

be another system or a module; because components can also be systems. A module 

(Module) represents the lower level component that contains a name, a list of ports 

(Seq(Ports)), a list of deviations (Seq(Deviation)), a list of malfunctions 

(Seq(Malfunction)), the maintenance strategy info and the inspection time. All 

these types (Port, Deviation, Malfunction, MaintenanceStrategy and 

InspectionTime) are associated with the tabular structures used to store all 
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system information about its architecture, hierarchy, failure conditions, failure modes, 

repairs and the characteristics of monitoring and propagation of component failures. 

Port is a structure that contains a Port_ID (it represents the identifiers of input/ 

output port of components) and an AssociatedPort (it stores the connected port 

of others components). Annotation is a boolean expression that represents the 

failure logic of failure conditions. Its definition considers And/ Or operators and its 

terminal terms can be malfunction names or deviations from any port. 

Criticality represents a real number ( ) used to quantify the tolerable 

probability associated with a failure condition (expressed via a deviation). Finally, 

InspectionTime and Rate also represents real numbers used to the rate of 

occurrence of some malfunction and repair, respectively. 

3.2 Rules 

In this section we present our rules. Our strategy applies a set of translation rules 

which are based on the data structures of Figure 4. To ease the overall understanding 

about their applicability we also provide the expected sequence of their application in 

Figure 7. Here, we will describe the main concept and description of these rules. The 

translation strategy is divided into the following steps: 

 Parsing the model: The model is read from its textual and tabular representation 

of the design model expressed in Simulink. Irrelevant information about the 

graphics of the model is discarded and all already described input information is 

extracted. 

 Data Manipulation: The data collected are organized following the syntax 

described in the previous section, allowing the translation rules can be applied to 

generate the Prism specification. 

 Model Generation: In this step, the generated structure from previous step is 

processed and their respective Prism specification is generated as output according 

to the defined semantic rules of translation. 
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Fig. 7. Translation Strategy Overview 

The strategy always starts by applying Rule 1. Rule 1 states that we are dealing 

with a CTMC Markov model and calls other rules to create the several Prism modules 

from the system components (Rules 2-4). The body of a module is effectively created 

by Rule 5. After that, basic declaration instructions (Rules 6-8), commands (Rules 9-

11) and repairs transitions (12-22) are created. To complete the translation strategy, 

formula expressions are created (Rules 23-28) using a set of rules that decomposes all 

logic expressions (Rules 29-35). Note that some rules are missing because they are 

very similar to others presented. For instance, Rules 6 and 7 are missing because they 

are equivalent to Rules 2 and 3. 

3.2.3 Compound Systems and subsystems 

 Now we present our rules in detail. We start by Rule 1 which takes a pair 

where the first element has the name of a system (SName) and the second element a 

list of its subsystems (SubSys). 

Rule 1 |{ (SName, SubSys) }|system   ctmc  |{ SubSys }|subsystem 

Following Rule 1, the resulting Prism code is basically the directive ctmc 

(instructing Prism to perform a CTMC interpretation), and a call to the function 

subsystem. This function is defined by Rules 2 (base case) and 3 (recursive case): 
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Rule 2 |{ <S> }|subsystem   |{ S }|module 

Rule 3 |{ <S>: tail }|subsystem   |{ S }|module |{ tail }|subsystem 

Rules 2 and 3 do not produce Prism code themselves. They access each component 

of this system and call the function module recursively for each component (Rules 4 

and 5).  For the Actuator Control System, the implementation of these rules creates 

the following situation: 

Step1: |{<PowerSource_1>: tail}| subsystem -> |{ PowerSource_1 }| module 

   

                         |{ tail }| 

subsystem  

Step2: |{<PowerSource_2>: tail}| subsystem -> |{ PowerSource_2 }| module 

   

                         |{ tail }| 

subsystem  

Step3: |{<Monitor>: tail}| subsystem -> |{ Monitor }| module    

                         |{ tail }| 

subsystem  

... 

Step9: |{<Term>}| subsystem -> |{ Term }| module    

3.2.4  Module 

 

As modules can be subsystems as well, we translate modules by using two rules: 

Rule 4 (which calls function subsystem) and Rule 5 (which starts the creation of a 

Prism module). 

Rule 4 |{ (SName, SubSys) }|module   |{ SubSys }|subsystem 

Rule 5 takes as input a tuple containing the module name, its type, its set of ports, 

its set of deviation logics, its malfunctions, maintenance strategy and its inspection 

time. The module name (MName) is used to name the Prism module (note the 

keywords module and endmodule). Inside the module, the function declars is called 

to create the declaration part and function commands the behavioral part. Finally, the 

function formulas is called to create the set of Prism formulas outside the module. 

Rule 5 |{ (MName,Type,Ports,Deviations,Malfuncs,MStrategy,IT) }|module  
module MName 
     |{ MName, Malfuncs }|

declars
 

           |{ MName, Ports, Malfuncs }|failureCommands 
           |{ MName, Ports, Malfuncs, MStrategy, IT }|repairCommands 
endmodule 
|{  MName, Ports, Deviations, true }|formulas 

For example, the Monitor is a lower level component, and then by patterns 

matching the Rule 5 will be used in its translation that is shown below: 

 module Monitor 



A systematic strategy to perform quantitative safety assessment of Simulink diagrams using 

Prism - Technical Report  15 

         

     |{ Monitor,  [Malfunction1] }| declars  

  |{ Monitor, [Port1, Port2, Port3], [Malfunction1] }| actions   

 endmodule 

 |{ Monitor, [Port1, Port2, Port3], [Malfunction1] }|formulas 

For the Controller, which is a subsystem of the actuator and comprises three 

components, the Rule 4 will apply: 

        

  |{ [Component1, Component2, Component3] }| subsystem 

3.2.5 Declarations 

Malfunctions are representations of possible failures within a component. To 

capture this feature in Prism, for each component malfunction, boolean local variables 

with initial values equal to false are defined. The Rules 6 and 7 act in the same style 

of rules 2 and 3 and is used to access each component malfunction by your list. The 

rule 8 uses each component malfunction to generate the declaration of its respective 

local variable inside the module block. 

Rule 6 |{ Module_Name, <M>: tail }| declars -> 

 |{ Module_Name, M }|declar 

 |{ Module_Name, tail }|declars
, 

 

Rule 7 |{ Module_Name, <M> }| declars -> |{ Module_Name, M }|declar 

  

Rule 8 |{ MName, (MfName, Rate, Annot) }|declar     

 MName . MfName: bool init false; 

Rule 8 uses each component malfunction to generate the declaration of its 

respective local variable inside the module block. Module Name (MName) and 

Malfunction Name (MfName) are used to create the local variable name. 

  

3.2.6 Failure Transition Command 

 

 PRISM  transition commands are responsible to update the state of module 

local variables. We can translate rates and logic expression present in malfunction 

table to PRISM transition commands able to updates the malfunction state based on 

its failure rate. Thus, for each component malfunction, a state transition command is 

created. The Rules 9 and 10 act in the same style of rules 2 and 3 and is used to access 

each component malfunction by your list. 

Rule 9 |{ Module_Name, Ports,  <M>: tail  }| commands -> 

 |{ Module_Name, Ports,  M }| command
 

              |{ Module_Name, Ports,  tail }| commands
 

 

Rule 10 |{ Module_Name, Ports,  <M> }|commands -> |{ Module_Name, Ports, M 

}|command
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Rule 11 translates each malfunction into a Prism command. It always assumes the 

guard as a logical conjunction between the negation of a malfunction (This comes 

from Rule 8) and the negation of the fully failed system situation (a term defined by a 

Prism formula). If such a guard is valid then, with a rate given by Rate, this 

malfunction is activated. 

Rule 11 |{ MName, Ports,(MfName, Rate, Annot) }|command    

 [] (!(MName .MfName) & !(SysFailure)) -> Rate: (MName .MfName’=true); 

3.2.1 Repairs Transitions Commands 

Rules 12 through 17 translate the maintenance strategy (defined for each 

component) into Prism repair commands. This is performed according to the 

classification of each basic component of the system with respect to the monitoring of 

its faults. The difference between Rules 12, 13 and 14 lies in the treatment of the type 

of maintenance strategy. Rule 12 considers two types: Self-monitored and 

Unmonitored (Note the provided clause), whereas Rules 13 and 14 tackle the other 

cases: Monitored and Monitor, respectively. A same command is created for all 

cases whose always deactivate the module malfunctions if the system is fully failed. 

Rule 12 |{ MName,Ports,Malfuncs,(MSType,AssocPort),IT}| repairCommands  

 [] (( |{ MName, Malfuncs }|orLogic ) & !(SysFailure)) -> (1/IT): 

       |{ MName, Malfuncs }|update ; 

 [SystemFailure] (SysFailure) -> (1): |{ MName,Malfuncs }|update ; 

provided MSType = Self-Monitored or MSType = Unmonitored 

In Rule 12, if the corresponding guard is valid, then, with a rate (1/Inspection 

Time), all component malfunctions are deactivated. Function orLogic takes a logical 

disjunction between all malfunctions (this comes from Rule 8) and function Update 

deactivates all malfunctions (set the value false to each malfunction). However, if the 

component is Monitored, its repair commands must be synchronized with the 

external component that is monitoring it (function monitoredRCommmand). 

Rule 13 |{ MName,Ports,Malfuncs,(MSType,AssocPort),IT }|repairCommands  

 |{ Malfuncs, AssocPort, IT }|
 monitoredRCommand 

 [SystemFailure] (SysFailure) -> (1): |{ MName, Malfuncs}|
update ; 

provided MSType = Monitored and AssocPort ≠ empty 

If a component is a Monitor, instead of the synchronized repair commands 

corresponding to the monitored component (function sincronizedRCommand), 

another repair command is created to represent the single repair of this component. 

Rule 14 |{ MName,Ports,Malfuncs,(MSType,AssocPort),IT }|repairCommands  

 [] ((|{ MName, Malfuncs }|
orLogic

) & !(SysFailure)) -> (1/IT): 

               |{ MName,Malfuncs}|
update ; |{ MName,Malfuncs,Ports,IT}|

 sincronizedRCommand
 

 [SystemFailure] (SysFailure) -> (1): |{ MName, Malfuncs }|update ; 

provided MSType = Monitor 
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Rules 15 through 18 are used to define the synchronized repair commands between 

the monitored (Rule 15) and the monitoring component (Rule 18). Rules 16 and 17 do 

not produce Prism code. They work similarly to Rules 2 and 3. 

 

Rule 15 |{ Malfuncs, (MName, PortID), IT }|
 monitoredRCommand   

 [MName . PortID . DependentRepair] (( |{ MName, Malfuncs }|
orLogic ) &  

        !(SysFailure)) -> (1/IT): |{ MName, Malfuncs }|update ; 

 [MName . PortID . Repair] ( |{ MName, Malfuncs }|
orLogic ) -> (1): 

                    |{ Malfuncs }|update ; 

 

Rule 16 |{MName, Malfuctions, <P> : tail , IT}|
 monitorRepairCommand  -> 

|{ MName, Malfuctions, P, IT}|
 sincronizedRepairCommand 

|{ MName, Malfuctions, tail , IT}|
 monitorRepairCommand   

 

Rule 17 |{MName, Malfuctions, <P> , IT}|
 monitorRepairCommand  -> 

|{ MName, Malfuctions, <P>, IT}|
 sincronizedRepairCommmand 

 

Rule 18 |{ MName,Malfuncs,(Port_ID,AssocPort),IT }|
 sincronizedRCommand  

 [MName . PortID . Repair] (( |{  MName,Malfuncs }|OrLogic ) & 

        !(SysFailure)) -> (1/IT): |{  MName,Malfuncs }|update ; 

 [MName . PortID . DependentRepair] (( |{  MName,Malfuncs }| orLogic )  

        -> (1): |{ MName,Malfuncs }|update ; 

Rule 19 |{ MName, <(Malfunction_Name, Rate, Annotation)> : tail}|
OrExpression

 -> 

  MName . Malfunction_Name | |{ tail }| OrExpression 
 

 

Rule 20 |{ MName, <(Malfunction_Name, Rate, Annotation )> }|
OrExpression

 -> 

MName . Malfunction_Name 

 

Rule 21 |{ MName, <(Malfunction_Name, Rate, Annotation)> : tail}|
Update

 -> 

  (MName . Malfunction_Name’ = false) & |{ tail }| Update
 

 

Rule 22 |{ MName, <(Malfunction_Name, Rate, Annotation )> }|
 Update

 -> (MName 

. Malfunction_Name’ = false) 

 

The function |{ }| failureExpression takes a malfunction annotation and the list of 

component ports to translate the annotation logic expression to a prism boolean 

expression. The list of component ports is used to replace the input port references on 

logic expression to its respective associated output port. 

3.2.7 Formulas 

 Each annotation (logic expression) that can represent the possible system 

failure conditions (deviations) is transformed into a PRISM formula. As these 

expressions, the formula is written in compositional form. I.e., it is formed from 
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formulas already established based on the local variables of each component 

representing the malfunctions. Once again, the Rules 13 and 14 act in the same style 

of rules 2 and 3 and is used to access each component deviation by your list. 

Rule 23 |{ Module_Name, Ports, <D> : tail, boolValue  }| formulas  -> 

  |{ Ports, <D> : tail, boolValue }| systemFormula
 

  |{ Module_Name, Ports,  D }| formula 

             |{ Module_Name, Ports, tail, false}| formulas 

 

Rule 24 |{ Module_Name, Ports, <D> }| formulas -> |{ Module_Name, Ports, D }| 
formula

 

  

 At this point, we are able to translate deviations. Formulas are labeled 

considering the deviation name, module name and output port id.  

 

Rule 25 |{ Ports, <D> : tail, boolValue  ) }| systemFormula ->  

 formula  SysFailure = |{Ports, D}|term  |  |{ Ports, tail, boolValue  ) }| 

systemFormula 

 provided boolValue  = true 

 

Rule 26 |{ Ports, <D>, boolValue  ) }| systemFormula ->  |{Ports, D}|term   

 provided boolValue  = true 

 

Rule 27 |{ Ports, (Deviation_Name, Crit, Port_ID, Annotation) }|term  -> 

 |{ Port_ID, Ports }|Associated 

 provided Crit ≠ empty 

 

Rule 28 |{ Module_Name, Ports, (DeviatioName, Crit, Port_ID, Annotation) }| 

formula ->  

 formula  Deviation_Name . Module_Name . Port_ID = |{ Ports, Annotation 

}| failureExpression 

  

 The function |{ }|failureExpression takes a deviation annotation and the list of 

component ports to translate the annotation logic expression to a prism boolean 

expression. Next rules are responsible for this. 

 

Rule 29 |{ Ports,  And( Annotation1 , Annotation2)  }|failureExpression
  -> 

 ( |{ Ports, Annotation1 }| failureExpression
,) and ( |{ Ports, Annotation2 }| 

failureExpression
)  

 

Rule 30 |{ Ports, Or ( Annotation 1 , Annotation2) }| failureExpression -> 

 ( |{ Ports, Annotation 1}| failureExpression
) or (  |{ Ports, Annotation2 }| 

failureExpression
) 

 

 At this point, is necessary to identify the terminal terms of logic expression. 

As we can see in annotation type definition, there are two kinds of terminal terms. 
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The first is the component malfunction name and the other is the input port deviation 

name. 

Rule 31 |{ Ports, (Deviation_Name, Port_ID) }| failureExpression
 -> 

 ( Deviation_Name . |{ Port_ID, Ports }|Associated ) 

 

Rule 32|{ Ports, Malfunction_Name }| failureExpression
  -> (Malfunction_Name) 

  

 To express the formulas on compositional form, is need to change the input 

port deviation name to its associated port deviation.  So a input deviation is replaced 

by its respective formula that describes the associated output port deviation. 

 

Rule 33 |{ Port_ID, <(Port_ID’, AssociatedPort)> : tail }|Associated ->  |{ Port_ID, 

tail }|Associated 

  

Rule 34 |{ Port_ID,  < (Port_ID, AssociatedPort) > }|Associated ->  |{ AssociatedPort 

}|AssociatedName  

 

Rule 35 |{ (Module_Name, Port_ID) }|AssociatedName -> ( Module_Name . Port_ID) 

3.3 3.4 Generation of system verification expressions 

 In this step it is created the set of expressions using CSL language about the 

failures conditions to be analyzed, considering the required safety requirements. Thus, 

the FHA should be consulted in order to identify the most critical and important 

parameters for evaluation.  

 Generally, the most relevant property to be checked is the probability of a 

failure condition considered catastrophic. According to the regulatory bodies, this 

probability should not be greater than 10-9 / average flight time of aircraft. Thus, for 

each failure condition to be evaluated can be created the following verification 

expression: 

P=? [ true U<=T*3600 "Failure Condition" ], when T = flight time. 

 In CSL, this expression has the following meaning: The probability of failure 

occur in T hours.  

 For instance, to evaluate the monitor failure condition, considering the flight 

time equals to 1h, one of evaluation expressions of system is: 

P=? [ true U<=1*3600 "LowPower_Monitor_Out1" ] 

 Next, we present the translation rules used for generation of mentioned 

verification expressions. This translation strategy follows the same principle of the 

strategy for generation of formal specification. Its also uses the rules 2, 3 and 4 

defined previously. 

 

Rule 36 |{ (System_Name ,  Subsystems) }| system ->  const double T; 

   

           |{ Subsystems }| subsystem  
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Rules 2, 3 and 4 

 

Rule 37 |{ (Module_Name, Type , Ports, Deviations, Malfunctions) }| module ->   

 |{ Module_Name, Deviations }|labels 

 |{M odule_Name, Deviations }|expressions  

  

Rule 38 |{ Module_Name, <D> : tail }| labels -> 

 |{ Module_Name,  D }| label
 

 |{ Module_Name, tail }| labels
 

 

Rule 39 |{ Module_Name, <D> }| labels ->  |{ Module_Name,  D }| label
 

 

Rule 40 |{ Module_Name, (Deviation_Name, Crit, Port_ID, Annotation) }| label  ->  
 Label “Deviation_Name . Module_Name . Port_ID“ =  

Deviation_Name.Module_Name . Port_ID 

 

Rule 41 |{ Module_Name, <D> : tail }| expressions -> 

 |{ Module_Name,  D }| expression
 

 |{ Module_Name, tail }| expressions
 

 

Rule 42 |{ Module_Name, <D> }|expressions ->  |{ Module_Name,  D }| expression
 

 

Rule 43 |{ Module_Name, (Deviation_Name, Crit, Port_ID, Annotation) }| expression  
->  

 P =? [true U <= T*3600 “ Deviation_Name.Module_Name . Port_ID “] 

 |{ MName, DName, Crit, PortID }|assertions 

Rules 44 and 45 create two different temporal expressions. They are used like 

assertions about one property:  

 

Rule 44 |{ MName, DName, Crit, PortID }|assertions -> 

S <= Crit [ “ DName . MName . PortID “]  

 

Using this proposed translation strategy, we can generated a valid formal failure 

model retaining the semantics of diagrams and the system hierarchical model. These 

concepts will be illustrated more appropriated by an example at Section 4.  

3.4 Soundness and Completeness 

It is important to highlight that we are using basic system safety assumptions. 

These assumptions are commonly used for safety assessment of aircraft system [1]: 

 Element failure rates are constant 

 System components fail in flight only. 

 Component failures are detected in flight only and repaired during ground 

maintenance or before the next flight (description level), but the repairs 

occurs at constant rates (model level). 
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 The system is assumed with perfect failure coverage and can to reconfigure 

to a degradable mode within no time. 

 The inspections are perfect and essentially 100% of the failures are detected 

and fixed.  

 No new failures are introduced as a result of the maintenance. 

 

In terms of completeness, our rules are complete in the sense that they can translate 

any Simulink diagram annotated with failure logic in the IF-FMEA style [5]. 

The system behavior after a fault occurs is defined and there could be several 

decisions to be made (fault detected, fault isolated, system reconfigured, system 

repaired and system failure due to near coincident fault. FEHM modeling can describe 

all these scenarios [1]. Based on our model description and its safety assumptions, we 

are using the FORM modeling. So the failed components of the aircraft systems may 

not be handled in-flight and the system behavior is not described. This solution is 

provided for scheduled tasks on the system condition monitoring, and unscheduled 

tasks on repair of the failed system components according to the maintenance 

schedule established for an aircraft type. In detailed level of SSA, the state flow of 

each system, which is based on its controlled variables and functions are also modeled 

in quantitative view. Matlab/ Simulink is a widely to tool to model and simulate these 

behavioral aspects. The pFMEA approach [1] is an alternative to model this 

characteristic in PRISM. Even so, we will show in Section 5, it also provides 

limitations and problems. 

In our analysis we have considered repair transitions as if they occur at constant 

rates. But, in practice, system repairs do not typically occur at a constant rate. Instead, 

repairs occur only at discrete intervals therefore these considerations are not 

“Markovian” in the strict sense. However, the repairs can be conservatively 

represented by a constant repair rate of 1/T per hour, where T is the inspection time. 

Admittedly it might be repaired more quickly, but in the absence of any data to 

substantiate the quicker repairs, it is usually best to just assume that the operator waits 

the full T hours before making the repair. So, we can always conservatively represent 

such repairs by a transition with a constant rate of 1/T per hour, because the time from 

failure to repair can never exceed T hours. The immediate repair of the system failed 

state was also accurately represented by a constant-rate transition with infinite rate, so 

we stipulated that the failure of the system that is under review (total failure state) will 

be repaired immediately. We can set the repair rate on the total failure state to infinity 

because the actual repair rate for this state does not affect the hazard rate.  

4 Case Study 

Our case study was already introduced. It is the Actuator Control System presented 

graphically in Figure 2. Although it is a simple example, it is representative in the 

sense that it has dependent and independent failures, a hierarchical architecture, 

latency, evident, repeated and developed events [2, Serra]. 
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In most aircrafts, the pitching movement (the up-and-down motion of the aircraft's 

nose) is controlled by elevator surfaces at the rear of the fuselage. These surfaces are 

driven by electrical-hydraulic actuators controlled according to the pilot intent. Figure 

5 shows the main components of the ECS: the reference unit (Reference) captures 

commands from the pilot and it is usually a side-stick (or yoke) providing longitudinal 

de_ections in degrees, the controller (Controller) is an Actuator Control Electronics 

(ACE) responsible to process the reference signal and the sensed position 

(ActuatorSensor) of the actuator raw to generate the correct commands to the 

associated power control unit (PCU or Actuator). Moreover, this system is powered 

by a single power source (PowerSource). 

Considering the resultant tabular information about these components and 

including its appropriated repair scheduled, the system failure model is ready to be 

used to generate the formal specification. To illustrate this, we simply apply the 

transformation rules as depicted in Section X over the system step by step. 

Each system component is represented by a module in the specification. If a 

component is also a system, this component is disregarded and its subcomponents will 

be represented by a module. 

  

 

 

 

 

This part describes the declaration instructions. For each component malfunction 

(failure modes), boolean local variables with initial value false must be defined to 

represent the failure state for each malfunction associated with the module.  

 

Now we create a set of failure transitions commands into each module. For each 

local variable in the module, a state transition command is created. Their guard 

expression is assigned with the local variable negation and negation of system failure 

expression (will be explained below). The command updates this local variable value 

based on its failure rate. These commands refer to a transition to a failure state 

associated with the malfunction represented by the local variable.  

 

Depending of component maintenance strategy, different set of repair transitions 

commands are created into each module. If the component is self-monitored (Sensor 
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for instance) or unmonitored, just one state transition command is created. This 

command has no synchronization and its guard expression is assigned with the local 

variables. The command updates all local variable value to an operational situation 

based on its repair rate (the used value is the inverse of T, where T is the inspection 

time3. For self-monitored, T = MedianTimeOfFlight). 

 

 

Case the component is external monitored (PowerSource), instead of the previous 

command, two synchronized transition commands are created, and these commands 

are synchronized with the repair command of the stateful component. The first 

command occurs when both components are failed (to represent repair of latent 

failure). The last occurs when the monitor detects that monitored component fails. 

The transition rate of this last command is always 1 (it’s a Prism best practice used to 

quantify synchronized transitions: just one command controls the transition rate). 

 

The last case covers the monitor type. In addition to adding the no synchronized 

transition (because it is an unmonitored component), we have to create repair 

transition commands synchronized with all monitored components. Note that this is a 

supplement to the previous item and allows us to represent the possible cases: 1) the 

monitor is repaired without failure occurred in the monitored components, 2) the 

monitor is repaired together with the components monitored). See also that the guard 

expression of no synchronized transitions is assigned with the negation of input 

deviation logic of the monitor failure mode (i.e. this kind of repair only occurs if no 

fails was detected from the monitored components). 

                                                        
3 A continuous transition can represent a periodic inspection/repair using a rate that gives 

the same mean time between a component failure and repair. To provide a conservative 

representation, the appropriate value of this time must be in the range from T/2 to T. 
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The last part of generation creates a set of formulas. Each failure logic expression 

that can represent the considered component failure conditions is transformed into a 

PRISM formula. As these expressions, the formula is written in compositional form. 

I.e., it is formed from formulas already established based on the local variables of 

each component representing the malfunctions. The system failure conditions 

(deviations over the output of the higher system) are transformed into a single PRISM 

formula too. This formula is composed by an OR logic with these failure conditions. 

The negation of this formula is putted into all guard expression using a AND operator. 

 

After applying the translation rules, we obtain the Prism specification showed in 

bellow. 

ctmc 

 

module PowerSource1 

 

        powersource1_lowpower : bool init false; 

      

        [] (!(powersource1_lowpower) & 

!(SystemFailure))  

 -> (5E-4) : (powersource1_lowpower' = true);            

 

   [Monitor_In1_Dependent_Repair] 

(powersource1_lowpower & !(SystemFailure))  

 -> (1/5) : (powersource1_lowpower' = false);   
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        [Monitor_In1_Repair] (powersource1_lowpower) 

-> (1) :  (powersource1_lowpower' = false);     

 

 [SystemFailure] (SystemFailure) -> (1) : 

(powersource1_lowpower'=false); 

endmodule  

 

formula LowPower_PowerSource1_Out1 = 

powersource1_lowpower; 

 

module PowerSource2 

 

 powersource2_lowpower : bool init false; 

        

        [] (!(powersource2_lowpower) & 

!(SystemFailure))  

 -> (5E-4) : (powersource2_lowpower' = true); 

        

   [Monitor_In2_Dependent_Repair] 

(powersource2_lowpower & !(SystemFailure))  

 -> (1/5) : (powersource2_lowpower' = false);   

 

        [Monitor_In2_Repair] (powersource2_lowpower) 

-> (1):  (powersource2_lowpower' = false);     

 

 [SystemFailure] (SystemFailure) -> (1) : 

(powersource2_lowpower'=false); 

endmodule 

 

formula LowPower_PowerSource2_Out1 = 

powersource2_lowpower; 

 

 

module Monitor 

 

 monitor_switchFailure : bool init false; 

      

 [] (!(monitor_switchFailure) & !(SystemFailure)) -> 

(1E-4) : (monitor_switchFailure' = true); 

 

 [] (monitor_switchFailure & !(SystemFailure)) -> 

(1/50) : (monitor_switchFailure' = false); 

 

 [Monitor_In1_Repair] (!monitor_switchFailure & 

!(SystemFailure))  

 -> (1/5) : (monitor_switchFailure' = 

monitor_switchFailure); 
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 [Monitor_In2_Repair] (!monitor_switchFailure & 

!(SystemFailure))  

 -> (1/5) : (monitor_switchFailure' = 

monitor_switchFailure); 

 

 [Monitor_In1_Dependent_Repair] 

(monitor_switchFailure) -> (1) : (monitor_switchFailure' 

= false); 

 

 [Monitor_In2_Dependent_Repair] 

(monitor_switchFailure)-> (1) : (monitor_switchFailure' = 

false); 

 

 [SystemFailure] (SystemFailure) -> (1) : 

(monitor_switchFailure'=false); 

 

endmodule 

 

formula LowPower_Monitor_Out1 = (monitor_switchFailure &  

    (LowPower_PowerSource1_Out1 | 

LowPower_PowerSource2_Out1)) |  

                                

(LowPower_PowerSource1_Out1 & 

LowPower_PowerSource2_Out1);  

 

module Reference 

 

        reference_devicefailure : bool init false; 

        reference_devicedegradation : bool init 

false; 

 

        [](!reference_devicefailure & 

!(SystemFailure) ) -> (2E-4) : (reference_devicefailure' 

= true); 

        [](!reference_devicedegradation & 

!(SystemFailure) ) -> (2E-4) : 

(reference_devicedegradation' = true);   

 

 [] ((reference_devicefailure | 

reference_devicedegradation) & !(SystemFailure) ) -> 

(1/5)  

 : (reference_devicefailure' = false) & 

(reference_devicedegradation' = false);        

 

 [SystemFailure] (SystemFailure) -> (1) : 

(reference_devicefailure'=false) & 

(reference_devicedegradation'=false); 
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endmodule 

 

formula OmissionSignal_Reference_Out1 = 

reference_devicefailure | LowPower_Monitor_Out1; 

formula CorruptedSignal_Reference_Out1 = 

reference_devicedegradation; 

 

module Sensor 

 

 sensor_sensorfailure : bool init false; 

        sensor_sensordegradation : bool init false; 

 

 [](!sensor_sensorfailure & !(SystemFailure) ) -> 

(5E-4) : (sensor_sensorfailure' = true); 

        [](!sensor_sensordegradation & !(SystemFailure) ) 

-> (5e-4) : (sensor_sensordegradation' = true);   

 

 [] ((sensor_sensorfailure | 

sensor_sensordegradation) & !(SystemFailure) ) -> (1/5)  

 : (sensor_sensorfailure' = false) & 

(sensor_sensordegradation' = false);        

 

 [SystemFailure] (SystemFailure) -> (1) : 

(sensor_sensorfailure'=false) & 

(sensor_sensordegradation'=false); 

 

endmodule 

 

formula OmissionSignal_Sensor_Out1 = sensor_sensorfailure 

| LowPower_Monitor_Out1 | OmissionSpeed_Actuador_Out1; 

formula CorruptedSignal_Sensor_Out1 = 

sensor_sensordegradation; 

 

 

module Component1 

 

        component1_lossofcomponent1 : bool init 

false; 

        component1_component1degradation : bool init 

false; 

 

 [](!component1_lossofcomponent1 & !(SystemFailure) 

) -> (9E-5) : (component1_lossofcomponent1' = true); 

       [](!component1_component1degradation & 

!(SystemFailure) ) -> (9e-5) : 

(component1_component1degradation' = true); 
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 [] ((component1_lossofcomponent1 | 

component1_component1degradation) & !(SystemFailure)) -> 

(1/5)  

 : (component1_lossofcomponent1' = false) & 

(component1_component1degradation' = false);        

 

 [SystemFailure] (SystemFailure) -> (1) : 

(component1_lossofcomponent1'=false) & 

(component1_component1degradation'=false); 

  

endmodule 

 

formula OmissionSignal_Component1_Out1 = 

component1_lossofcomponent1 | LowPower_Monitor_Out1 | 

OmissionSignal_Reference_Out1; 

formula CorruptedSignal_Component1_Out1 = 

component1_component1degradation | 

CorruptedSignal_Reference_Out1; 

 

 

module Component2 

 

 component2_lossofcomponent2 : bool init false; 

        component2_component2degradation : bool init 

false; 

 

 [](!component2_lossofcomponent2 & !(SystemFailure)) 

-> (1E-4) : (component2_lossofcomponent2' = true); 

       [](!component2_component2degradation & 

!(SystemFailure)) -> (1e-4) : 

(component2_component2degradation' = true); 

 

 [] ((component2_lossofcomponent2 | 

component2_component2degradation) & !(SystemFailure)) -> 

(1/5)  

 : (component2_lossofcomponent2' = false) & 

(component2_component2degradation' = false);        

 

 [SystemFailure] (SystemFailure) -> (1) : 

(component2_lossofcomponent2'=false) & 

(component2_component2degradation'=false); 

  

endmodule 

 

formula OmissionSignal_Component2_Out1 = 

component2_lossofcomponent2 | LowPower_Monitor_Out1 ; 
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formula CorruptedSignal_Component2_Out1 = 

component2_component2degradation | 

CorruptedSignal_Sensor_Out1; 

 

 

module Component3 

 

        component3_lossofcomponent3 : bool init 

false; 

        component3_component3degradation : bool init 

false; 

 

 [](!component3_lossofcomponent3 & !(SystemFailure) 

) -> (6E-5) : (component3_lossofcomponent3' = true); 

       [](!component3_component3degradation & 

!(SystemFailure) ) -> (6e-5) : 

(component3_component3degradation' = true); 

 

 [] ((component3_lossofcomponent3 | 

component3_component3degradation) & !(SystemFailure)) -> 

(1/5)  

 : (component3_lossofcomponent3' = false) & 

(component3_component3degradation' = false);        

 

 [SystemFailure] (SystemFailure) -> (1) : 

(component3_lossofcomponent3'=false) & 

(component3_component3degradation'=false); 

endmodule 

 

formula OmissionSignal_Component3_Out1 = 

component3_lossofcomponent3 | LowPower_Monitor_Out1 | 

OmissionSignal_Component1_Out1 | 

OmissionSignal_Component2_Out1; 

formula CorruptedSignal_Component3_Out1 = 

component3_component3degradation | 

CorruptedSignal_Component1_Out1 | 

CorruptedSignal_Component2_Out1; 

formula CommissionSignal_Component3_Out1 = 

component3_component3degradation; 

 

 

module Actuador 

 

 actuador_lossofdriver : bool init false; 

        actuador_lossofmotor : bool init false; 

        actuador_mechanismjamming : bool init false; 

        actuador_mechanismdegradation : bool init 

false; 
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        actuador_driverdegradation : bool init false; 

 

 [](!actuador_lossofdriver & !(SystemFailure) ) -> 

(1E-4) : (actuador_lossofdriver' = true); 

       [](!actuador_lossofmotor & !(SystemFailure) ) 

-> (1E-3) : (actuador_lossofmotor' = true); 

 [](!actuador_mechanismjamming & !(SystemFailure) ) 

-> (1E-3) : (actuador_mechanismjamming' = true); 

 [](!actuador_mechanismdegradation & 

!(SystemFailure) ) -> (1.5E-3) : 

(actuador_mechanismdegradation' = true); 

 [](!actuador_driverdegradation & !(SystemFailure) ) 

-> (8E-5) : (actuador_driverdegradation' = true);  

 

 [] ((actuador_lossofdriver | actuador_lossofmotor | 

actuador_mechanismjamming | actuador_mechanismdegradation 

| actuador_driverdegradation)  & !(SystemFailure) ) -> 

(1/5)  

 :  (actuador_lossofdriver' = false) & 

(actuador_lossofmotor' = false) & 

(actuador_mechanismjamming' = false) & 

(actuador_mechanismdegradation' = false) & 

(actuador_driverdegradation' = false); 

 

 [SystemFailure] (SystemFailure) -> (1) : 

(actuador_lossofdriver' = false) & (actuador_lossofmotor' 

= false) & (actuador_mechanismjamming' = false) & 

(actuador_mechanismdegradation' = false) & 

(actuador_driverdegradation' = false); 

 

endmodule 

 

formula OmissionSpeed_Actuador_Out1 = 

actuador_lossofdriver | actuador_lossofmotor | 

actuador_mechanismjamming | LowPower_Monitor_Out1 | 

OmissionSignal_Component3_Out1; 

formula WrongPosition_Actuador_Out1 = 

actuador_mechanismdegradation | 

actuador_driverdegradation | 

CorruptedSignal_Component3_Out1; 

formula CommissionSpeed_Actuador_Out1 =  

actuador_driverdegradation | 

CommissionSignal_Component3_Out1; 

 

formula SystemFailure = OmissionSpeed_Actuador_Out1 | 

WrongPosition_Actuador_Out1 | 

CommissionSpeed_Actuador_Out1; 
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Considering the Simulink diagram of Figure 6, annotated with the corresponding 

failure logic, we can generate the formal specification (see [20] for the complete 

failure logic of the system), which is depicted in Figure 7. The next step is using the 

Prism model-checker to check whether any critical failure condition probability 

violates its permitted limit. For instance, we can verify the following formula: 

S <= 10-3 [ ("OmissionSpeed_Actuator_Out1") ] 

After checking this formula, where the exact value of the average probability 

obtained via steady-state analysis for this situation is 2.54e-3, Prism returns a false, 

indicating that this failure condition was violated. As we have said previously, this 

strategy can be performed in a hidden way by instructing the Prism model-checker to 

check each formula automatically, in such a way that only when a formula is violated 

this result can be sent back to engineers using Simulink plug-ins, for example. Thus 

the complete quantitative safety analysis can be hidden from the engineers. 

So, from such reports, control engineers must adjust the system design by inserting 

more fault-tolerance features to avoid such failure violations. When all safety 

requirements are satisfied, the current system design (including its failure and repairs 

rates) is acceptable4. To show this analysis to certification authorities, the Markov 

model can be extracted from Prism by using tools like SHARPE, or HARP [21]. 

Furthermore, one can also investigate scenarios of different phases and 

maintenance strategies using graphs of the instantaneous probabilities during a certain 

time interval. For instance, Figure 8 is the result of evaluating the following formula 

in Prism, setting the T parameter from 0 to 100 hours. 

P =? [true U<=T ("WrongPosition_Actuador_Out1")] 

Fig. 8. Probabilities of failure condition during the flight 

                                                        
4 In the entire safety assessment process, the design satisfaction must also to consider 

optimization of all aspects of safety within the constraints of operational effectiveness, time, 

and cost throughout all phases of the system life cycle [3]. 
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5 Related Work 

The work reported in [19] (which proposes pFMEA or Probabilistic FMEA) also 

uses the PRISM model checker to support the FMEA process. In one sense, pFMEA 

performs a more detailed analysis than ours because it considers faulty as well as 

normal behaviors of a system. However, pFMEA does not generate the model 

systematically and has a greater potential to the state explosion problem. Furthermore, 

pFMEA applies transient analysis over closed-loop models to determine whether 

some safety requirement is violated. Although the transient analysis is “exact”, it is 

applied strictly to take just an instantaneous probability of a single interval T to 

validate the safety requirement (the estimation must considering every flight mission 

during the entire lifetime of an aircraft). Therefore, depending on the interval T, the 

obtained value cannot be sufficient to validate a tolerable average failure probability 

per hour (average failure rate), because it considers only a sample of failure rate. 

We found another work [25] that also proposes a model-based quantitative safety 

assessment using Prism. It provides an effective approach over the initial steps of the 

safety analysis, using SCADE and Esterel Studio tools, to perform compositional 

reasoning about the fault tolerance in the system. However, its resulting Prism model 

(quantitative model) is created in a non-systematic way, and thus it can contain errors. 

With the Prism model, the work applies transient analysis over open-loop models, to 

analyze an average failure condition rate. However, it does not provide effective 

results on the validation of safety requirements under certification, because, in this 

case, only the mean value of an open-loop function (the sawtooth function) can be 

virtually indistinguishable from an steady-state value. This can be considered a worst-

case analysis if the interval T is large. 

6 Conclusion 

In this paper we propose a systematic strategy to provide a formal quantitative 

analysis of aircraft systems. Our approach generates a Prism specification from the 

system failure model described in a tabular notation and can, in a simple and direct 

way, verify the violation of any safety requirements using the Prism model checker 

over a computed Markov representation. 

Markov models can be quite complex to handle, due to the necessary treatment of 

space-time characteristics. Although there are several tools that enable the creation 

and analysis of Markov models from graphical interface useful [21], it can be 

extremely difficult to create the failure model of a system from an ad-hoc approach 

using Markov chains directly to obtain a reliable result of the analysis, especially 

when considering aspects of latent and evident failure, monitoring and repair 

schedule, which are essential in the context of aircraft. Moreover, if we consider that 

the traditional fault-tree model is constructed to assess cause and probability of single 

undesirable failure condition, is a fact see that the effort and the number of models 

generated to allow the analysis of each failure condition are extremely large making 

the process very expensive [2, 10]. 
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In Prism, as already seen, each modeled system computes a Markov representation 

and contrary to what occurs traditionally, our strategy offers an alternative to the 

specialists to create the system failures model in Markov systematically. In addition, 

the generated model can check all undesirable failure conditions about its criticality 

applying the Prism Model Checker. Furthermore, engineers can extract and develop 

the generated formal model to investigate dynamic aspects of system: experiments 

can be done changing the initial values of local variables to check existing failure 

scenarios, maintenance scheduled to account for the Minimum Equipment List, 

Phased Mission, reconfiguration triggers based on sync with failure events [2, 8]. 

Therefore, recent researches are advancing to identify counter-examples of 

stationary models, allowing a better traceability of the basic failures and facilitating 

the cycle of checking and validating of the system design [22]. 

As future works we intend to mechanize the translation strategy and incorporate it 

as a plug-in in the Matlab/Simulink software. This allows immediate use of our work. 

From this, we will collect some metrics, check how much the strategy scales, and try 

to identify practical advantages/disadvantages of the strategy. Another direction is to 

consider dynamic faulty behavior, capturing the dynamic information in the same way 

as static information. 
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