
A systematic strategy to perform quantitative safety

assessment of Simulink diagrams using Prism - Technical

Report

Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

Universidade Federal de Pernambuco, Centro de Informática

P.O.Box 7458 - Zip 50740-540, Recife, Brazil

{ajog, acm, aças, jbjj}@cin.ufpe.br

Abstract. Safety assessment is a well-known process for assuring the

trustworthiness of critical aeronautic systems. Inside it, quantitative safety

assessment aims at providing precise information to show that the safety

requirements for the certification of system design are met. In this paper we

propose a quantitative model-based safety assessment process, fully automatic.

It starts by translating safety information from Simulink diagrams into Prism

models and properties. With the Prism model-checker, we can find whether a

safety requirement was violated for the whole system as well as identify

scenarios of safety maintenance tasks and intervals. We present our work using

a representative aircraft case study.

Keywords: Quantitative Safety Assessment, Prism, Model Checker, Markov

Analysis, Safety Analysis of Aircraft Systems,

1 Introduction

Traditionally the Quantitative Safety Assessment of aircraft systems has been

based on Fault Tree Analysis (FTA) [FTA Handbook] method, that despite its

limitations, meets the ARP 4761 (Aerospace Recommended Practice) [ARP], a

guidelines and methods for conducting the safety assessment process, and is followed

and referenced by the certifying authority and the industrial applications. In practice,

FTA has been widely used during this process mainly because it is conceptually

simple and easy to understand [ARP]. However, this process is usually expensive and

requires much time and effort to be validated, because it need the application of

engineering and management principles, criteria, and techniques to optimize all

aspects of safety within the constraints of operational effectiveness, time, and cost

throughout all phases of the system life cycle [ARP 4754, McDermid_Towards].

A critical point in this process is the use of the FTA to perform Quantitative

analysis for failure conditions (potential failure that can affect some system function).

The goal on this analysis, usually performed during the phases of PSSA (Preliminary

System Safety Assessment) and SSA (System Safety Assessment) of the process, is to

2 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

satisfy the quantitative safety requirements (probability and criticality constraints)

established for each critical failure condition to avoid or render unlikely the

occurrence of each. Currently, the use of the FTA method provides no advantage in

terms of cost-effective, because it have to generate the FT for each fault condition to

be considered and if the proposed design does not satisfies just one of constraints, it

have to be revised and improved to reduce the likelihood of the hazard occurring,

restarting the analysis process and therefore causing much rework. A civil or military

aircraft design are only allowed to operate whether corresponding certification

authorities approve the system and one of the requirements for this is that the degree

of safety of the system according to FAR 25.1309 [3], which requires that all safety

requirements considered must be satisfied. Considering this scenario, a solution to

improve and optimize this analysis is very relevant [Ref?].

In this paper, we propose an alternative to provide a cost-effective quantitative

safety assessment based on a model-based approach supported by Prism []. Our

solution acts on Quantitative analysis for failure conditions and a Safety related tasks

and intervals over the Safety Assessment Process (during the PSSA and SSA stages)

using Markov models []. Thus, safety constraints can be analyzed using probabilistic

formal models specified in Prism, one can deal with Markov models indirectly and in

a high-level representation [15]. This models results from the integration of analysis

and information generated by all the steps involved in the safety assessment process

(e.g.: FHA, CCA, PSSA, SSA, IF-FMEA [Ref], an extension of FMEA) that can be

guided by a model-based solution like HiP-HOPS [X] or through a design tool such as

Simulink [Ref?].

The work uses this idea by providing a rule-based mapping from a Simulink

diagram, annotated with tabular system failure logic, to a Prism model, augmented

with a set of probabilistic temporal logic formulas to analyze the safety aspects of the

resulting model. The resulting artifact is a automatic quantitative safety assessment

package, where by simply executing the Prism model checker one can check whether

the system satisfies its safety constraints or not, without building any fault-tree [].

Furthermore, as we are using Markov based formalism, we can also investigate

scenarios of different phases and strategy maintenance.

The main contributions of this paper are:

─ A quantitative model-based safety assessment process, fully automatic;

─ Simulink-based translation rules to create formal models in Prism;

─ A cost-effective quantitative analysis to cover all fault conditions considered,

allowing the checking of the violation from a single model checking;

─ A way to use formal method as a support to verify and validate safety

requirements of aircraft systems.

This work is organized as follows. In the next section we present an overview

about the Safety Assessment Process and model-based scenarios, in Section 3 we

show our main contribution based on the probabilistic model checker Prism, where in

Section 3.1 we briefly explain our Quantitative Safety Analysis using Markov models,

in Section 3.2 we present our translation rules and in Section 3.3 we discuss the

soundness and completeness of our strategy. In Section 4 we show the application of

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 3

our strategy in a simple aircraft subsystem and in Section 5 we discuss about some

related works. Finally, in Section 6 we show our conclusions and future work.

2 Quantitative Safety Assessment

Safety Assessment process involves several complex and detailed phases and

activities as can be seen in Figure 1. During this process, the safety requirements will

decompose in parallel with the system design, and will typically introduces qualitative

and quantitative safety requirements for the top-level and subsystem design. It is a

systematic and hierarchical method used to define the high-level airplane as well as

system safety goals (maximum tolerable probability) that must be considered in the

proposed system architectures. Failure Hazard Analysis (FHA) identifies and

classifies failure conditions1, generating requirements such as “show that failure

condition X doesn’t shall to occur more frequently than 10-9 times per flying hour” or

“No catastrophic failure condition result from a single failure". Failure rates will be

allocated to different components and their failure conditions in such a way that

satisfying the component level requirements (SSA) will satisfy the system level

requirements (Integration cross check) [1, Towards].

SSA is based on some top-down analysis techniques such FTA, Markov Analysis

and Dependence Diagram and uses quantitative values obtained from the Failure

Mode and Effects Analysis (FMEA) as well as also include results of the Common

Cause Analysis (CCA). The safety analysis role is met these particular requirements

and the justification for the design concept. Considering the failure conditions

identified in the FHA, these techniques can be applied mainly to determine:

 What single failures or combinations of failures can exist at the lower levels (basic

events) that can cause each failure condition;

 The average probability of occurrence per flight hour for each failure condition.

So, at the certification of an aircraft, for each failure condition, should be

determined if the rate targets are met. In accordance with the certification authorities,

the proposed system design must assuring that hazardous and catastrophic failure

conditions have an average failure probability inferior to 10-7 and 10-9 per hour. These

kind of failure may be satisfactorily analyzed on a quantitative aspect (in addition to

qualitative analysis), because they are more critical. So, the average probability of

occurrence per flight hour for each failure condition must be calculated assuming a

typical flight of average duration and considering the appropriate exposure time and

at risk times [ARP].

1 Hazards are identified and classified by its severity (the worst credible effects on aircraft

operations: No Effect, Minor, Major, Hazardous, and Catastrophic).

4 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

2.1 Model-based Safety Assessment

In the safety-critical systems domain there is an increasing trend towards model-

based safety assessment [5, mais…]. It proposes to extend the existing model-based

development activities (e.g. simulation, verification, testing and code-generation) that

based on a formal model of the system expressed in a notation such as Simulink [X]

or SCADE [X]) to incorporate safety analysis. Thus artifacts such as FT, Markov

diagrams and flowchart can be automatically generated.

Fig. 1. Overview of Safety Assessment Process

These new alternatives are very interesting because they are simple, compositional

and do not need complex engineer's skills to be applied. In addition, they may become

more powerful if they make use of formal methods [our new NUSMV-ISAAC, Anjali

other?], since formal methods provides a set of effective tools (theorem provers,

model checkers, static checkers, etc.) in order to automate the most of the analysis

while attempting to guarantee the correctness of due process certification. It can act

appropriately on support of verification and validation of the safety requirements [].

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 5

Most of the solutions of model-based safety assessment incorporate the FMEA or

IF-FMEA (Interface-Focused FMEA) analysis on its design using a hierarchical

tabular structure (see Figure 2) [4, 17]. This is a graphical notation for the

representation of the transformation and propagation of failure in a system, allowing

that complex systems are modeled as hierarchies of architectural diagrams. This

notation is semantically and syntactically linked to the design representation of the

system.

Fig. 2. IF-FMEA of a hypothetical component system [14]

So considering the structure of the design model expressed in a tool (e.g.:

Simulink, SAM), the component failure characterizations (IF-FMEA tables) are

overlaid over the system model. This solution creates a failure logic model of the

system based on the result of an FHA analysis and can be used to perform a

systematic safety analysis.

To illustrate this solution, we consider a hypothetical Actuator Control System

showed in Figure 3. Its function is to control the displacement of an electrical actuator

(Further details see Section 4).

Fig. 3. Functional Model of the Actuator Control System

To capture Figure 3 (organization and component interconnections) in tabular

form, we use a topology table (see Table 1). For the sake of space, we have omitted

6 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

the table of Figure 2 (required for each component of the system). Part of the failure

conditions of this example is given in Table 2. This table records the synthesis of the

deviations present in each component. It contains the logic of failures propagation

established in terms of input-output connections between components.

Table 1. Topology table of the Actuator Control System

Component Hierarquical Division Port Connected or Associated Port

Monitor No
In_1 PowerSource1-Out_1

In_2 PowerSource2-Out_1

Reference No In_1 Monitor-Out_1

Controller Yes

In_1 Monitor-Out_1

In_2 Reference-Out_1

In_3 Sensor-Out_1

… … … …

Following table states that a PowerSource can exhibit a LowPower deviation via its

Out1 port when a PowerSourceFailure (a boolean condition) occurs. A more

complicated situation occurs in the Monitor. A LowPower can also occur but its

origin can be internal (SwitchFailure and one of the connected power sources also

failed) or external (both power sources have failed). A OmissionSignal deviation can

be exhibit in the Reference when a internal (ReferenceDeviceFailure) or external

(LowPower via its In1 port) occur. Reference still can exhibit a CorruptedSignal

deviation when a ReferenceDeviceDegradation occurs.

Table 2. Set of deviation for the Actuator Control System

Component Deviation Port Annotation

PowerSource LowPower Out_1 PowerSourceFailure

Monitor LowPower Out_1

(SwitchFailure and (LowPower-In1

or LowPower-In2)) or (LowPower-

In1 and LowPower-In2)

Reference
Omission Signal Out_1

ReferenceDeviceFailure or

LowPower-In1

Corrupted Signal Out_1 ReferenceDeviceDegradation

… … … …

3 Proposed Strategy

In this section we present a methodology that performs quantitative analysis of

aircraft systems using probabilistic formal models specified in PRISM. By using the

Prism model checker we can detect whether any critical safety requirements all failure

conditions is violated without building any fault-tree. This work performs safety

analysis based on Markov formal models.

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 7

Most of the techniques to create probabilistic formal models of aeronautic systems

are highly subjective, because they are dependent on the skill of engineer that

specifies the model in an ad hoc fashion [TimKelly, Pfmea]. But instead of creating a

Prism specification implicitly via a tool, we follow a systematic strategy by providing

formal translation rules that transform a failure logic model of a system into a Prism

specification. Thus, the approach captures the failure behavior of components in the

formal model, preserving the failure logic, the maintenance and monitoring strategy

and the hierarquical system. This is alternative to easily integrate a safety assessment

process supported by formal verification to some consolidated model-based tool used

to design and simulation of aircraft systems like Matlab-Simulink.

Fig. 4. Overview of proposed strategy

Figure 4 presents an overview of our proposed strategy. It starts collecting the

system description which contains the system block diagrams and its failure logic

model. This model can be constructed from the IF-FMEA technique during the PSSA

and SSA stages in an integrated fashion with traditional tools for modeling like

Matlab-Simulink. During these steps, the corresponding tabular annotations of system

are created and stored in this tool and are commonly accessed to provide some system

analysis. Here they are extended and used as input to create a formal model of system.

Appling our translation rules, we produce a formal model of system in a correct

Prism specification. This model has a Markov representation and captures the

semantics of failure logic model of system. And from the Prism specification, one can

automatically perform quantitative analysis as well as check whether there is any

failure condition violating its criticality level.

3.1 Quantitative Safety Analysis using Markov Models

Considering the verification means used for aircraft certification, we can calculate

the average failure condition rate during finite time period, applying a steady-state or

transient analysis over Markov models [Ref?]. Transient analysis represents the

average instantaneous failure rate over a single period T and can be conducted on

either closed-loop or open-loop models, i.e., models with or without repairs, whereas

the steady-state analysis approximates the long-term average failure rate over multiple

8 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

intervals of duration T and can be only conducted on closed-loop models. See the

solutions illustrated in Figure 5.

The choice over these type of analysis depends on how are treated the system

repairs. The close-loop solutions consider repair transitions as if they occur at

constant rates, which can be conservatively represented by a constant repair rate of

1/T per hour, where T is the inspection time.

Fig. 5. Graph plotting the common behavior of different Markov analysis.

Our Markov chains are a close-loop models (i.e., models with repairs), composed

of a set of discrete states, each of them is the representation of the state (faulty,

operational and degraded) of each component failure mode. The transition occurs

over constant rates and represent which state changes are possible and that often they

occur. Briefly, these models consist of representations of chains of events, i.e.

transitions within the system that under the safety assessment, match the sequence of

failures and repairs. This charge requires the use of exponential probability

distributions for modeling of failure rates and repair.

Considering the verification means used for system validation, we may calculate

the average failure condition rate, applying a steady-state analysis over Markov

models. It provides adequate accuracy for most practical purposes, because knowing

that critical systems are modeled to deal with latency, almost all components affecting

the functionality of a critical system are monitored or inspected at fairly short

intervals of time, and repaired or replaced if they are found failed. Therefore the

system is repeatedly restored to its operational state, and our main interest is in

determining the long-term average failure condition rate over many such maintenance

cycles. As a result, the steady-state solution of the closed loop model is usually what

the analyst needs to determine [Falta referencia!].

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 9

3.1.1 Prism as Support to modeling and analyzing

Prism is a high-level abstract language that can be used to model the behavior of

fault-tolerant system. Prism can be an alternative to compression of models and

generates and analyzes, by a hidden way, the diagrams of transitions between states

(Markov chains) [Ref].

Prism supports CSL [Ref], a temporal language used to generate the PRISM

property specification to verify the system requirements on PRISM Model Checker.

Using operators of Prism, such as P (transient) and S (steady-state), our strategy are

able to perform transient or steady-state analysis over the model, allowing to reason

about the probability of executions. The operator S checks the system behavior in the

steady-state (long term). With the formula

S<= 10
-9

 ["Failure Condition"]

We can check if in the long term, the probability that a failure condition occurs

could be less than 10-9. Note that such an expression answers "yes" or "no", based on

quantitative analysis (the result value is implicit: average failure rate). We can also

check the probability itself by using a slightly different question to Prism:

P =? [true U
<=3600

 "SystemFailure"]

This will return the instantaneous probability of the system will fully-failed within

3600 time units. Therefore, Prism can support both Markov analysis solutions

(steady-state or transient analysis) offering quantitative measures to safety

requirements validation. Also experiments can be done to allow the user to investigate

scenarios of different phases and strategy maintenance using graphs.

Moreover, the used model checking has two advantages if compared to other

formal verification methods. First it is fully automatic, and second is that the

generated model in Prism covers all fault conditions considered, allowing the

checking of the violation from a single model checking analysis2.

The primary limitation of model-checking is the size of the reachable state space,

though recent breakthroughs allow very large (> 107 reachable states) state spaces to

be explored in reasonable time.

3.1.2 Input Data Model

Recall from Section 2.1 that the failure logic model of a system can be captured by

hierarchical tabular structures (Figure 3, Table 1 and 2). Actually, these tables are a

concrete representation of system failure model with utilizes some notation to

modeling each component failure characterization and propagation. Despite all these

information are very consistent and integrated with relation to system failure mode

and propagation over its components hierarchy, it is not sufficient to create a

2 As we want an automatic way of analyzing the entire system at once, we can apply the Prism

model checker in batch mode to check it each one of the formula corresponding to a failure

condition being analyzed gradually.

10 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

probabilistic formal model and performs a quantitative analysis using Markov models.

For represent aeronautical systems consistently and in accordance with the current

scenario, we need we need more information to model the not monitored failures of

the system. This involves whether the components can fail in a latent or evident way,

if a component is monitored or not and how often repair for each one. Thus, we

extend this modeling notation with the addition of such information.

The first information to be incorporated was the classification of each basic

component of the system about the monitoring of its faults. Some components are

checked before each flight to confirm that it is working, and repaired if necessary. So,

this type of component is called self-monitored because we need to know if it is

working at the start of each flight. But, some aircraft systems include components

which are not inspected every flight. Failures of this type of component are called

latent because they are not detected unless another failure occurs or a scheduled

maintenance. For this last type of component we must consider two situations:

Component with external monitoring and unmonitored components. The first one type

of components is monitored continuously by an independent monitor. If it fails and

the monitor is working, the component can be repaired before the next dispatch. If the

monitor is not working, the component can fail latently. The last one type represents

all components that are not monitored. So, thus failure of these components can

obviously be latent too. Its faults only are checked at its periodic maintenance

interval. In short, we need to distinguish between a monitored failure and

unmonitored failure of the component because the implications of unmonitored

failure are likely to be more severe in safety analysis.

Based on reliability and safety factors (dispatchability, MTBF, severity,

redundancy, and other several reasons) the periodic inspection/repairs intervals for

each component are defined. This is the second information that we incorporated to

the input model. Next, we present a summary of this additional information:

Table 3. Definition of the additional information

Maintenance strategy Inspection Time

Self-monitored

Monitored

Monitor

Unmonitored

It is the maximum exposure time which a component is

submitted without inspection or repair. Ex.: 50 hours, 10 flights.

Considering this assumptions, the tabular annotation was expanded to store this

data. Table 1 shows its new additional information.

Table 4. Additional information using a tabular notation

Component Maintenance strategy External Component Inspection Time

PoweSource_1 Monitored Monitor-In1 50 hours

PoweSource_2 Monitored Monitor-In2 50 hours

Monitor Monitor 100 hours

Reference Self-monitored 5 hours

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 11

… … … …

By the information showed on previous section, is possible to create systematically

a formal specification in Prism to represent the system failure model. Applying a set

of translation rules we can generate the probabilistic formal model. Before details the

model construction, is necessary to represent the tabular template in a logical schema.

So, we need to capture these tables as mathematical elements and defined its syntax.

Just as the Simulink tool creates n-dimensional arrays to represent these values, here

we define several typed structures - shown in Figure 5 - to better represent all

information. This consists of set of structures, representing kinds of things of

significance in the domain, and relationships assertions about associations between

pairs of types.

Fig. 6. Defined types based on tabular annotations

We start by considering a system (System) as a structure that contains a name

(System_Name), a list of subsystems (Seq(Subsystem)). Each subsystem can

be another system or a module; because components can also be systems. A module

(Module) represents the lower level component that contains a name, a list of ports

(Seq(Ports)), a list of deviations (Seq(Deviation)), a list of malfunctions

(Seq(Malfunction)), the maintenance strategy info and the inspection time. All

these types (Port, Deviation, Malfunction, MaintenanceStrategy and

InspectionTime) are associated with the tabular structures used to store all

12 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

system information about its architecture, hierarchy, failure conditions, failure modes,

repairs and the characteristics of monitoring and propagation of component failures.

Port is a structure that contains a Port_ID (it represents the identifiers of input/

output port of components) and an AssociatedPort (it stores the connected port

of others components). Annotation is a boolean expression that represents the

failure logic of failure conditions. Its definition considers And/ Or operators and its

terminal terms can be malfunction names or deviations from any port.

Criticality represents a real number () used to quantify the tolerable

probability associated with a failure condition (expressed via a deviation). Finally,

InspectionTime and Rate also represents real numbers used to the rate of

occurrence of some malfunction and repair, respectively.

3.2 Rules

In this section we present our rules. Our strategy applies a set of translation rules

which are based on the data structures of Figure 4. To ease the overall understanding

about their applicability we also provide the expected sequence of their application in

Figure 7. Here, we will describe the main concept and description of these rules. The

translation strategy is divided into the following steps:

 Parsing the model: The model is read from its textual and tabular representation

of the design model expressed in Simulink. Irrelevant information about the

graphics of the model is discarded and all already described input information is

extracted.

 Data Manipulation: The data collected are organized following the syntax

described in the previous section, allowing the translation rules can be applied to

generate the Prism specification.

 Model Generation: In this step, the generated structure from previous step is

processed and their respective Prism specification is generated as output according

to the defined semantic rules of translation.

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 13

Fig. 7. Translation Strategy Overview

The strategy always starts by applying Rule 1. Rule 1 states that we are dealing

with a CTMC Markov model and calls other rules to create the several Prism modules

from the system components (Rules 2-4). The body of a module is effectively created

by Rule 5. After that, basic declaration instructions (Rules 6-8), commands (Rules 9-

11) and repairs transitions (12-22) are created. To complete the translation strategy,

formula expressions are created (Rules 23-28) using a set of rules that decomposes all

logic expressions (Rules 29-35). Note that some rules are missing because they are

very similar to others presented. For instance, Rules 6 and 7 are missing because they

are equivalent to Rules 2 and 3.

3.2.3 Compound Systems and subsystems

 Now we present our rules in detail. We start by Rule 1 which takes a pair

where the first element has the name of a system (SName) and the second element a

list of its subsystems (SubSys).

Rule 1 |{ (SName, SubSys) }|system ctmc |{ SubSys }|subsystem

Following Rule 1, the resulting Prism code is basically the directive ctmc

(instructing Prism to perform a CTMC interpretation), and a call to the function

subsystem. This function is defined by Rules 2 (base case) and 3 (recursive case):

14 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

Rule 2 |{ <S> }|subsystem |{ S }|module

Rule 3 |{ <S>: tail }|subsystem |{ S }|module |{ tail }|subsystem

Rules 2 and 3 do not produce Prism code themselves. They access each component

of this system and call the function module recursively for each component (Rules 4

and 5). For the Actuator Control System, the implementation of these rules creates

the following situation:

Step1: |{<PowerSource_1>: tail}| subsystem -> |{ PowerSource_1 }| module

 |{ tail }|

subsystem

Step2: |{<PowerSource_2>: tail}| subsystem -> |{ PowerSource_2 }| module

 |{ tail }|

subsystem

Step3: |{<Monitor>: tail}| subsystem -> |{ Monitor }| module

 |{ tail }|

subsystem

...

Step9: |{<Term>}| subsystem -> |{ Term }| module

3.2.4 Module

As modules can be subsystems as well, we translate modules by using two rules:

Rule 4 (which calls function subsystem) and Rule 5 (which starts the creation of a

Prism module).

Rule 4 |{ (SName, SubSys) }|module |{ SubSys }|subsystem

Rule 5 takes as input a tuple containing the module name, its type, its set of ports,

its set of deviation logics, its malfunctions, maintenance strategy and its inspection

time. The module name (MName) is used to name the Prism module (note the

keywords module and endmodule). Inside the module, the function declars is called

to create the declaration part and function commands the behavioral part. Finally, the

function formulas is called to create the set of Prism formulas outside the module.

Rule 5 |{ (MName,Type,Ports,Deviations,Malfuncs,MStrategy,IT) }|module
module MName
 |{ MName, Malfuncs }|

declars

 |{ MName, Ports, Malfuncs }|failureCommands
 |{ MName, Ports, Malfuncs, MStrategy, IT }|repairCommands
endmodule
|{ MName, Ports, Deviations, true }|formulas

For example, the Monitor is a lower level component, and then by patterns

matching the Rule 5 will be used in its translation that is shown below:

 module Monitor

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 15

 |{ Monitor, [Malfunction1] }| declars

 |{ Monitor, [Port1, Port2, Port3], [Malfunction1] }| actions

 endmodule

 |{ Monitor, [Port1, Port2, Port3], [Malfunction1] }|formulas

For the Controller, which is a subsystem of the actuator and comprises three

components, the Rule 4 will apply:

 |{ [Component1, Component2, Component3] }| subsystem

3.2.5 Declarations

Malfunctions are representations of possible failures within a component. To

capture this feature in Prism, for each component malfunction, boolean local variables

with initial values equal to false are defined. The Rules 6 and 7 act in the same style

of rules 2 and 3 and is used to access each component malfunction by your list. The

rule 8 uses each component malfunction to generate the declaration of its respective

local variable inside the module block.

Rule 6 |{ Module_Name, <M>: tail }| declars ->

 |{ Module_Name, M }|declar

 |{ Module_Name, tail }|declars
,

Rule 7 |{ Module_Name, <M> }| declars -> |{ Module_Name, M }|declar

Rule 8 |{ MName, (MfName, Rate, Annot) }|declar

 MName . MfName: bool init false;

Rule 8 uses each component malfunction to generate the declaration of its

respective local variable inside the module block. Module Name (MName) and

Malfunction Name (MfName) are used to create the local variable name.

3.2.6 Failure Transition Command

 PRISM transition commands are responsible to update the state of module

local variables. We can translate rates and logic expression present in malfunction

table to PRISM transition commands able to updates the malfunction state based on

its failure rate. Thus, for each component malfunction, a state transition command is

created. The Rules 9 and 10 act in the same style of rules 2 and 3 and is used to access

each component malfunction by your list.

Rule 9 |{ Module_Name, Ports, <M>: tail }| commands ->

 |{ Module_Name, Ports, M }| command

 |{ Module_Name, Ports, tail }| commands

Rule 10 |{ Module_Name, Ports, <M> }|commands -> |{ Module_Name, Ports, M

}|command

16 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

Rule 11 translates each malfunction into a Prism command. It always assumes the

guard as a logical conjunction between the negation of a malfunction (This comes

from Rule 8) and the negation of the fully failed system situation (a term defined by a

Prism formula). If such a guard is valid then, with a rate given by Rate, this

malfunction is activated.

Rule 11 |{ MName, Ports,(MfName, Rate, Annot) }|command

 [] (!(MName .MfName) & !(SysFailure)) -> Rate: (MName .MfName’=true);

3.2.1 Repairs Transitions Commands

Rules 12 through 17 translate the maintenance strategy (defined for each

component) into Prism repair commands. This is performed according to the

classification of each basic component of the system with respect to the monitoring of

its faults. The difference between Rules 12, 13 and 14 lies in the treatment of the type

of maintenance strategy. Rule 12 considers two types: Self-monitored and

Unmonitored (Note the provided clause), whereas Rules 13 and 14 tackle the other

cases: Monitored and Monitor, respectively. A same command is created for all

cases whose always deactivate the module malfunctions if the system is fully failed.

Rule 12 |{ MName,Ports,Malfuncs,(MSType,AssocPort),IT}| repairCommands

 [] ((|{ MName, Malfuncs }|orLogic) & !(SysFailure)) -> (1/IT):

 |{ MName, Malfuncs }|update ;

 [SystemFailure] (SysFailure) -> (1): |{ MName,Malfuncs }|update ;

provided MSType = Self-Monitored or MSType = Unmonitored

In Rule 12, if the corresponding guard is valid, then, with a rate (1/Inspection

Time), all component malfunctions are deactivated. Function orLogic takes a logical

disjunction between all malfunctions (this comes from Rule 8) and function Update

deactivates all malfunctions (set the value false to each malfunction). However, if the

component is Monitored, its repair commands must be synchronized with the

external component that is monitoring it (function monitoredRCommmand).

Rule 13 |{ MName,Ports,Malfuncs,(MSType,AssocPort),IT }|repairCommands

 |{ Malfuncs, AssocPort, IT }|
 monitoredRCommand

 [SystemFailure] (SysFailure) -> (1): |{ MName, Malfuncs}|
update ;

provided MSType = Monitored and AssocPort ≠ empty

If a component is a Monitor, instead of the synchronized repair commands

corresponding to the monitored component (function sincronizedRCommand),

another repair command is created to represent the single repair of this component.

Rule 14 |{ MName,Ports,Malfuncs,(MSType,AssocPort),IT }|repairCommands

 [] ((|{ MName, Malfuncs }|
orLogic

) & !(SysFailure)) -> (1/IT):

 |{ MName,Malfuncs}|
update ; |{ MName,Malfuncs,Ports,IT}|

 sincronizedRCommand

 [SystemFailure] (SysFailure) -> (1): |{ MName, Malfuncs }|update ;

provided MSType = Monitor

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 17

Rules 15 through 18 are used to define the synchronized repair commands between

the monitored (Rule 15) and the monitoring component (Rule 18). Rules 16 and 17 do

not produce Prism code. They work similarly to Rules 2 and 3.

Rule 15 |{ Malfuncs, (MName, PortID), IT }|
 monitoredRCommand

 [MName . PortID . DependentRepair] ((|{ MName, Malfuncs }|
orLogic) &

 !(SysFailure)) -> (1/IT): |{ MName, Malfuncs }|update ;

 [MName . PortID . Repair] (|{ MName, Malfuncs }|
orLogic) -> (1):

 |{ Malfuncs }|update ;

Rule 16 |{MName, Malfuctions, <P> : tail , IT}|
 monitorRepairCommand ->

|{ MName, Malfuctions, P, IT}|
 sincronizedRepairCommand

|{ MName, Malfuctions, tail , IT}|
 monitorRepairCommand

Rule 17 |{MName, Malfuctions, <P> , IT}|
 monitorRepairCommand ->

|{ MName, Malfuctions, <P>, IT}|
 sincronizedRepairCommmand

Rule 18 |{ MName,Malfuncs,(Port_ID,AssocPort),IT }|
 sincronizedRCommand

 [MName . PortID . Repair] ((|{ MName,Malfuncs }|OrLogic) &

 !(SysFailure)) -> (1/IT): |{ MName,Malfuncs }|update ;

 [MName . PortID . DependentRepair] ((|{ MName,Malfuncs }| orLogic)

 -> (1): |{ MName,Malfuncs }|update ;

Rule 19 |{ MName, <(Malfunction_Name, Rate, Annotation)> : tail}|
OrExpression

 ->

 MName . Malfunction_Name | |{ tail }| OrExpression

Rule 20 |{ MName, <(Malfunction_Name, Rate, Annotation)> }|
OrExpression

 ->

MName . Malfunction_Name

Rule 21 |{ MName, <(Malfunction_Name, Rate, Annotation)> : tail}|
Update

 ->

 (MName . Malfunction_Name’ = false) & |{ tail }| Update

Rule 22 |{ MName, <(Malfunction_Name, Rate, Annotation)> }|
 Update

 -> (MName

. Malfunction_Name’ = false)

The function |{ }| failureExpression takes a malfunction annotation and the list of

component ports to translate the annotation logic expression to a prism boolean

expression. The list of component ports is used to replace the input port references on

logic expression to its respective associated output port.

3.2.7 Formulas

 Each annotation (logic expression) that can represent the possible system

failure conditions (deviations) is transformed into a PRISM formula. As these

expressions, the formula is written in compositional form. I.e., it is formed from

18 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

formulas already established based on the local variables of each component

representing the malfunctions. Once again, the Rules 13 and 14 act in the same style

of rules 2 and 3 and is used to access each component deviation by your list.

Rule 23 |{ Module_Name, Ports, <D> : tail, boolValue }| formulas ->

 |{ Ports, <D> : tail, boolValue }| systemFormula

 |{ Module_Name, Ports, D }| formula

 |{ Module_Name, Ports, tail, false}| formulas

Rule 24 |{ Module_Name, Ports, <D> }| formulas -> |{ Module_Name, Ports, D }|
formula

 At this point, we are able to translate deviations. Formulas are labeled

considering the deviation name, module name and output port id.

Rule 25 |{ Ports, <D> : tail, boolValue) }| systemFormula ->

 formula SysFailure = |{Ports, D}|term | |{ Ports, tail, boolValue) }|

systemFormula

 provided boolValue = true

Rule 26 |{ Ports, <D>, boolValue) }| systemFormula -> |{Ports, D}|term

 provided boolValue = true

Rule 27 |{ Ports, (Deviation_Name, Crit, Port_ID, Annotation) }|term ->

 |{ Port_ID, Ports }|Associated

 provided Crit ≠ empty

Rule 28 |{ Module_Name, Ports, (DeviatioName, Crit, Port_ID, Annotation) }|

formula ->

 formula Deviation_Name . Module_Name . Port_ID = |{ Ports, Annotation

}| failureExpression

 The function |{ }|failureExpression takes a deviation annotation and the list of

component ports to translate the annotation logic expression to a prism boolean

expression. Next rules are responsible for this.

Rule 29 |{ Ports, And(Annotation1 , Annotation2) }|failureExpression
 ->

 (|{ Ports, Annotation1 }| failureExpression
,) and (|{ Ports, Annotation2 }|

failureExpression
)

Rule 30 |{ Ports, Or (Annotation 1 , Annotation2) }| failureExpression ->

 (|{ Ports, Annotation 1}| failureExpression
) or (|{ Ports, Annotation2 }|

failureExpression
)

 At this point, is necessary to identify the terminal terms of logic expression.

As we can see in annotation type definition, there are two kinds of terminal terms.

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 19

The first is the component malfunction name and the other is the input port deviation

name.

Rule 31 |{ Ports, (Deviation_Name, Port_ID) }| failureExpression
 ->

 (Deviation_Name . |{ Port_ID, Ports }|Associated)

Rule 32|{ Ports, Malfunction_Name }| failureExpression
 -> (Malfunction_Name)

 To express the formulas on compositional form, is need to change the input

port deviation name to its associated port deviation. So a input deviation is replaced

by its respective formula that describes the associated output port deviation.

Rule 33 |{ Port_ID, <(Port_ID’, AssociatedPort)> : tail }|Associated -> |{ Port_ID,

tail }|Associated

Rule 34 |{ Port_ID, < (Port_ID, AssociatedPort) > }|Associated -> |{ AssociatedPort

}|AssociatedName

Rule 35 |{ (Module_Name, Port_ID) }|AssociatedName -> (Module_Name . Port_ID)

3.3 3.4 Generation of system verification expressions

 In this step it is created the set of expressions using CSL language about the

failures conditions to be analyzed, considering the required safety requirements. Thus,

the FHA should be consulted in order to identify the most critical and important

parameters for evaluation.

 Generally, the most relevant property to be checked is the probability of a

failure condition considered catastrophic. According to the regulatory bodies, this

probability should not be greater than 10-9 / average flight time of aircraft. Thus, for

each failure condition to be evaluated can be created the following verification

expression:

P=? [true U<=T*3600 "Failure Condition"], when T = flight time.

 In CSL, this expression has the following meaning: The probability of failure

occur in T hours.

 For instance, to evaluate the monitor failure condition, considering the flight

time equals to 1h, one of evaluation expressions of system is:

P=? [true U<=1*3600 "LowPower_Monitor_Out1"]

 Next, we present the translation rules used for generation of mentioned

verification expressions. This translation strategy follows the same principle of the

strategy for generation of formal specification. Its also uses the rules 2, 3 and 4

defined previously.

Rule 36 |{ (System_Name , Subsystems) }| system -> const double T;

 |{ Subsystems }| subsystem

20 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

Rules 2, 3 and 4

Rule 37 |{ (Module_Name, Type , Ports, Deviations, Malfunctions) }| module ->

 |{ Module_Name, Deviations }|labels

 |{M odule_Name, Deviations }|expressions

Rule 38 |{ Module_Name, <D> : tail }| labels ->

 |{ Module_Name, D }| label

 |{ Module_Name, tail }| labels

Rule 39 |{ Module_Name, <D> }| labels -> |{ Module_Name, D }| label

Rule 40 |{ Module_Name, (Deviation_Name, Crit, Port_ID, Annotation) }| label ->
 Label “Deviation_Name . Module_Name . Port_ID“ =

Deviation_Name.Module_Name . Port_ID

Rule 41 |{ Module_Name, <D> : tail }| expressions ->

 |{ Module_Name, D }| expression

 |{ Module_Name, tail }| expressions

Rule 42 |{ Module_Name, <D> }|expressions -> |{ Module_Name, D }| expression

Rule 43 |{ Module_Name, (Deviation_Name, Crit, Port_ID, Annotation) }| expression
->

 P =? [true U <= T*3600 “ Deviation_Name.Module_Name . Port_ID “]

 |{ MName, DName, Crit, PortID }|assertions

Rules 44 and 45 create two different temporal expressions. They are used like

assertions about one property:

Rule 44 |{ MName, DName, Crit, PortID }|assertions ->

S <= Crit [“ DName . MName . PortID “]

Using this proposed translation strategy, we can generated a valid formal failure

model retaining the semantics of diagrams and the system hierarchical model. These

concepts will be illustrated more appropriated by an example at Section 4.

3.4 Soundness and Completeness

It is important to highlight that we are using basic system safety assumptions.

These assumptions are commonly used for safety assessment of aircraft system [1]:

 Element failure rates are constant

 System components fail in flight only.

 Component failures are detected in flight only and repaired during ground

maintenance or before the next flight (description level), but the repairs

occurs at constant rates (model level).

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 21

 The system is assumed with perfect failure coverage and can to reconfigure

to a degradable mode within no time.

 The inspections are perfect and essentially 100% of the failures are detected

and fixed.

 No new failures are introduced as a result of the maintenance.

In terms of completeness, our rules are complete in the sense that they can translate

any Simulink diagram annotated with failure logic in the IF-FMEA style [5].

The system behavior after a fault occurs is defined and there could be several

decisions to be made (fault detected, fault isolated, system reconfigured, system

repaired and system failure due to near coincident fault. FEHM modeling can describe

all these scenarios [1]. Based on our model description and its safety assumptions, we

are using the FORM modeling. So the failed components of the aircraft systems may

not be handled in-flight and the system behavior is not described. This solution is

provided for scheduled tasks on the system condition monitoring, and unscheduled

tasks on repair of the failed system components according to the maintenance

schedule established for an aircraft type. In detailed level of SSA, the state flow of

each system, which is based on its controlled variables and functions are also modeled

in quantitative view. Matlab/ Simulink is a widely to tool to model and simulate these

behavioral aspects. The pFMEA approach [1] is an alternative to model this

characteristic in PRISM. Even so, we will show in Section 5, it also provides

limitations and problems.

In our analysis we have considered repair transitions as if they occur at constant

rates. But, in practice, system repairs do not typically occur at a constant rate. Instead,

repairs occur only at discrete intervals therefore these considerations are not

“Markovian” in the strict sense. However, the repairs can be conservatively

represented by a constant repair rate of 1/T per hour, where T is the inspection time.

Admittedly it might be repaired more quickly, but in the absence of any data to

substantiate the quicker repairs, it is usually best to just assume that the operator waits

the full T hours before making the repair. So, we can always conservatively represent

such repairs by a transition with a constant rate of 1/T per hour, because the time from

failure to repair can never exceed T hours. The immediate repair of the system failed

state was also accurately represented by a constant-rate transition with infinite rate, so

we stipulated that the failure of the system that is under review (total failure state) will

be repaired immediately. We can set the repair rate on the total failure state to infinity

because the actual repair rate for this state does not affect the hazard rate.

4 Case Study

Our case study was already introduced. It is the Actuator Control System presented

graphically in Figure 2. Although it is a simple example, it is representative in the

sense that it has dependent and independent failures, a hierarchical architecture,

latency, evident, repeated and developed events [2, Serra].

22 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

In most aircrafts, the pitching movement (the up-and-down motion of the aircraft's

nose) is controlled by elevator surfaces at the rear of the fuselage. These surfaces are

driven by electrical-hydraulic actuators controlled according to the pilot intent. Figure

5 shows the main components of the ECS: the reference unit (Reference) captures

commands from the pilot and it is usually a side-stick (or yoke) providing longitudinal

de_ections in degrees, the controller (Controller) is an Actuator Control Electronics

(ACE) responsible to process the reference signal and the sensed position

(ActuatorSensor) of the actuator raw to generate the correct commands to the

associated power control unit (PCU or Actuator). Moreover, this system is powered

by a single power source (PowerSource).

Considering the resultant tabular information about these components and

including its appropriated repair scheduled, the system failure model is ready to be

used to generate the formal specification. To illustrate this, we simply apply the

transformation rules as depicted in Section X over the system step by step.

Each system component is represented by a module in the specification. If a

component is also a system, this component is disregarded and its subcomponents will

be represented by a module.

This part describes the declaration instructions. For each component malfunction

(failure modes), boolean local variables with initial value false must be defined to

represent the failure state for each malfunction associated with the module.

Now we create a set of failure transitions commands into each module. For each

local variable in the module, a state transition command is created. Their guard

expression is assigned with the local variable negation and negation of system failure

expression (will be explained below). The command updates this local variable value

based on its failure rate. These commands refer to a transition to a failure state

associated with the malfunction represented by the local variable.

Depending of component maintenance strategy, different set of repair transitions

commands are created into each module. If the component is self-monitored (Sensor

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 23

for instance) or unmonitored, just one state transition command is created. This

command has no synchronization and its guard expression is assigned with the local

variables. The command updates all local variable value to an operational situation

based on its repair rate (the used value is the inverse of T, where T is the inspection

time3. For self-monitored, T = MedianTimeOfFlight).

Case the component is external monitored (PowerSource), instead of the previous

command, two synchronized transition commands are created, and these commands

are synchronized with the repair command of the stateful component. The first

command occurs when both components are failed (to represent repair of latent

failure). The last occurs when the monitor detects that monitored component fails.

The transition rate of this last command is always 1 (it’s a Prism best practice used to

quantify synchronized transitions: just one command controls the transition rate).

The last case covers the monitor type. In addition to adding the no synchronized

transition (because it is an unmonitored component), we have to create repair

transition commands synchronized with all monitored components. Note that this is a

supplement to the previous item and allows us to represent the possible cases: 1) the

monitor is repaired without failure occurred in the monitored components, 2) the

monitor is repaired together with the components monitored). See also that the guard

expression of no synchronized transitions is assigned with the negation of input

deviation logic of the monitor failure mode (i.e. this kind of repair only occurs if no

fails was detected from the monitored components).

3 A continuous transition can represent a periodic inspection/repair using a rate that gives

the same mean time between a component failure and repair. To provide a conservative

representation, the appropriate value of this time must be in the range from T/2 to T.

24 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

The last part of generation creates a set of formulas. Each failure logic expression

that can represent the considered component failure conditions is transformed into a

PRISM formula. As these expressions, the formula is written in compositional form.

I.e., it is formed from formulas already established based on the local variables of

each component representing the malfunctions. The system failure conditions

(deviations over the output of the higher system) are transformed into a single PRISM

formula too. This formula is composed by an OR logic with these failure conditions.

The negation of this formula is putted into all guard expression using a AND operator.

After applying the translation rules, we obtain the Prism specification showed in

bellow.

ctmc

module PowerSource1

 powersource1_lowpower : bool init false;

 [] (!(powersource1_lowpower) &

!(SystemFailure))

 -> (5E-4) : (powersource1_lowpower' = true);

 [Monitor_In1_Dependent_Repair]

(powersource1_lowpower & !(SystemFailure))

 -> (1/5) : (powersource1_lowpower' = false);

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 25

 [Monitor_In1_Repair] (powersource1_lowpower)

-> (1) : (powersource1_lowpower' = false);

 [SystemFailure] (SystemFailure) -> (1) :

(powersource1_lowpower'=false);

endmodule

formula LowPower_PowerSource1_Out1 =

powersource1_lowpower;

module PowerSource2

 powersource2_lowpower : bool init false;

 [] (!(powersource2_lowpower) &

!(SystemFailure))

 -> (5E-4) : (powersource2_lowpower' = true);

 [Monitor_In2_Dependent_Repair]

(powersource2_lowpower & !(SystemFailure))

 -> (1/5) : (powersource2_lowpower' = false);

 [Monitor_In2_Repair] (powersource2_lowpower)

-> (1): (powersource2_lowpower' = false);

 [SystemFailure] (SystemFailure) -> (1) :

(powersource2_lowpower'=false);

endmodule

formula LowPower_PowerSource2_Out1 =

powersource2_lowpower;

module Monitor

 monitor_switchFailure : bool init false;

 [] (!(monitor_switchFailure) & !(SystemFailure)) ->

(1E-4) : (monitor_switchFailure' = true);

 [] (monitor_switchFailure & !(SystemFailure)) ->

(1/50) : (monitor_switchFailure' = false);

 [Monitor_In1_Repair] (!monitor_switchFailure &

!(SystemFailure))

 -> (1/5) : (monitor_switchFailure' =

monitor_switchFailure);

26 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

 [Monitor_In2_Repair] (!monitor_switchFailure &

!(SystemFailure))

 -> (1/5) : (monitor_switchFailure' =

monitor_switchFailure);

 [Monitor_In1_Dependent_Repair]

(monitor_switchFailure) -> (1) : (monitor_switchFailure'

= false);

 [Monitor_In2_Dependent_Repair]

(monitor_switchFailure)-> (1) : (monitor_switchFailure' =

false);

 [SystemFailure] (SystemFailure) -> (1) :

(monitor_switchFailure'=false);

endmodule

formula LowPower_Monitor_Out1 = (monitor_switchFailure &

 (LowPower_PowerSource1_Out1 |

LowPower_PowerSource2_Out1)) |

(LowPower_PowerSource1_Out1 &

LowPower_PowerSource2_Out1);

module Reference

 reference_devicefailure : bool init false;

 reference_devicedegradation : bool init

false;

 [](!reference_devicefailure &

!(SystemFailure)) -> (2E-4) : (reference_devicefailure'

= true);

 [](!reference_devicedegradation &

!(SystemFailure)) -> (2E-4) :

(reference_devicedegradation' = true);

 [] ((reference_devicefailure |

reference_devicedegradation) & !(SystemFailure)) ->

(1/5)

 : (reference_devicefailure' = false) &

(reference_devicedegradation' = false);

 [SystemFailure] (SystemFailure) -> (1) :

(reference_devicefailure'=false) &

(reference_devicedegradation'=false);

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 27

endmodule

formula OmissionSignal_Reference_Out1 =

reference_devicefailure | LowPower_Monitor_Out1;

formula CorruptedSignal_Reference_Out1 =

reference_devicedegradation;

module Sensor

 sensor_sensorfailure : bool init false;

 sensor_sensordegradation : bool init false;

 [](!sensor_sensorfailure & !(SystemFailure)) ->

(5E-4) : (sensor_sensorfailure' = true);

 [](!sensor_sensordegradation & !(SystemFailure))

-> (5e-4) : (sensor_sensordegradation' = true);

 [] ((sensor_sensorfailure |

sensor_sensordegradation) & !(SystemFailure)) -> (1/5)

 : (sensor_sensorfailure' = false) &

(sensor_sensordegradation' = false);

 [SystemFailure] (SystemFailure) -> (1) :

(sensor_sensorfailure'=false) &

(sensor_sensordegradation'=false);

endmodule

formula OmissionSignal_Sensor_Out1 = sensor_sensorfailure

| LowPower_Monitor_Out1 | OmissionSpeed_Actuador_Out1;

formula CorruptedSignal_Sensor_Out1 =

sensor_sensordegradation;

module Component1

 component1_lossofcomponent1 : bool init

false;

 component1_component1degradation : bool init

false;

 [](!component1_lossofcomponent1 & !(SystemFailure)

) -> (9E-5) : (component1_lossofcomponent1' = true);

 [](!component1_component1degradation &

!(SystemFailure)) -> (9e-5) :

(component1_component1degradation' = true);

28 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

 [] ((component1_lossofcomponent1 |

component1_component1degradation) & !(SystemFailure)) ->

(1/5)

 : (component1_lossofcomponent1' = false) &

(component1_component1degradation' = false);

 [SystemFailure] (SystemFailure) -> (1) :

(component1_lossofcomponent1'=false) &

(component1_component1degradation'=false);

endmodule

formula OmissionSignal_Component1_Out1 =

component1_lossofcomponent1 | LowPower_Monitor_Out1 |

OmissionSignal_Reference_Out1;

formula CorruptedSignal_Component1_Out1 =

component1_component1degradation |

CorruptedSignal_Reference_Out1;

module Component2

 component2_lossofcomponent2 : bool init false;

 component2_component2degradation : bool init

false;

 [](!component2_lossofcomponent2 & !(SystemFailure))

-> (1E-4) : (component2_lossofcomponent2' = true);

 [](!component2_component2degradation &

!(SystemFailure)) -> (1e-4) :

(component2_component2degradation' = true);

 [] ((component2_lossofcomponent2 |

component2_component2degradation) & !(SystemFailure)) ->

(1/5)

 : (component2_lossofcomponent2' = false) &

(component2_component2degradation' = false);

 [SystemFailure] (SystemFailure) -> (1) :

(component2_lossofcomponent2'=false) &

(component2_component2degradation'=false);

endmodule

formula OmissionSignal_Component2_Out1 =

component2_lossofcomponent2 | LowPower_Monitor_Out1 ;

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 29

formula CorruptedSignal_Component2_Out1 =

component2_component2degradation |

CorruptedSignal_Sensor_Out1;

module Component3

 component3_lossofcomponent3 : bool init

false;

 component3_component3degradation : bool init

false;

 [](!component3_lossofcomponent3 & !(SystemFailure)

) -> (6E-5) : (component3_lossofcomponent3' = true);

 [](!component3_component3degradation &

!(SystemFailure)) -> (6e-5) :

(component3_component3degradation' = true);

 [] ((component3_lossofcomponent3 |

component3_component3degradation) & !(SystemFailure)) ->

(1/5)

 : (component3_lossofcomponent3' = false) &

(component3_component3degradation' = false);

 [SystemFailure] (SystemFailure) -> (1) :

(component3_lossofcomponent3'=false) &

(component3_component3degradation'=false);

endmodule

formula OmissionSignal_Component3_Out1 =

component3_lossofcomponent3 | LowPower_Monitor_Out1 |

OmissionSignal_Component1_Out1 |

OmissionSignal_Component2_Out1;

formula CorruptedSignal_Component3_Out1 =

component3_component3degradation |

CorruptedSignal_Component1_Out1 |

CorruptedSignal_Component2_Out1;

formula CommissionSignal_Component3_Out1 =

component3_component3degradation;

module Actuador

 actuador_lossofdriver : bool init false;

 actuador_lossofmotor : bool init false;

 actuador_mechanismjamming : bool init false;

 actuador_mechanismdegradation : bool init

false;

30 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

 actuador_driverdegradation : bool init false;

 [](!actuador_lossofdriver & !(SystemFailure)) ->

(1E-4) : (actuador_lossofdriver' = true);

 [](!actuador_lossofmotor & !(SystemFailure))

-> (1E-3) : (actuador_lossofmotor' = true);

 [](!actuador_mechanismjamming & !(SystemFailure))

-> (1E-3) : (actuador_mechanismjamming' = true);

 [](!actuador_mechanismdegradation &

!(SystemFailure)) -> (1.5E-3) :

(actuador_mechanismdegradation' = true);

 [](!actuador_driverdegradation & !(SystemFailure))

-> (8E-5) : (actuador_driverdegradation' = true);

 [] ((actuador_lossofdriver | actuador_lossofmotor |

actuador_mechanismjamming | actuador_mechanismdegradation

| actuador_driverdegradation) & !(SystemFailure)) ->

(1/5)

 : (actuador_lossofdriver' = false) &

(actuador_lossofmotor' = false) &

(actuador_mechanismjamming' = false) &

(actuador_mechanismdegradation' = false) &

(actuador_driverdegradation' = false);

 [SystemFailure] (SystemFailure) -> (1) :

(actuador_lossofdriver' = false) & (actuador_lossofmotor'

= false) & (actuador_mechanismjamming' = false) &

(actuador_mechanismdegradation' = false) &

(actuador_driverdegradation' = false);

endmodule

formula OmissionSpeed_Actuador_Out1 =

actuador_lossofdriver | actuador_lossofmotor |

actuador_mechanismjamming | LowPower_Monitor_Out1 |

OmissionSignal_Component3_Out1;

formula WrongPosition_Actuador_Out1 =

actuador_mechanismdegradation |

actuador_driverdegradation |

CorruptedSignal_Component3_Out1;

formula CommissionSpeed_Actuador_Out1 =

actuador_driverdegradation |

CommissionSignal_Component3_Out1;

formula SystemFailure = OmissionSpeed_Actuador_Out1 |

WrongPosition_Actuador_Out1 |

CommissionSpeed_Actuador_Out1;

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 31

Considering the Simulink diagram of Figure 6, annotated with the corresponding

failure logic, we can generate the formal specification (see [20] for the complete

failure logic of the system), which is depicted in Figure 7. The next step is using the

Prism model-checker to check whether any critical failure condition probability

violates its permitted limit. For instance, we can verify the following formula:

S <= 10-3 [("OmissionSpeed_Actuator_Out1")]

After checking this formula, where the exact value of the average probability

obtained via steady-state analysis for this situation is 2.54e-3, Prism returns a false,

indicating that this failure condition was violated. As we have said previously, this

strategy can be performed in a hidden way by instructing the Prism model-checker to

check each formula automatically, in such a way that only when a formula is violated

this result can be sent back to engineers using Simulink plug-ins, for example. Thus

the complete quantitative safety analysis can be hidden from the engineers.

So, from such reports, control engineers must adjust the system design by inserting

more fault-tolerance features to avoid such failure violations. When all safety

requirements are satisfied, the current system design (including its failure and repairs

rates) is acceptable4. To show this analysis to certification authorities, the Markov

model can be extracted from Prism by using tools like SHARPE, or HARP [21].

Furthermore, one can also investigate scenarios of different phases and

maintenance strategies using graphs of the instantaneous probabilities during a certain

time interval. For instance, Figure 8 is the result of evaluating the following formula

in Prism, setting the T parameter from 0 to 100 hours.

P =? [true U<=T ("WrongPosition_Actuador_Out1")]

Fig. 8. Probabilities of failure condition during the flight

4 In the entire safety assessment process, the design satisfaction must also to consider

optimization of all aspects of safety within the constraints of operational effectiveness, time,

and cost throughout all phases of the system life cycle [3].

32 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

5 Related Work

The work reported in [19] (which proposes pFMEA or Probabilistic FMEA) also

uses the PRISM model checker to support the FMEA process. In one sense, pFMEA

performs a more detailed analysis than ours because it considers faulty as well as

normal behaviors of a system. However, pFMEA does not generate the model

systematically and has a greater potential to the state explosion problem. Furthermore,

pFMEA applies transient analysis over closed-loop models to determine whether

some safety requirement is violated. Although the transient analysis is “exact”, it is

applied strictly to take just an instantaneous probability of a single interval T to

validate the safety requirement (the estimation must considering every flight mission

during the entire lifetime of an aircraft). Therefore, depending on the interval T, the

obtained value cannot be sufficient to validate a tolerable average failure probability

per hour (average failure rate), because it considers only a sample of failure rate.

We found another work [25] that also proposes a model-based quantitative safety

assessment using Prism. It provides an effective approach over the initial steps of the

safety analysis, using SCADE and Esterel Studio tools, to perform compositional

reasoning about the fault tolerance in the system. However, its resulting Prism model

(quantitative model) is created in a non-systematic way, and thus it can contain errors.

With the Prism model, the work applies transient analysis over open-loop models, to

analyze an average failure condition rate. However, it does not provide effective

results on the validation of safety requirements under certification, because, in this

case, only the mean value of an open-loop function (the sawtooth function) can be

virtually indistinguishable from an steady-state value. This can be considered a worst-

case analysis if the interval T is large.

6 Conclusion

In this paper we propose a systematic strategy to provide a formal quantitative

analysis of aircraft systems. Our approach generates a Prism specification from the

system failure model described in a tabular notation and can, in a simple and direct

way, verify the violation of any safety requirements using the Prism model checker

over a computed Markov representation.

Markov models can be quite complex to handle, due to the necessary treatment of

space-time characteristics. Although there are several tools that enable the creation

and analysis of Markov models from graphical interface useful [21], it can be

extremely difficult to create the failure model of a system from an ad-hoc approach

using Markov chains directly to obtain a reliable result of the analysis, especially

when considering aspects of latent and evident failure, monitoring and repair

schedule, which are essential in the context of aircraft. Moreover, if we consider that

the traditional fault-tree model is constructed to assess cause and probability of single

undesirable failure condition, is a fact see that the effort and the number of models

generated to allow the analysis of each failure condition are extremely large making

the process very expensive [2, 10].

A systematic strategy to perform quantitative safety assessment of Simulink diagrams using

Prism - Technical Report 33

In Prism, as already seen, each modeled system computes a Markov representation

and contrary to what occurs traditionally, our strategy offers an alternative to the

specialists to create the system failures model in Markov systematically. In addition,

the generated model can check all undesirable failure conditions about its criticality

applying the Prism Model Checker. Furthermore, engineers can extract and develop

the generated formal model to investigate dynamic aspects of system: experiments

can be done changing the initial values of local variables to check existing failure

scenarios, maintenance scheduled to account for the Minimum Equipment List,

Phased Mission, reconfiguration triggers based on sync with failure events [2, 8].

Therefore, recent researches are advancing to identify counter-examples of

stationary models, allowing a better traceability of the basic failures and facilitating

the cycle of checking and validating of the system design [22].

As future works we intend to mechanize the translation strategy and incorporate it

as a plug-in in the Matlab/Simulink software. This allows immediate use of our work.

From this, we will collect some metrics, check how much the strategy scales, and try

to identify practical advantages/disadvantages of the strategy. Another direction is to

consider dynamic faulty behavior, capturing the dynamic information in the same way

as static information.

References

1. M. Stamatelatos et al.. Fault Tree Handbook with Aerospace Applications.

NASA Office of Safety and Mission Assurance, Washington, DC. Version 1.1.

Aug. 2002.

2. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment

Process on Civil Airborne Systems, SAE Inc, Nov. 1996.

3. ARP 4754: Certification Considerations for Highly Integrated or Complex

Aircraft, SAE Inc, Dec. 1996.

4. O. Lisagor, J. McDermid, D. Pumfrey. Towards Safety Analysis of Highly

Integrated Technologically Heterogeneous Systems– A Domain-Based Approach

for Modelling System Failure Logic, 24th Inter. System Safety Conference, 2006.

5. Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner. Analysis and synthesis
of the behaviour of complex programmable electronic systems in conditions of

failure. Reliability Engineering & System Safety, 71 (3):229-247, 2001.

6. R. D. Alexander and T. P. Kelly. Escaping the non-quantitative trap. 27th

International System Safety Conference, pages 69-95, 2009.

7. M. Kwiatkowska, G. Norman and D. Parker. PRISM: Probabilistic Model

Checking for Performance and Reliability Analysis.ACM SIGMETRICS

Performance Evaluation Review, 36(4), pages 40-45.March 2009.

8. M. Kwiatkowska, G. Norman and D. Parker. Quantitative analysis with the

Probabilistic Model Checker PRISM. Electronic Notes in Theoretical Computer

Science, 153(2), pages 5-31, Elsevier. May 2005.

9. The MathWorks Inc. Simulink User's Guide, 2008.
10. J. A. McDermid, O. Lisagor, D. J. Pumfrey. Towards a Practicable Process for

Automated Safety Analysis. 24th Int. System Safety Conference, 596-607, 2006

http://www.prismmodelchecker.org/bibitem.php?key=KNP09a
http://www.prismmodelchecker.org/bibitem.php?key=KNP09a

34 Adriano Gomes, Alexandre Mota, Augusto Sampaio, Joabe Jesus

11. A. Joshi and M. P. Heimdahl. Model-Based Safety Analysis of Simulink Models

Using SCADE Design Verifier. In SAFECOMP, volume 3688 of LNCS, pages

122–135. Springer-Verlag, Sept 2005.

12. A. Joshi and M. Heimdahl, Behavioral Fault Modeling for Model-based Safety

Analysis, 199-208, 10th High Assurance Systems Engineering Symposium, 2007

13. O. A. Kerlund et al. ISAAC, A framework for integrated safety analysis of

functional, geometrical and human aspects. European Congress on Embedded

Real Time Software (ERTS 2006), 2006.
14. Y.Papadopoulos, M. Maruhn, Model-based synthesis of fault trees from Matlab-

Simulink models, Inter. Conference on Dependable Systems and Networks, 2001.

15. M. Bozzano and A. Villafiorita. Improving system reliability via model checking:

The FSAP/NuSMV-SA safety analysis platform. In Proceedings of SAFECOMP

2003, LNCS 2788, Edimburgh, Scotland, UK, pages 49-62. Springer, 2003.

16. B. R. Haverkort. Markovian Models for Performance and Dependability

Evaluation, volume 2090, of Lectures on Formal Methods and Performance

Analysis, pages 38-83. Springer Berlin/ Heidelberg, 2001.

17. M. Kwiatkowska, G. Norman, and D. Parker. Controller dependability analysis

by probabilistic model checking. Control Engineering Practice, 15(11):1427–

1434, 2006.

18. P. R. Serra, Safety Assessment of aircraft systems. 2º Edition. 2008.
19. L. Grunske, R. Colvin, K. Winter. pFMEA: Probabilistic Model-Checking

Support for FMEA. 4th Int. Conference on the QEST, 2007.

20. Technical Report. Available on: www.cin.ufpe.br/~ajog/technical_report.pdf

21. D. Siewiorek, R. Swarz. Reliable Computer System: Design and Evaluation, 3th

edition, 1998.

22. H. Aljazzar, et al. Safety Analysis of an Airbag System Using Probabilistic

FMEA and Probabilistic Counterexamples. pp.299-308, 6th International

Conference on the Quantitative Evaluation of Systems, 2009.

23. C. Baier, B. Haverkort, H. Hermanns and J. Katoen. Automated Performance and
Dependability Evaluation Using Model Checking. Lecture Notes In Computer

Science; Vol. 2459, Pages: 261 - 289, ISBN:3-540-44252-9, London, UK, 2002.

24. Software considerations in airborne systems and equipment certification.

DO-178B, RTCA Inc., Washington D.C., December 1992.

25. Elmqvist, J. Nadjm-Tehrani, S. Formal Support for Quantitative Analysis of

Residual Risks in Safety-Critical Systems. 11th High Assurance Systems

Engineering Symposium, p. 154-164, Nanjing, 2008.

http://www.cin.ufpe.br/~ajog/technical_report.pdf
http://www.amazon.com/Daniel-P.-Siewiorek/e/B000API138/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Robert%20S.%20Swarz
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4708846
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4708846

