
Universidade Federal de Pernambuco

Centro de Informática

Pós-graduação em Ciência da Computação

Tese de Doutorado

A Unifying Theory of Object-Orientation

por

Thiago Luiz Vieira de Lima Santos

Orientador : Prof. Dr. Augusto Sampaio

Co-Orientadora : Profa. Dra. Ana Cavalcanti

ii

Resumo

O uso de linguagens orientadas a objetos em diversos ramos de aplicações é comum nos dias atuais.

O interesse em tais linguagens e nos diferentes domínios nos quais elas vêm sendo empregadas têm

alavancado a pesquisa e o uso de métodos formais para descrever precisamente o comportamento de

programas neste paradigma. Trabalhos relacionados a outros paradigmas, como o imperativo e o

funcional, têm sido progressivamente revisados, ou estendidos, para tratar características presentes

nas linguagens orientadas a objetos, como, por exemplo, o encapulamento, a ligação dinâmica, o

polimorfismo, e, em alguns casos, herança comportamental. De um modo geral, já existe um

razoável conjunto de formalismos usados para descrever as linguages, orientadas a objetos ou não,

mas suas diferentes sintaxes, ou principalmente seus diferentes frameworks semânticos, dificultam

uma combinação ou comparação direta entre as linguages descritas.

A Unifying Theories of Programming (UTP) é um framework semântico proposto por Hoare

e He para permitir que diferentes paradigmas sejam descritos usando uma mesma base, no caso,

predicados alfabetizados. Cada conceito do paradigma que está sendo estudado é descrito como

um predicado lógico, e ao conjunto de construtores e predicados relacionados a um paradigma é

dado o nome de teoria. A definição de diferentes teorias usando um formalismo comum, que já foi

mostrado como sendo poderoso o suficiente para modelar desde uma linguagem seqüencial simples

até interações entre processos concorrentes que se comunicam, permite que elas sejam diretamente

combinadas ou comparadas.

Neste trabalho é criada uma teoria para orientação a objetos com sua semântica definida

usando-se os predicados alfabetizados da UTP. Usando esta teoria, que é uma combinação das teo-

rias de designs e procedimentos de alta ordem apresentados por Hoare e He, descrevemos conceitos

como herança e ligação dinâmica. Posteriormente, combinamos esta teoria com uma que trata de

ponteiros para, finalmente, propormos e provarmos leis para programas orientados a objetos. É

importante ressaltar entretanto que, como estamos trabalhando com semântica e não com uma

linguagem específica, as leis se aplicam para quaisquer linguagens orientadas a objetos que possam

ser descritas usando a semântica proposta.

Palavras-chave: Orientação a objetos; UTP; Semântica Relacional; Leis Algébricas; Integração

iii

iv

de Linguages.

Abstract

Currently, the use of object-oriented languages in a wide range of applications is very common.

The interest in such languages, and the different domains in which they have been applied, have

encouraged the research and the adoption of formalisms to describe precisely the behaviour of

programs in this paradigm. Results related to other paradigms, such as imperative and functional,

have been progressively revised, or extended, to cope with object-oriented features like encapsu-

lation, dynamic binding, polymorphism, and, in some cases, behavioural inheritance. There is

a relatively large set of such formalisms used to describe different languages, object-oriented or

not, but their different syntaxes, and semantic frameworks difficult their straight combination or

comparison.

The Unifying Theories of Programming (UTP) is a semantic framework proposed by Hoare and

He to allow different paradigms to be described under the same basis of alphabetised predicates.

Each paradigm concept under consideration is described by logical predicates, and the set of

constructs and predicates related to a given paradigm is named a theory. Defining different theories

using a common formalism, already known to be powerful enough to model from a simple sequential

language to interactive and concurrent communicating processes, it is possible to combine and

compare them.

This work defines a theory of object-orientation with its semantics defined in terms of the UTP

alphabetised predicates. The description of concepts, such as inheritance and dynamic binding,

is provided; using this theory, which is a combination of the theory of designs and higher-order

procedures presented by Hoare and He. Finally, we combine this theory with another that address

pointers and then we propose and prove laws for object-oriented programs. Since we are working

with semantics, not with the syntaxes, these laws apply to any object-oriented language that share

the concepts present in our theory.

Keywords: Object-orientation; UTP; Relational Semantics; Algebraic Laws; Integration of Lan-

guages.

v

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.1.1 Related Work . 3

1.1.2 Unifying Theories of Programming . 4

1.2 Objectives . 5

1.2.1 A Brief Example . 6

1.3 Outline . 8

2 Object-Orientation Formalisation 11

2.1 Approaches to Semantics . 11

2.2 Laws and Refactorings . 19

2.3 Mechanization . 20

2.4 Conclusions . 21

3 Introduction to the Unifying Theories of Programming 23

3.1 Introduction . 23

3.2 Laws . 25

3.3 Refinement . 26

3.4 Terminating Programs . 27

3.5 Healthiness Conditions . 29

3.6 Higher Order Programming . 29

3.7 Theories Integration . 30

3.8 Closedness . 32

3.9 Conclusions . 32

4 Object-Orientation in the UTP 35

4.1 Introduction . 35

4.1.1 Assumptions . 37

vii

viii CONTENTS

4.2 Observational Variables . 37

4.3 Healthiness Conditions . 39

4.4 Declarations . 43

4.4.1 Classes . 43

4.4.2 Attributes . 44

4.4.3 Methods . 47

4.5 Variables . 49

4.6 Expressions . 50

4.6.1 Well-definedness . 50

4.6.2 Object Creation . 52

4.6.3 Type Test . 52

4.6.4 Type Cast . 53

4.6.5 Attribute Access . 53

4.7 Commands . 54

4.7.1 Well-definedness . 54

4.7.2 Assignments . 55

4.7.3 Conditional . 57

4.7.4 Recursion . 58

4.7.5 Method Call . 59

4.8 Conclusions . 60

4.8.1 Verification . 61

5 Pointers in the UTP 63

5.1 Overview . 63

5.2 Pointers Theory . 65

5.2.1 Observational Variables . 65

5.2.2 Healthiness Conditions . 67

5.2.3 Variables . 69

5.2.4 Commands . 69

5.2.5 Records . 71

5.3 Integration . 74

5.3.1 Observational Variables and HCs . 74

5.3.2 Restricting HP3 . 75

5.3.3 Variables . 76

5.3.4 What is a Value? . 77

5.3.5 Expressions . 77

5.3.6 Commands . 79

CONTENTS ix

5.4 Conclusions . 84

6 Laws for Object-Orientation 87

6.1 Introduction . 87

6.2 Laws . 89

6.3 Conclusions . 93

7 Conclusions 95

7.1 Resume and Results . 95

7.2 Next Steps . 97

7.3 Schedule . 97

7.4 Future Works . 98

7.4.1 Features Set Extension . 98

7.4.2 Refactorings . 98

7.4.3 Mechanization . 99

A Theory of Object-Orientation 101

A.1 Observational Variables . 101

A.2 Healthiness Conditions . 101

A.3 Declarations . 102

A.4 Abstractions . 103

A.5 Variables . 104

A.6 Expressions . 104

A.7 Commands . 105

B Healthiness Condition Laws 109

B.1 Closedness of OO HCs . 109

B.2 Commutativity of OO HCs . 116

B.3 Other HCs Laws . 119

C Theory of Pointers 121

C.1 Observational Variables . 121

C.2 Healthiness Conditions . 121

C.3 Variables . 122

C.4 Commands . 123

D Integrated Theory 125

D.1 Observational Variables . 125

x CONTENTS

D.2 Healthiness Conditions . 126

D.3 Declarations . 128

D.4 Abstractions . 129

D.5 Variables . 130

D.6 Expressions . 130

D.7 Commands . 132

List of Figures

1.1 Java like implementation of classes Account and BAccount and a testing program. 6

1.2 UTP representation for classes Account and BAccount and the testing program. . . 8

3.1 Lattice of predicates. 27

3.2 Designs subset. 28

3.3 Higher order procedures subset. 30

3.4 A subset theory relationship. 31

3.5 A Galois connection. 31

3.6 Theories integration. 33

5.1 A program using pointers. 72

5.2 An object-oriented program with sharing. 82

xi

xii LIST OF FIGURES

List of Tables

3.1 Healthiness conditions for designs. 29

4.1 Object-oriented declarations. 43

4.2 BNF for object-oriented expressions. 50

4.3 BNF for object-oriented commands. 54

7.1 Timetable. 97

A.1 BNF for object-oriented expressions. 104

A.2 BNF for object-oriented commands. 106

D.1 BNF for object-oriented expressions. 130

D.2 BNF for object-oriented commands. 132

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

In this chapter we present an introduction to our research motivation and topics, and describe

the overall structure and objectives of this thesis. In Section 1.1 we provide an overview of the

context. Next, in Section 1.2 we highlight our objectives, and in Section 1.3 we describe the thesis

general structure.

1.1 Overview

Since object-oriented languages have been widely used in different domains and applications, there

has been a lot of interest in understanding and describing the meaning of object-oriented programs.

Approaches like operational [Plo81], denotational [Sch86], and algebraic semantics [HHJ+87] have

been used to describe different kinds of languages, and how their concepts are related.

The wide-spread use of the Unifying Modeling Language [BJR98, OMG97] is one of the factors

that contributed to the increasing number of descriptions of systems using concepts common to

the object-oriented paradigm, and further development of these systems using an object-oriented

language like C++ [Str85] or Java [GJSB00]. In this context, more specifically in language design,

imperfections like the ones found in Eiffel’s [Mey92, Coo89] type system has revealed a strong need

to introduce some sort of formalism in such languages, or to analyse them, to avoid inconsistencies

with static or runtime types, or to allow their reliable use in critical application domains.

Not only for object-oriented languages, but in the general case, the industry has become aware

that the use of formalism at some stages of the software development process can avoid program

errors or, at least, improve software reliability. The inclusion of formal method techniques into

software development processes has been an active research topic [Jon90, Abr96, BRL03, BCD+06].

It is important to remark, however, that there are other tools, usually less formal, that can minimize

errors in the final software product like, for example, peer reviews and testing strategies already

included in software development processes such as Extreme Programming (XP) [DW06].

1

2 1. Introduction

Basically, there are two well-known approaches to introduce formalism in a software develop-

ment process. In a constructive approach, the system construction starts from an abstract formal

specification and by the application of refinement steps, based on a refinement calculus, a correct

system is developed, with concrete and implementable abstractions [Mor94, BvW98], such as in

the B method [Abr96] and in VDM [Jon90]. Each refinement step aims to reduce abstraction to

allow machine implementation.

In a verification approach [GH93], where some properties about a given system are specified

independently of its implementation, and after, or even during the implementation phase, these

properties are formally verified in order to validate such an implementation. In some cases, these

specifications are just a starting point to the software development. They are expected to allow

developers to have a better understanding of what they are going to implement and, perhaps, to

foresee the general behaviour of the system. Actually, the introduction of specification during soft-

ware implementation has become a reality with the use of specification languages that are closer

to the implementation languages; for example, for Java we have the Java Modeling Language

(JML) [LBR99, BCC+03], which allows developers to introduce specification into Java programs.

Another example of integration between host and specification languages is the Boogie method-

ology [BCD+06], where programs in C# [Mic07a] are extended with specifications, resulting in a

language named Spec# [BLS05].

As usual, the approach to be followed depends on: cost, time budgets, application domain,

and, moreover, on the set of available tools. In the following, we cite some examples of efforts to

introduce formalism in practical software development processes:

• there are many attempts to formalise visual notations like UML [FEL97, Eva98, BF98, RG98,

EFLR99, LB98, LBE00, FOW01, PMP01], or at least to enrich it with precise descriptions by

means of annotations [KW98, RG02] – allowing code generation in better conformance with

the graphical representation. Another example is the definition of a visual language with a

formal background like Alloy [Dan02, Jac06] and its use for reasoning about object-oriented

programs;

• for Java, a lot of work has been done to prove its type-safety [DE98, vON99, Sym99, PHM99],

or to describe formally the Java Virtual Machine behaviour [Qia99, vO00, Hui01] – to avoid

static and dynamic problems with its type system or to predict system behaviour;

• as already mentioned, there are approaches concerned with the introduction of specifications

into source code [LBR99, BCC+03, BCD+06], during the implementation phase.

The actual fact is that the formalism can be introduced using different frameworks and tools to

support different needs, at different points of the software development process, but the general

idea is that with formalism one can reason about programs. This challenge is pertinent for different

programming paradigms and languages.

1.1. Overview 3

The context of this thesis is the semantics of object-oriented languages, where we define a

theory in the Unifying Theories of Programming (UTP) [HH98] that allows different languages to

be mapped into it, and thus, properties (i.e. laws) can be proved. The introduced semantics can

be used in both approaches, constructive or verification. At some stage, these approaches need a

semantic framework (in our case we adopt the UTP) and a theory for object-orientation (our theory

can model object-oriented features) to allow reasoning about object-oriented programs. Moreover,

the theory integration is essential to the UTP and thus we can combine the developed theory with

others. In Chapter 4 we present the theory for object-orientation which is already a combination

of designs and higher-order procedures, and later, in Chapter 5, we provide an integration of this

theory with a theory of pointers [CHW06] (extended in [HCW07]).

1.1.1 Related Work

The formalisation of object-oriented systems has been under great evolution, but there are many

problems and features still to be handled [LLM06b, LLM06a]. In the sequel we introduce some

works on formalisation that are described in more detail in Chapter 2.

In [AL97] Abadi and Leino introduce a logic similar to Hoare logic [Hoa69] for reasoning about

object-oriented programs and prove its soundness. Their approach, however, lacks some of the

concepts common in object-oriented languages such as dynamic binding. In [AL03] the authors

revised [AL97] to include proofs and more recent related works. In [Lei98] Leino extends the

work presented in [AL97] to cope with recursive types and dynamic binding. He also provides a

systematic fine-grained separation of object-oriented constructs, which we adopt here.

The work presented in [MPH97], where Müller and Poetzsch-Heffter provide a description of

an object-oriented language named KOOL (kernel of object-oriented languages), introduces some

general techniques for object-oriented program verification that are further detailed in [PHM98].

The set of features handled, however, is closer to real programming languages than those presented

in [AL97]; it includes dynamic binding and inheritance. Nevertheless, unlike [AL97], soundness

is not addressed. In [PHM99] a high-order logic is used to prove the soundness of a structural

operational semantic defined for the language presented in [PHM98], extended with encapsulation.

In [Ral00, BMvW00], an extension of [MS97], Back et al. concentrate on the notion of re-

finement to allow object substitutions; basically a refinement calculus [BvW98] is extended to

handle object-oriented features. The subtyping relation is defined and used to show that, if a

subclass is a refinement of its superclass, a subtype instance can correctly replace an instance of

the original superclass, the subtype polymorphism. Behavioural aspects of subtyping presented

in [Ame90, LW94, Mey97] are also considered.

Cavalcanti and Naumann [CN00] presents a language called Refinement Object-Oriented Lan-

guage (ROOL) which is a subset of sequential Java combined with some refinement constructs such

4 1. Introduction

as Morgan’s specification statements [Mor94]. In their work, a semantics for ROOL is provided

in terms of weakest preconditions, and a set of laws [BSC03] and refactorings [Cor04] have been

proposed and proved using this semantics.

Another important active research topic is refactoring, whether for object-oriented code or

not, aiming to restructuring code to improve quality aspects like, for example, reusability and

easy maintenance. In the context of object-oriented languages, Fowler [FBB+99] described a set

of refactorings that has become wide-spread among programmers. These descriptions, however,

lack a formal guarantee of correctness, as proposed by [Opd92, Utt92, Rob99, TB01] and more

recently by [Cor04, BM06]. Refactoring of code is largely available in integrated development

environments, but correctness is normally based on test cases executed before and after program

refactoring.

The mechanization of formalisations has also been performed. The works of Oheim [vO00] and

Huisman [Hui01] are examples of formalisations of object-oriented features using higher-order logic

and the theorem provers Isabelle [Pau94, NPW02] and PVS [ORS92]. While [vO00] concentrates

on proving Java type-safety, [Hui01] describes and uses a tool LOOP [vdBJ01] for translating

Java programs, with or without code annotations, in Isabelle or PVS theories to allow proving

properties about these programs.

As already mentioned, the Java Modeling Language (JML) allows introducing specification an-

notations into Java code. These special annotations describe class, attribute and method invariants

which are captured by tools such as LOOP and ESC/JAVA [FLL+02, BRL03] to statically verify

programs. These tools, however, are useful when programmers are used to add specifications during

the implementation process; for those systems without these annotations, other tools can be used to

automatically fill this gap of information in the checked code, but human support is still required.

In [NE02] Nimmer and Ernst highlight the importance of these kinds of tools [EPG+06, FL01].

Another practical approach has been the use of Microsoft Visual Studio[Mic07b] to check, during

development time, programs written in Spec#, already mentioned.

1.1.2 Unifying Theories of Programming

Sometimes, definitions of object-oriented features using formalisms, descriptions of laws and even

mechanization are not enough, and we are requested to compare, or combine, the object-oriented

paradigm with others; like, for example, combining object-oriented features with communicating

processes, or introducing time in the object-oriented paradigm. This problem can be more sys-

tematically overcome if formal descriptions of different paradigms use the same formalism, and,

moreover, if it defines a mechanism to integrate these descriptions. These are important capabili-

ties of the UTP framework.

The UTP supports the description of constructs from different paradigms using the same

1.2. Objectives 5

formalism; each paradigm is characterised by a theory: a set of predicates that describe properties

of a particular set of observational variables, and that satisfy particular healthiness conditions,

which are filters selecting only valid predicates of a given theory. Combinations of these theories

can be used to describe richer paradigms.

In the long term, work in the UTP aims at the creation of a repository of theories that can be

compared and combined, in much the same way as software components are used today. In the case

of the UTP, however, we are concerned with language semantics, not code. Each new work in this

formalism helps to increase this repository of theories, which starts with sequential programming

languages, terminating programs (designs), higher-order programming and sequential processes

already defined. In this thesis we add a theory of object-orientation (without sharing) to this set

and combine it with a theory of pointers presented in [CHW06] and extended in [HCW07].

In [HLL05], we find a description in the UTP of an object-oriented language that handles

dynamic binding, pointers and visibility mechanisms, among other object-oriented features; the

authors also present a set of rules related to refinement. Another example of an object-oriented

language described in the UTP is presented in [QDC03], where the semantics of TCOZ [MD98,

MD00], a language that combines processes, classes and time, is defined. The process aspects,

however, are the focus of attention.

In [Kas05] Kassios provides a theory of object-orientation in terms of a predicative program-

ming framework [Heh04] similar to the UTP. His objective is to provide general object-oriented

concepts independently of the class construct, which most approaches currently consider as a sin-

gle unit [AL97, MS97, PHM99, CN00, Ral00, PdB03]. He shows, for example, that inheritance

and refinement are independent of the class concept, and if some restrictions are imposed to these

general concepts then object-orientation is characterised as a particular case.

1.2 Objectives

The long-term goal of the project in which this thesis is embedded is to define a combined UTP

theory for reactive, object-oriented designs, and use it to give a semantics to OhCircus [CSW05].

This is an object-oriented extension of Circus [WC02], a combination of Z [WD96] and CSP [Hoa85,

Ros98] whose semantics is based on the UTP. Circus is a language designed to allow modeling

of concurrent and reactive systems using constructs of Z and CSP together; it also includes a

refinement calculus similar to that presented in [Mor94]. A definitive semantics of Circus in the

UTP is provided in [Oli05]. Our work is an important step to allow the use of a Circus-like language

to reason about object-oriented programs with reactive behavior.

In this work we:

• introduce a theory of object-orientation in the UTP that enable us to reason about

6 1. Introduction

relevant concepts of object-oriented programs with an stepwise approach to simplify further

integrations;

• combine the theory of object-orientation with a theory of pointers to allow reason-

ing about more realistic object-oriented programming languages and exemplify the theories

integration process;

• describe laws of programming proving their soundness to allow behaviour preserving

program transformations with, or without, a pointer semantics using an algebraic reasoning

as a complement to the inductive approach.

It is important to emphasize that in the UTP the logical background and the concept of refine-

ment are intrinsic to the formalism. As we introduce the constructs of object-oriented programs as

a UTP theory we already have a logical framework that enable us to verify if a given program re-

fines a specification. Moreover, in contrast to [AL97, PHM98] the UTP do not distinguish between

programs and specifications; they are interchangeable and can be mixed together. Another fact to

take into account is that some of the UTP theories have been mechanized [OCW06, Oli05] using

the ProofPower [Ltd89] theorem prover, and an extension to cope with high-order procedures and

object-oriented features would be desired, but it is not a primary focus at this stage of our research

which is concerned with the integration of a theory for object-orientation and a theory of pointers,

presented in Chapter 5.

1.2.1 A Brief Example

c l a ss Account {

int number ;

f l o a t b al an ce ;

// . . . o t h e r a t t r i b u t e s

int get Bal an ce () {

return thi s . b al an ce ;

}

void set Bal an ce (int b al an ce) {

thi s . b al an ce = b al an ce ;

}

// . . . o t h e r s e t / g e t methods

void c r e d i t (f l o a t val u e) {

thi s . b al an ce = thi s . b al an ce + val u e ;

}

void d e b i t (f l o a t val u e) {

thi s . b al an ce = thi s . b al an ce − val u e ;

}

// . . . o t h e r s e r v i c e s

}

c l a ss BAccount extends Account {

int bonus ;

// . . .

void c r e d i t (f l o a t val u e) {

thi s . bonus = thi s . bonus + 1 ;

super . c r e d i t (val u e) ;

}

void b o n i f y () {

super . c r e d i t (bonus) ;

thi s . bonus = 0 ;

}

// . . .

}

c l a ss Main {

public s t a t i c void main (S t r i n g [] ar gs } {

Account x = new BAccount () ;

x . c r e d i t (1 0 0) ;

System . out . p r i n t l n (x . get Bal an ce ()) ;

i f (x instanceof BAccount) {

((BAccount) x) . b o n i f y () ;

}

System . out . p r i n t l n (x . get Bal an ce ()) ;

}

}

Figure 1.1: Java like implementation of classes Account and BAccount and a testing program.

1.2. Objectives 7

We concentrate on the definition of a theory for object-orientation capable of handling: sub-

typing, inheritance, dynamic binding, and self-recursive methods. In this subsection we provide an

introductory overview of our notation and the features we are dealing with using a short example.

Figure 1.1 shows a Java like code for a subset of a simple banking system, where we have a class

Account and its subclass BAccount, which are used by the program Main.

The code in class Main reveals the importance of a minimum set of features. The class

BAccount must inherit attributes and methods from Account, to allow correct object construc-

tion and the selection of the appropriate credit implementation (which uses a type casting guarded

by a type test) is based on runtime.

In our theory we break down class constructs in separated blocks to independently introduce

class names, attributes and methods into an object environment, responsible for recording these

information. Each of the approaches discussed in Section 1.1.1 has some kind of environment to

record types and other relevant information. We show in Chapter 3 that in the UTP these variables

are called observational variables, and in Chapter 4 we define the structure of these variables in

our theory. To update these observational variables of our theory we defined constructors for

class introduction (class), attribute introduction (att) and method introduction or redefinition

(meth). Using our notation, an equivalent representation for the code in Figure 1.1 is presented

in Figure 1.2.

We introduce object information using the UTP sequential composition operator (‘;’). Notice

that attribute and method declarations must include the name of the class they belong to; with this

we can have an interleaving of declarations; for example all class declarations could come before

attribute or method. This flexibility simplifies our UTP definitions but pose some restrictions on

the declaration order (see Section 4.4).

For the sake of simplicity, and because of their similar treatments, we use only booleans (B)

and integers (Z) to represent the primitive types; the identifier this, which stands for the current

target object is replaced by self (mandatory for attribute accesses and updates), and parame-

ters are passed using three different mechanisms1: value, result, or value-result. Constructors

are parameterless and associated to the expression new. All occurrences of super are replaced

by its macro expansion, and, moreover, since we are dealing with semantics, other simplifica-

tions with no loss of expressiveness are considered, as avoiding name clashes for attributes, pa-

rameters and methods (except for redefinitions), or trivial transformations like ‘((A)x).m()’ to

‘var y : A; y := x; y.m(); x := y’, which eliminates the cast ‘(A)x’ by using a fresh local variable

y of type A. In the latter case, the command x := y is required only in the absence of pointers.

1In Chapter 5 a call-by-reference parameter passing mechanism is also considered.

8 1. Introduction

class Account;

att Account number : Z, balance : Z;

// . . . other attributes;

meth Account getBalance

=
(

res b1 : Z • b1 := self.balance
)

;

meth Account setBalance

=
(

val b2 : Z • self.balance := b2
)

;

// . . . other set/gets methods;

meth Account credit

=
(

val value1 : Z • self.balance := self.balance + value1
)

;

meth Account debit

=
(

val value2 : Z • self.balance := self.balance − value2
)

;

class BAccount extends Account;

att BAccount bonus : Z;

// . . . other attributes;

meth BAccount credit

=

(

val value1 : Z •
self.bonus := self.bonus + 1;

self.balance := self.balance + value1

)

;

meth BAccount bonify

=

(

•
self.balance := self.balance + self.bonus;

self.bonus := 0

)

;

// . . . other services;

var Account : x;

x := new BAccount;

x.credit(100);

var Z : b;

x.getBalance(b);

//print(b);














var BAccount : z;

z := (BAccount)x;

z.bonify();

//copy semantics

//requires x := z;















� x is BAccount � II

x.getBalance(b);

//print(b);

Figure 1.2: UTP representation for classes Account and BAccount and the testing program.

1.3 Outline

Apart from the introductory chapter, this thesis is organized as follows:

• Chapter 2 describes previous and related works in more detail than in Section 1.1.1, with

a deeper analysis of their characteristics;

• Chapter 3 presents an introduction to the UTP semantic framework, including an overview

of terminating programs, higher-order programming theories, and theories integration that

are the basis for our work;

• Chapter 4 shows the modeling of object-oriented concepts as a theory in the UTP, its

variables and behaviours associated to constructs, commands and expressions;

• Chapter 5 introduces a theory for pointers in the UTP and relates it to the theory of

object-orientation presented in Chapter 4;

• Chapter 6 introduces laws for object-oriented programs that are proved to preserve the

semantics;

1.3. Outline 9

• Chapter 7 summarises the results achieved and presents topics for future work.

The Appendixes contain the theories descriptions, proofs for laws and auxiliary results.

10 1. Introduction

Chapter 2

Object-Orientation Formalisation

In this chapter we provide an overview of some efforts in the direction of formalisation of object-

oriented languages. We start, in Section 2.1, with some approaches of formalisation and works

related to the UTP framework. After that, we consider laws and refactorings (Section 2.2) and

mechanization (Section 2.3), concentrating on object-orientation, and finally, in Section 2.4, we

present our conclusions.

2.1 Approaches to Semantics

In [AL97], which was revised in [AL03] to include theorem proofs and related works, Abadi and

Leino provide a programming logic in the context of object-oriented languages. They describe

a logic similar to the Hoare logic [Hoa69] to allow reasoning about partial correctness, pre- and

postconditions, in contexts where more sophisticated concepts related to data structures, i.e. in-

heritance and dynamic binding, are present, as in object-oriented languages. This work represents

a starting point for the many others we discuss in this section. In this work well-known concepts

of object-oriented programs (like inheritance) are not handled; we show that later extensions of

this work include these constructs, notably in an extension by Leino himself [Lei98].

In their approach, objects (its fields and methods) are defined by means of a simple set of

constructs, partially borrowed from [AC96]. Primitives for class declaration and inheritance are

not provided. Based on these object constructs they define stacks and an object store to represent

the runtime environment, modeling their restrictions. Stacks map variable names to booleans or

references (sharing is allowed), and stores map object fields to booleans or references, and map

methods to their definitions. The constructors of the specification language are fully described in

terms of operational semantic rules to show how they alter the program stacks and storage; these

rules specify, for example, what happens when a new instance is created. With this operational

description, the set of valid programs is now restricted to those which, by mean of rule applications,

11

12 2. Object-Orientation Formalisation

reach a final state; that is, those programs for which there exists a finite sequence of derivation

steps. Non-terminating programs cannot be handled; attempts to derive a program with an infinite

loop diverge.

To create similar instances of an object (class concept is not present), specifying objects with

the same attributes and methods, the instance declaration code must be repeated for each instance.

Therefore, during object creation one cannot use directly the definition of a type (class) to create

an arbitrary instance with its attributes and methods predefined, and then set default values as

usual. All attributes and method declarations, including a simulation of dynamic binding, must

be written by the programmers. There is no code inheritance.

So far we have discussed how to create arbitrary instances of objects that can related or not: an

object-based model. To characterise groups of objects with similar properties and, furthermore, to

allow the definition of restrictions in terms of pre- and postconditions for these groups of objects,

the concept of type has been introduced, and thus a type-based model is defined. The possible

types are Bool and object types defined by the users. An object type defines which attributes and

methods an instance must have to be considered part of a group, usually named class. There is a

clear distinction between types and instances; they are not explicitly attached.

Inheritance is not explicitly defined in the object type; a type B is considered a subtype of A

only if all attribute names and types defined for B are equal, or a conservative extension of those

for A, and if all method names are equal, and return types are equal or subtypes of the original

methods for A. There is a subtype notion, but not inheritance; notice that the programmers have

to rewrite all attributes, and methods redefined or not. It is important, however, to make it clear

that redefined methods are not restricted to those which respect behavioural constraints, as those

defined in [LW94]. With the introduction of types, a type system for objects can be defined and

only programs that are well-formed according to this type system are considered: a close relation

between instances and types is established. In particular, an instance introduced in the object

store must have its structure defined by a valid type. Operational rules are introduced to show

how each of the program constructs can be used in accordance with this type system.

Their final step was to associate pre- and postconditions to specific methods of a given type, the

concept of object specification. Using a specific set of special functions and variables the expected

behaviour of a program in terms of its input and output variables, stacks and storages, can be

represented. Using what they call transition relations, restrictions to be respected before and

after program execution, possibly after some method calls, are defined. There is a parenthood

relation between specifications: a specification for a type B can be considered a subspecification

of the specification for A if it is more restrictive, that is, all instances that are expected to satisfy

specification B must satisfy A. They show that if a valid set of constructs, type definitions, and

object specifications, are used, if a final state is reached, and this state satisfy all restrictions it is

2.1. Approaches to Semantics 13

indeed the correct one. Using the type and specification systems defined in terms of an operational

semantic rules the soundness of the theory is established.

Their logic allows sharing, where all object instances are saved into a shared object store.

Recursive types, however, are not allowed. In [Lei98] Leino extended the logic presented in [AL97]

to allow recursive types, and introduced single inheritance explicitly. Differently from [AL97],

Leino starts presenting the type system of the language and later he defines the specification

language. All type system restrictions are described by means of operational semantic rules.

The object environment is formed of a list of declarations of types, fields and methods. The

declarations of types are pairs T <: U , where T and U are names indicating the subclass and

superclass, respectively. It defines explicitly the subtype relation, a partial function from name to

name. Two built-in types, Boolean and Object, are introduced, and judgments to check if a given

type belongs to the environment are described. These rules say, for example, that Object belongs

to the typing environment, and that superclasses must be previously defined. In our theory (see

Sections 4.3 and 4.4) we represent these kind of rules as healthiness conditions and restrictions in

class declarations.

To introduce an attribute, a function with the name of the attribute is created and a mapping

from source class to attribute type is defined. For instance, for an attribute f in a class T with type

U , a function f : T 7→ U , where T ranges over objects present in the program environment and

U ranges over T ∪ {Boolean,Object}, is created. As with types, all attributes must have different

names. The author also introduces the concept of closure of attributes, required by object creation

in the presence of inheritance. This closure is common to most formalisation of object-orientation.

Methods are modeled as quadruples m : T 7→ U : R where: m is the method name, T is the

target type (of the object to which the method is applied), U is the result type of the method, and

R is a specification relation over the method body, indicating pre- and postconditions, similar to

the transition relations in [AL97]. In both approaches [AL97, Lei98], methods are parameterless;

objects receive parameters to work with by means of fake attributes set up before calling the

method. It does not seem an elegant solution but indeed does not reduce language expressiveness.

The forthcoming approaches do not have this limitation. Method names must also be distinct,

which conflicts with the concept of dynamic binding, as we explain. The closure of methods returns

all methods defined for a given type, but as redefinition of methods is not allowed, dynamic binding

is not possible, or even modeled, and, therefore, in this case behavioural inheritance is trivial.

As in [AL97], methods are extended with their specification, contracts described in terms

of pre- and post-states of a method. Now, an axiomatic semantics is provided describing what

are the valid commands according to the typing system and general relations of pre- and post-

conditions. The axiomatic semantics is followed by operational semantic rules defined for the

language constructs showing how the stacks and the object storage are affected, as in [AL97]. The

14 2. Object-Orientation Formalisation

final contribution of this work is a soundness theorem that relates these two semantics, besides

introducing a simple manner of introducing recursive types and the subtyping relation. We benefit

directly from this strategy to separate blocks of constructs as we show in Section 4.4. In many

other approaches [MPH97, Ral00, CN00, QDC03, PdB03, BSCC04, HLL06] the declarations of

classes are made in blocks with all their attributes and methods, which make difficult, for example,

defining the semantics of a self recursive methods.

In [MPH97], Müller and Poetzsch-Heffter describe how to relate operational semantics of pro-

grams to declarative specifications, providing a formal foundation of interface specification. The

general idea is to describe abstract data types by means of abstraction functions relating them to

concrete implementations. Each interface method of a type has a description of its functional be-

haviour by means of pre- and postconditions involving logical variables that represent, for example,

the state of the system before and after method computation. To make the functional behaviour

less abstract, an object model is described with primitive and object types, and its operations,

such as assignment to memory locations (references are modeled).

The specification of a method interface is categorised in three parts: functional behaviour,

environmental behaviour and sharing properties. The first one is concerned with representation of

postconditions in terms of object parameters and abstraction functions based only on the initial

state; the second one is concerned with how the object model (runtime) is changed by the method,

describing, for example, side-effects of an object creation in the runtime environment; and the

third concerns with how shared objects are affected by methods, that is, what are the modifiable

objects and how the object instances relationship graph is affected.

Besides method behaviour characterisation, a general form to represent class invariants is

presented, describing that for all instances of a given class (and its subclasses) a class invariant must

be preserved if the object is alive (allocated and active) and is not null. Abstraction functions are

valid only for objects that respect some well-definedness conditions, and thus well-definedness can

be considered an invariant property. The pre- and postconditions of methods are now enriched with

the class invariants: a Hoare triple {P}m{Q} used to specify methods or command restrictions,

where P is a precondition, m an abstraction present in class C and Q is the postcondition, now

is represented by {INVc ∧ P}m{INVc ∧ Q}, where INVc stands for the invariant of class C .

The problem of preserving object invariants is a challenging problem itself and has been an active

research topic [BDF+04].

To allow behavioural subtyping [LW94] for class inheritance (in program extensions), proof

obligations are described. The question to be answered is: how to guarantee that new subclasses

preserve the behaviour of the superclass? They use the well-known approach of weakening the

precondition or strengthening the postcondition [Mor94]. If the method of the superclass has

a pre- and postconditions pair (P,Q), and the subclass has a pair (Ps,Qs), then P ⇒ Ps and

2.1. Approaches to Semantics 15

Qs ⇒ Q. To prove these implications they use coercion functions to relate attributes and methods

of the subclass to the corresponding ones in the superclass. The remaining problem concerns with

program extension by introducing classes which are not subclasses of the existing ones; in this

case, the invariants of each class must have to be somehow revisited to verify that the new class

invariants might not cause any side-effects, in the whole specification.

The work reported in [MPH97] states in a simple and clear manner how pre- and postconditions

of methods and class invariants can be specified, and highlights the proof obligations associated

to program manipulation or extension. The concepts presented are a starting point to deeper

investigation, as explored in the following works of these authors, which we discuss in the sequel.

A work similar to [AL97] is presented in [PHM98], where Poetzsch-Heffter and Müller describe

a type system for an object-oriented language, but, unlike [AL97], soundness of the axiomatic

semantics is not presented. Features like inheritance and dynamic binding, however, are handled

with the objective to reach a formal description closer to practical languages. As in [MPH97], and

in contrast to [AL97], the specification related to objects are not embedded into the programs.

A language with common object-oriented constructs named KOOL (kernel of object-oriented

languages) is presented. In this language it is possible to represent classes with single inheritance

and also abstract classes, which define method signatures (including parameters). Visibility is not

mentioned in the work but according to Java standards [GJSB00] the attributes are implicitly

protected, and get and set methods to, respectively, read and update the attributes are included

too. As in [AL97] the subclass relation is a partial function with a top most element, here OBJECT .

OBJECT is an abstract class, and there is also two predefined concrete classes INT and BOOL

to represent primitive types.

After the language is defined an object environment is formalised. It describes how objects are

linked by references and which ones are considered alive, that is, if the object is present in the

environment. Object states (instances) are presented and a set of commands to assign, lookup,

check if the object is alive, create a new object and select all objects of a given type, are defined.

Axioms relating commands and functions on object states are presented. A Hoare logic is used to

describe commands and method behaviour by means of pre- and postconditions. Rules represent

the commands and method behaviour using conjunctions, sequent (assumptions), and consequent

(resulting effects) clauses. The programming logic involving dynamic binding is also translated as

a rule, testing the type of the object and selecting the appropriate method body.

They also present some characterization of open and closed programs. Shortly, open programs

are libraries of components that can be reused to write different programs, while closed programs

are sets of declarations associated to a single program. A direct impact of this definition is that

open programs should ideally have a modular (compositional) proof strategy to allow increase

functionality without the need of revalidating all already proven results; this is a topic of discussion

16 2. Object-Orientation Formalisation

in [MPH97]. For closed programs, where all software components are well-known (already selected),

the proofs can became easier, although open programs are more important to achieve reusability,

and in this case the proofs are lengthier. In Chapter 6 we present some laws of object-orientation

that are valid not only for closed programs, but also for libraries.

Two verification strategies are described in [PHM98], one top-down, that can be summarised

in three steps: (i) define specifications for methods of abstract types; (ii) define specifications

for the concrete, or abstract, subtypes and prove they are compatible; and (iii) prove that the

method implementations in concrete classes satisfy their specifications. The bottom-up strategy

starts from the implementations and using subsumption rules, the proof obligations are derived.

In the latter case, in the context of closed programs, some preconditions of the rules can be

eliminated, simplifying the verification process. The language also allows attribute overriding. As

we do not believe that this feature increases object-oriented elegancy, and rather complicates too

much the program and its semantics, our theory does not allow this kind of redefinitions, but in

other approaches as [Ral00, PdB03], and Java itself, it is allowed. The access to attributes or to

superclass methods in [PHM98] is done using a different notation (‘@’), while in Java no extra

information is required (always ‘.’), resulting, sometimes, in programmatic errors, specially with

the less attempt programmers.

This work includes important features of object-orientation closer to real object-oriented lan-

guages, but as said before it does not provide a soundness proof as its correlated work [AL97].

This limitation was overcome in the next work of these authors. In [PHM99], Poetzsch-Heffter

and Müller extended [PHM98] to cope with encapsulation. The KOOL language was replaced by

a simpler subset of Java named Java-K. A structural operational semantics was used to describe

rules in this language. The programming logic is similar to the previous work, although a sound-

ness theorem was presented. The operational semantic rules were mapped to a higher-order logic

and proved manually.

In [Ral00, BMvW00], extensions of [MS97], Back et al. build a logical framework to reason

about object-oriented programs; this framework is a conservative extension of refinement cal-

culi [Mor94, BvW98]. The focus of the work is to allow object substitutability, also referred to

as polymorphism, in client applications by refining the object class definitions. A client appli-

cation is defined as a non-deterministic choice of method calls of an object; they show that for

a class C ′, which refines C , substituting instances of C by instances of C ′ in the clients that

use C is refinement. They argue that dealing only with syntactic aspects of subtyping, such

as method signatures, is a decidable problem, while behavioural-inheritance, discussed in works

like [Ame90, LW94, Mey97], is not, and thus could perhaps be verified by theorem prover like

HOL [GM93] or PVS [ORS92], but none mechanization is provided. The same strategy to trans-

late object constructs to a higher-order logic was used in [PHM99] and specially in [vON99], where

2.1. Approaches to Semantics 17

the semantics for a subset of Java is described to prove Java type-safety.

In the work of Back et al. all attributes are private (hidden), all methods are public, and

an object instance is a tuple with attribute values and the object type. They do not allow re-

cursive types, but allow pointers. Subclasses can redefine attributes and methods. Methods of

the superclasses can be called using the ‘super’ special reference. Dynamic binding is modeled

as an angelic choice between subclass and superclass method definitions; the choices are guarded

by assertion testing the type of the instance, if the type test is false the alternative behaves like

abort (⊥, an unpredictable program) and other alternative can be chosen (semantics of angelic

non-determinism); only one of the alternatives is selected at a time. If more than one guard is

valid, a non-deterministic choice is made. These kinds of tests based on object type are common

to some approaches [BSCC04, MPH97], including ours. They also handle behavioural aspects of

the substitution, defining that, for a given instance of a subclass to be in conformance with the

superclass behaviour, newly introduced methods must not change attribute values, or change the

superclass attributes in the same way as superclasses used to do. This can be formally characterised

as in [MPH97], using coercion functions.

Another effort in the formalisation of object-orientation is the Refinement Object-Oriented

Language (ROOL) [CN00] project; ROOL is a subset of sequential Java with visibility, dynamic

binding and copy semantics. The refinements are defined for commands and parametrised com-

mands [Bac87] in an object-oriented context. In [CN00], Cavalcanti and Naumann provide a

complete description of the language constructs, defining the semantics of the language in terms

of weakest preconditions.

A typing system is defined and rules related to types are introduced. A semantics for programs

in ROOL is defined by induction on the typing rules; properties are enumerated and proved. The

approach, however, leaves out features such as mutually recursive methods. The main weakness,

however, is the need for inductive proofs, which are not conducive to reuse and extension. In our

thesis the focus in a general theory of object-orientation and proofs are made straightforward at

the semantic level, thus the results apply to any object-oriented language.

In the Unifying Theories of Programming (UTP) [HH98], Hoare and He establish a frame-

work to allow comparing and reasoning about different programming paradigms using a relational

calculus; predicates over an alphabet of observational variables are used to specify relations in

the style of VDM [Jon90] and Z [WD96]. The description of a theory for object-orientation is

important to allow the integration of different theories such as sequential communicating pro-

cesses [Hoa85, Ros98] using the same formalism. In the next chapter we introduce basic concepts

of UTP required to understand our theory, and its integration to a theory of pointers presented

in [CHW06]. A detailed description of this framework is presented in [HH98] and a shorter alter-

native can be found in [WC04]. In the following, we discuss works related to object-orientation in

18 2. Object-Orientation Formalisation

the UTP and other predicative styles.

In [HLL05, HLL06] He et al. present a syntax and semantics for an object-oriented language

in the context of the UTP [HH98], named Refinement Calculus for Object Systems (rCOS). They

define a language similar to ROOL [CN00], but with a reference semantics. Some basic concepts

of the UTP, such as designs, are revisited, and refinement of designs is described. The static and

dynamic semantics are described in detail. Observational variables are introduced to record object

references and instances, as the previous approaches, with the exception of ROOL, which has a

copy semantics. A surprising feature, perhaps, are the well-definedness rules for class definition,

which allow two completely separated inheritance lines to be defined. It is not true that ‘Object’

is the top most element of the transitive and reflexive subtyping relation. This is not a problem to

the other definitions presented in the work, but it is, at least, unusual and makes it impossible to

have a variable which can assume all possible object runtime values. In our approach, for example,

this singularity would complicate the semantics of method call, where the ‘self’ variable must have

the dynamic type of the target object, and as we handle all method calls uniformly, the unique

valid type would be ‘Object’.

rCOS works with closed programs, where a sequence of classes is followed by a program, that is,

Cdecls • Main. The refinements of class declarations and programs are defined. These refinements

are grouped in: system refinements, where a program Cdecls • main1 is declared a refinement

of Cdecls • main2 if for all external observational variables the meaning of main1 implies the

meaning of main2 (denoted by Jmain1K ⊒sys Jmain2K); and structural refinements where the class

structure is allowed to change, including or removing classes, attributes or methods; in this case

the following implication must hold ∀main.(Cdecls1 • main ⊒sys Cdecls2 • main). The set of

class declarations Cdecls1 is considered a refinement of Cdecls2. For example, the change of a class

visibility from public to private, once this class is never used in main, is an example of system

refinement. For structural refinement, to perform a valid refinement we cannot remove any public

attribute or method used in the main body, for example. This restriction is essential in the context

of component repositories, if we do not know which other components are using a given service we

definitely cannot change component signatures.

The definition of a program is the reference for refinement theorems for upward and downward

simulation, and their proofs. Basic laws of structural refinements, similar to those already pre-

sented in [BSCC04], and for patterns like responsibility assignment, data encapsulation, and high

coercion are defined. The big goal of their work is to provide a language to study structural and

further behavioural refinements that can help to introduce formalism in UML diagrams.

In [MD98] Mahony and Dong present a formal notation named Timed Communicating Object-

Z (TCOZ), which is a combination of Object-Z [Smi00] and Timed CSP [DS95, SH02]. In [QDC03]

Qin et al. describe the semantics of some features such as inheritance, encapsulation, dynamic

2.2. Laws and Refactorings 19

binding, and timing constructs using the UTP. The syntax of the language is presented with all

observational variables of the theory. Using these variables, they describe the semantics of classes

and process constructions. The language is not fully described in the UTP; they concentrate on

process aspects of the languages that can be easily addressed by the UTP formalism, and the main

focus of the work is not the object-orientation concepts, but rather the process behaviour.

In [Kas05] Kassios introduces a theory to decouple concepts of object-orientation that are

traditionally embedded in the idea of class, such as inheritance and encapsulation, using the

predicative programming style defined in [Heh04], very similar to the UTP. While traditional formal

approaches for object-orientation [AL97, MS97, PHM99, CN00, Ral00, PdB03] introduce all these

features directly in a declaration of a class. Kassios’ idea is to provide general descriptions of object

specifications, refinements and inheritance, among others, independently of the class construct and

of each other, thus reaching the decoupling. This results in very general specification constructs,

of which those usually found in object-oriented languages are a special case. We also adopt the

decoupling of concepts and constructs in our theory to allow their combinations with other concepts

or theories, in the spirit of the UTP framework.

2.2 Laws and Refactorings

Another important aspect of a software is the fact that a given functionality can be implemented by

infinite programs, and there is no doubt that some are better than others in terms of performance

or resources requirements. Sometimes, not rarely, developers are requested to increase programs

overall performance, or even rewrite them to increase readability and reusability to facilitate further

maintenance or extension. In these situations, a big challenge is to guarantee (and verify) that the

new updated system behave exactly like the previous one, or better. The matter of readability,

or even reusability, are sensitive to controversy, but the result of programs must be the same for

both contexts. A common alternative to the preservation of behaviour is the construction of test

case suits that are executed against programs before the transformations (refactorings) and after;

if the results are equivalent the new revised program is considered correct. Unfortunately, as is

well-known, testing can only show the presence of errors, but not their absence. A more rigorous

alternative is to prove that the original system behaviour corresponds to the refactored one.

There are many works that handle this problem of changing programs at different levels of

abstractions, from a completely informal approach based on test cases [FBB+99], to more formal

ones [Opd92, Utt92, Rob99, TB01, Cor04, BM06]. In this thesis we consider the work presented

in [Cor04] as a comparative source for the laws and their proofs, due to its close connection to

our work, including (in the first moment) the adopted copy semantics, also present in our object-

oriented theory.

20 2. Object-Orientation Formalisation

In [BSC03] Borba et al. enumerate algebraic laws for ROOL programs that were the inspiration

for our laws (in Chapter 6), but they consider only closed programs; the results do not apply

necessarily to open systems (libraries). The provisos of the laws describe the conditions that need

to hold for changes in the programs to preserve behaviour. Laws for classes, attributes, methods

and commands are proposed and described. In order to postulate the relative completeness of the

proposed laws, a normal form for object-oriented programs in ROOL is defined and a sequential

list of steps required to reach that normal form is presented. Each step relies on the application

of some law. In [Cor04], Cornélio describes and proves refactorings in ROOL. A subset of the

refactorings presented in [FBB+99] is selected and described using the ROOL syntax. All laws

presented in [BSCC04] are proved by induction and used in the proofs of more complex refactorings.

Due to the copy semantics, not all refactorings of [FBB+99] are handled.

In Chapter 4 we also use a copy semantics. In Chapter 5, however, we combine the object-

orientation theory with a theory of pointers, and then in Chapter 6 we verify the applicability of

the laws in both contexts.

2.3 Mechanization

Some works have been done on the mechanization of object-oriented languages, most of them in

the end of the 90’s, concentrating on the Java language. An example of a complete formalisation

of a subset of Java is [vO00], encoded by mean of a higher-order logic, mechanised using the

Isabelle [Pau94, NPW02] theorem prover to check type-safety, soundness and relative completeness

for an object-oriented version of the Hoare logic (previously described in [NvO98]).

Huisman [Hui01] presents a semantics for Java in higher-order logic and describes a tool, named

LOOP [vdBJ01], which translates the programs to input theories for Isabelle or PVS provers in

order to check properties of the programs, for example, if a method return value is not null.

In the direction of bringing formal specifications closer to the programmer’s world, simplifying

the introduction of formal methods in current programming practices, there is the example of Java

Modeling Language (JML) [LBR99, BCC+03] which aims to introduce annotations in Java code

to specify object invariants and pre- and postconditions of methods, among other constructs, as

model fields1. These annotations are turned into run-time verifications embedded in the bytecode

generated by the JML compiler.

The most advocated benefit of JML is that its notation uses the host language, Java, to

introduce specifications into code; thus, being attractive to program developers. Moreover, the

use of JML does not impose a fixed design methodology to its users, (in contrast to B [Abr96]);

specifications can be inserted at any stage of the development according to programmers needs.

1Variables present at the specification level.

2.4. Conclusions 21

Other important aspect of using JML is the fact that there is a growing set of tools [vdBJ01,

FLL+02, BRL03] converging to use its notation, enabling the developer with a rich toolkit to be

used in different contexts.

One example of JML tool is the Extended Static Checker for Java (ESC/Java) [FLL+02] which

checks statically the conformance of Java code with its annotations. This tool, however, as the

authors highlight, is not comitted to guarantee soundness or completeness. Depending on developer

demands another tool must be used to check the programs, but it represents one step ahead in

software verification.

Even after mechanization progresses, there are other practical aspects to be handled, like

legacy systems; more specifically, on how to provide ways to automatically introduce specifica-

tions into code, as highlighted by Nimmer and Ernst in [NE02]. The use of inference tools like

Daikon [EPG+06] and Houdini [FL01] can reduce the time consuming task of review all legacy

system code to introduce, sometimes, well-known restrictions. Unfortunately, as usual, some speci-

fications require human interaction. These tools, however, reduce considerably this need [BCC+03].

There is also a methodology to introduce formal descriptions into code for Spec# [BDF+04,

BLS05]; this initiative is called Boogie [BCD+06], which aims to introduce formalism in the

.NET platform, and the tool support is integrated with the Microsoft development tool Visual

Studio[Mic07b]. Up to our knowledge, this seams to be the best integration of formal verification

in a real widespread-use development tool today.

Its is important to remark that there is a trade off between factors that determine the selection

and the use of mechanization tools such as: the completeness of the object verification; the expres-

siveness of the specification language; time and cost budgets. It seems reasonable to use different

tools depending on these restrictions. In the case of Java, the convergence of the specification

language to JML has helped to enrich developer toolkits for different needs.

The refactorings, in general defined as laws of programming [Hoa69, HHJ+92, TB01] or informal

descriptions [FBB+99], are supported by many, commercial [Bor07, Mic07b] or non-commercial

as [The07], programming tools for different languages. The refactorings are performed automat-

ically, but the correctness of such transformations is checked by informal verification techniques,

such as compilation and test cases.

2.4 Conclusions

In this chapter we have briefly presented some approaches and formalisms used to model object-

oriented paradigm features and its relations, whenever possible establishing relations with the work

presented in this thesis.

We have seen that Abadi and Leino started with a relatively simple model of objects, and it

22 2. Object-Orientation Formalisation

evolved to a formalism where Leino introduced recursive types. In both cases soundness of the

theory was considered and stated in terms of an operational semantics. In the latter approach

Leino highlights, however, that methods whose return types are the same as the owner class cannot

be defined.

Müller and Poetzsch-Heffter defined a language with constructs close to real programming

languages. They began defining some general techniques for object-oriented programs, then a

more detailed language was introduced to handle features as inheritance and dynamic binding,

but no soundness proof is provided. Later, they extend the work to cope with encapsulation,

and defined the object-oriented concepts using a higher-order logic that allowed a manual proof of

soundness.

Next, the approach by Back et al. provided a characterisation of refinement in the point of

view of client applications, which are modeled as a non-deterministic choice of object methods. In

this approach dynamic binding is modeled as an angelic choice.

With a strong refinement background there is ROOL, by Cavalcanti and Naumann, a lan-

guage that, besides the basic object-oriented constructs, contains refinement calculus constructs,

as specification statements. Its semantics was defined in terms of weakest preconditions, and laws

for refactorings in ROOL are described by Borba et al., and Cornélio.

The work of He et al. is the first to consider the introduction of object-orientation in the

UTP. They extend the theory of designs and provide a set of observational variables to record

types, attributes and methods information. Unlike their approach and the ROOL, which have to

calculate a method meaning every time it is requested, our theory uses higher-order programming

to record method meanings during the environment loading time. Method meanings are recorded

in special variables, and when necessary they are directly accessed, but we pay the price that the

order of declarations becomes relevant.

The formulation and formalisation of refactoring has been recently emphasised due to Fowler’s

book, and a growing set of formalisms and tools have been described and developed to mechanize

these program transformations. In this thesis we provide some laws and prove their soundness

as presented by Cornélio, but with a significant difference that we handle a general theory rather

than syntax for any specify language.

Finally we have seen that mechanization of object-oriented features using different languages

and tools is possible, but we are still a little far from the goal of having a fully integrated tool to

allow development, verification and refactoring of object-oriented programs. In fact the spreading

of JML, for Java, is one step ahead to achieve it. In the following chapters we give our contributions

to creating a big repository of theories using the same formalism, the UTP. Perhaps, not in a

distant future, tools for UTP will benefit from all designed theories, and further, support the task

of creating new hybrid paradigms of programming.

Chapter 3

Introduction to the Unifying Theories

of Programming

This chapter is dedicated to a brief introduction to the concepts of the UTP required to under-

stand the theories presented in the following chapters. In Section 3.1 we enumerate some basic

concepts and constructs of the UTP. Next, in Section 3.2, we reproduce some valid laws in the

UTP framework and in Section 3.3 the concept of refinement in the UTP is presented, with its

lattice correlation. In Section 3.4 the theory of terminating programs is described and some basic

constructs of the UTP are revisited to reflect new restrictions of terminating programs. Then,

in Section 3.5, another form of characterising valid predicates in a theory is shown and, in Sec-

tion 3.6, the possibility of using programs as values of variables is considered: the higher-order

programming theory. In Section 3.7 we introduce the concept of Galois connections to integrate

theories and in Section 3.8 we define closeness. Finally, in Section 3.9 we provide a short overview

of the thesis context.

3.1 Introduction

The UTP is based on alphabetised predicates that describe possible values of observational vari-

ables that record relevant information about the programs of interest. In this way, we specify

programming constructs of different paradigms using a common formalism.

Theories are characterised by a set of observational variables and by healthiness conditions.

For instance, in time-aware systems we can use a variable to record time information (clock); in

communicating systems we observe the traces of events occurred (tr). The set of observational

variables of a theory is called the alphabet. The predicates of a theory refer only to variables in

the alphabet, and given a predicate P we write α(P) to refer to its alphabet. The free variables

23

24 3. Introduction to the Unifying Theories of Programming

of a predicate must belong to its alphabet.

When the alphabet is composed of undecorated names, which are used to represent the initial

value of the corresponding observational variables, and dashed names that represent the values

of the variables in a later or final observation, then the predicates define relations. For example,

clock ′ > clock, where the decorated variable (‘′’) represents the final value of clock. In this case, we

say that the alphabet contains input and output variables; the input set is denoted by inα(P) and

the output by outα(P). A relation where the output alphabet is equal to the input alphabet (with

decorated versions of the variables) is a homogeneous relation, inα(P)′ = outα(P). As in [HH98]

we use letters like: P,Q or R to represent predicates; b,c,d to represent conditions1; and x,y,z to

represent variables.

An example of a relation is provided by the definition of an assignment x := e of an expression

e to a variable x, in the context of a theory of general relations, in which the only variables of the

alphabet are the programming variables, and their dashed counterparts.

x := e =̂ x ′ = e ∧ y′ = y ∧ z ′ = z . . .

In this example, we take the input alphabet inα(x := e) to be {x, y, z, . . . }, and the output

alphabet outα(x := e) to be {x ′, y′, z ′, . . . }. In fact, the alphabet of an assignment has to be

explicitly defined, but for simplicity it is often omitted. The definition states that the final value

of x is e and all other variables of the alphabet have their values preserved. A degenerate form

of assignment useful for reasoning about programs is II , named skip. It is an empty assignment

where all variables have their final values preserved.

II =̂ x ′ = x ∧ y′ = y ∧ z ′ = z . . . , where α(II) = {x, x ′, y, y′, z, z ′, . . . }.

Sequential composition, denoted by P; Q, is defined by an existential quantification that relates

intermediate values of the variables. The final values of the variables as defined by P are taken as

the initial values of the variables by Q. In this case, outα(P) is required to be equal to inα(Q),

after each of its variables are dashed. These intermediate values are represented by w0 in the

definition of sequence.

P; Q =̂ ∃w0 • P[w0/w
′] ∧ Q[w0/w], where outα(P) = inα(Q)′ = w′

The declaration and undeclaration of variables are defined separately, also in terms of existential

quantifications.

var x =̂ ∃ x • II , where α(var x) = α(II) \ {x}
end x =̂ ∃ x ′ • II , where α(end x) = α(II) \ {x ′}

1Predicates which perform tests on initial variable values.

3.2. Laws 25

This separation is useful in laws of programming related to variables. An important construction

involving variables is that of variable blocks.

var x; Q; end x =̂ ∃ x, x ′ • Q

A conditional P �b�Q is defined as a disjunction of conjunctions. If the condition b is valid, then

the behaviour is that of P, otherwise it is that of Q, provided the alphabet of the condition b is a

subset of the alphabet of the conditional branches P and Q. Hoare and He use an infix notation

that is helpful in the definition of laws of programming.

P � b � Q =̂ (b ∧ P) ∨ (¬b ∧ Q), where α(b) ⊆ α(P) = α(Q).

Recursive definitions are provided as fixed points µX • F(X), where F is a function from predicates

to predicates. One example is the while loop, denoted by b ∗P. While the condition b is valid the

behaviour is that described by P, otherwise the loop finishes. The semantics of while is defined in

terms of a recursion in the usual way.

b ∗ P =̂ µX • P; X � b � II .

The non-deterministic choice P ⊓ Q is defined as a disjunction, and both alternatives must have

the same alphabet.

P ⊓Q =̂ P ∨ Q, where α(P) = α(Q).

These are some of the UTP basic constructs. As expected, each one is mapped to a predicate over

a specific set of variables, an alphabet. Now we show some laws that are derived directly from

these definitions.

3.2 Laws

In [HH98], laws of programming are introduced progressively as the set of language concepts is

extended. As an example, for conditional, a subset of the laws presented in [HH98] is reproduced

below; the names (labels for the laws) used in [HH98] are adopted here as well.

L1 of conditionals: P � b � P = P idempotency

L2 of conditionals: P � b � Q = Q � ¬b � P symmetry

L3 of conditionals: (P � b � Q)� c � R = P � b ∧ c � (Q � c � R) associativity

L4 of conditionals: P � b � (P � c � Q) = (P � b � Q)� c � (P � b � R) distributivity

L5 of conditionals: P � true � Q = P = Q � false � P unit

L6 of conditionals: P � b � (Q � b � R) = P � b � R unreachable-branch

26 3. Introduction to the Unifying Theories of Programming

L7 of conditionals: P � b � (P � c � Q) = P � b ∨ c � Q disjunction

These laws are valid for all conditions and predicates, as long as their alphabets obey the side-

conditions required by the definition of the conditional. Basic laws can be proved by direct trans-

lation to logical predicates, like the proof of L1 below, and more complex laws can be derived from

the basic ones.

L1 : P � b � P = P

Proof .

LHS [conditional definition]

= (b ∧ P) ∨ (¬b ∧ P) [case analysis on b]

= ((true ∧ P) ∨ (¬true ∧ P)) ∨ ((false ∧ P) ∨ (¬false ∧ P)) [propositional calculus]

= (P ∨ false) ∨ (false ∨ P) [propositional calculus]

= RHS 2

There are laws for most part of the constructs, and one of the laws presented for non-determinism

is that of disjunction distributivity, reproduced below. Other laws can be introduced for each

constructor of a new theory defined in the UTP.

L3 of relations: (⊓S) ⊔Q = ⊓{P ⊔Q | P ∈ S}, where P ⊔Q =̂ P ∧ Q.

Labels for laws can be reused, the former L3 is defined for conditionals only, and the remainder is

a law for general relations. In the text we make clear which one we are using whenever necessary.

3.3 Refinement

Hoare and He have also shown that the set of alphabetised predicates form a complete lattice with

the ordering defined by universal implication (⇒). This is a very important result, since different

paradigms can be mapped to alphabetized predicates there is a general notion of refinement which

is common to them all.

They establish that a program P refines a program Q if, and only if, P ⇒ Q, for all possible

values of the variables of the alphabet: ∀ x, x ′, y, y′, . . . • P ⇒ Q. This is denoted shortly by the

universal quantifier [P ⇒ Q], and the notation Q ⊑ P is used to represent that Q is refined by

P. In all theories of the UTP, the refinement relation is characterised in the same way. The dual

symbol ⊒ can also be used and P ⊒ Q is read as ‘P refines Q’.

The bottom of this lattice is denoted by ⊥, also named abort. Formally we have that any

program refines abort, ⊥ ⊑ P; this follows directly from its definition: ⊥ =̂ true, that is, for any

program we have that P ⇒ true. On the opposite side, we have the top of the lattice ⊤, named

miracle, formally defined as ⊤ =̂ false; for any P we have P ⊑ ⊤, that is, false ⇒ P (vacuously

better).

3.4. Terminating Programs 27

⊤(false),req.→∞

...
... P∧Q∧R ...

P∧Q

66nnnnn
]];;;

Q∧R

hhQQQQQ
AA���

... P

AA���

��;
;;

Q

hhQQQQQQQ

vvnnn
nnn

n

66nnnnnnn

((QQ
QQQ

QQ R

]];;;

����
�

...

P∨Q

((QQ
QQ

Q

����
�

Q∨R

vvnnn
nn

��;
;;

... P∨Q∨R ...
...

⊥(true),req.→∅

Figure 3.1: Lattice of predicates.

Informally, in Figure 3.1 we have abort as a general program that satisfy a set of disjunctive

requirements (possibly empty, requirements → ∅) and in the opposite side we have miracle that is

infinitely restrictive (infinite set of conjunctive requirements, requirements →∞). Abort is useless

because its behaviour is completely unpredictable, and miracle is simply impossible to implement,

but they are useful in reasoning about programs. The set of practical useful programs lies between

these two extremes.

Example 1 (Refinement). If we have a specification clock ′ > clock, we are requested to write

a program that increases the clock value. There is an infinite set of programs which satisfy this

specification, including miracle. Consider a very simple one ‘clock := clock + 1’, this is indeed a

refinement of the specification as the proof below verifies.

clock ′ > clock ⊑ clock := clock + 1 [⊑definition]

= clock := clock + 1⇒ clock ′ > clock [definition of assignment]

= clock ′ = clock + 1⇒ clock ′ > clock [numbers properties (n+1>n)]

= clock ′ > clock ⇒ clock ′ > clock [propositional calculus]

= true 2

This is a simple example of how to prove refinement in the UTP.

3.4 Terminating Programs

The theory of relations is not appropriate to reason about termination. This limitation becomes

clear when we calculate the meaning of the program ‘true; x := e’, surprisingly it has the same

28 3. Introduction to the Unifying Theories of Programming

meaning of ‘x := e’.

true; x := e [definition of composition and assignment]

∃w0 • true[w0/w
′] ∧ (x ′ = e)[w0/w] [propositional calculus, substitution, w0 is not free in e]

x ′ = e [definition of assignment]

x := e 2

That is, a program that after an abortion still behaves like a valid assignment, which is a contra-

diction. For that end, Hoare and He define a subset of this theory comprising the predicates that

can be written as pairs of pre- and postconditions, and have special observational variables ok and

ok ′ to record whether the program has started and ended successfully. The predicates of this new

theory are called designs. The definition of a design is presented below, where P stands for the

precondition and Q for the postcondition of the design.

P ⊢ Q =̂ ok ∧ P ⇒ ok ′ ∧ Q

If the design starts, and its precondition holds, then it is certain to terminate and to establish

its postcondition; otherwise, no restrictions are enforced. Graphically we could represent the

relationship between the set of predicates, relations and designs as presented in Figure 3.2, where

all sets are infinite. The designs pose restrictions on variables ok and ok ′, we will see that these

restrictions are modeled also as healthiness conditions.

Relations Designs

...

Predicates

......

ok, ok’

Figure 3.2: Designs subset.

In the theory of designs, assignment and skip have different definitions. Also, the theory of designs

is a complete lattice, but its bottom and its top are different. The assignments, and other programs,

now have to consider a precondition to be valid. For the sake o simplicity the definition assumes

that expression e is well-defined and yields a value compatible with that of x. In the basic UTP,

variables and results of expressions are not explicitly typed, in Chapter 4 we constrain it. The

new definitions are as follows.

x := e =̂ true ⊢ x ′ = e ∧ y′ = y . . .

IId =̂ true ⊢ x ′ = x ∧ y′ = y . . .

⊥d =̂ true ⊢ false

⊤d =̂ false ⊢ true

3.5. Healthiness Conditions 29

In [WC04] the law below is presented for a sequential composition of designs in which the pre-

condition of the first design is a condition. We use it to simplify our proofs of object-oriented

laws.

T3’:((p1 ⊢ Q1); (P2 ⊢ Q2)) = (p1 ∧ (Q1 wp P2)) ⊢ (Q1; Q2)

where p1 is a condition, and Q1 wp P2 = ¬(Q1; ¬P2)

This is a specialisation of a law that applies to any sequence of designs presented in [HH98].

We also define a special form of design {b}⊥ called an assertion; if b holds, this design skips,

otherwise it aborts.

{b}⊥ =̂ IId � b �⊥d

This construct is useful for reasoning.

3.5 Healthiness Conditions

An alternative way of characterising the set of predicates of a theory is using what Hoare and

He called healthiness conditions (HC). They impose restrictions on the set of predicates that

can be part of a theory. For example, only those predicates that satisfy the conditions H1-2 of

Table 3.1 are considered designs. That is, we can write predicates that satisfy these conditions as

implications involving ok and ok ′.

Name Definition Description

H1 P = (ok ⇒ P) Program start.

H2 P[false/ok ′]⇒ P[true/ok ′] Non-termination cannot be required.

Table 3.1: Healthiness conditions for designs.

In other words, the subset of designs represented in Figure 3.2 is filtered from relations by using

these HCs. An important characteristic of HCs is that they are defined as idempotent functions.

Once we apply a HC to make a predicate healthy, there is no point in applying this HC again.

Just one application of a given HC to a predicate is enough to determine its validity or not.

3.6 Higher Order Programming

Another theory introduced by Hoare and He is that of higher-order procedures [Nau95]. Variables

are now allowed to be bound to abstractions, like, functions or procedures, which are them values.

For example, we can have a variable p with a conditional r := true � x%2 = 0 � r := false as

its value, an abstraction that tests if a given variable x is even and records this information in a

30 3. Introduction to the Unifying Theories of Programming

variable r . In this case the value of p is the text of the program. The inclusion of parameters in

procedures is allowed and different interpretations of λ-abstractions define the types of parameter

passing mechanism.

Designs

...

Predicates

......

ok, ok’

...
HOPs

var x:Proc

Relations

Figure 3.3: Higher order procedures subset.

In Figure 3.3 there is an infinite subset of relations characterised by such types of variables (HOPs).

Notice that this set has an intersection with designs, that is, designs where variables can have higher

order procedures as values.

In Chapter 4 we show that our theory can be characterised in terms of designs, and that

it includes observational variables whose values are program texts; in this way we combine the

theories of designs and higher-order procedures. In fact we introduce some extra observational

variables to record object-orientation information and restrict this theory to that subset where

designs and higher order procedures lies.

3.7 Theories Integration

We have commented that theories in the UTP have been, progressively, developed and these

theories are expected to be combined and interact with another. This is the topic of this section.

In some cases, theory integration is a very simple task; for example, one theory can be a subset

of another. In these cases, for example, a function that maps all elements of the smaller to the

larger one and vice-versa (restricted to a subset) can be defined. A general form of characterizing

this mapping is a function L from S to T, where S is the set of predicates of a theory and T is

the set of predicates of the other one. If such function exists we say that there is a link between

them.

The Figure 3.4 (a) is a diagrammatic representation of links like these. Notice, however, that

if T is a more general theory such link associates the elements of S to its projection into T, which

we refer as S. If all elements from one theory can be mapped into the other and vice-versa these

theories are said to have the same expressivity power. In this case, however, they are too similar

that they integration becomes uninteresting.

In fact, the whole point of theories integration is how to find a link between them, that is,

3.7. Theories Integration 31

S

P

T

Q

L

L
-1

S

Figure 3.4: A subset theory relationship.

find mappings that translate a predicate from one theory to its corresponding predicate in the

other. This is usually made by functions; in the subset example, if the L function exists, and P

and Q are member of S and Q, we have an inverse L−1 and properties like L−1(L(P)) = P and

L(L−1(Q)) = Q holds. Moreover, in theories with the same signatures2, the L is trivially the

identity function id : S 7→ T, and its inverse is id−1 : T 7→ S with the domain restricted to those

elements in S. The problem of signature has also to be handled, but for simplicity we assume that

the same symbol for different theories denote the same behaviour, unless clearly stated.

The subset case is just one of the possibilities of theories relationship, we have also to consider

two theories that are not necessarily related by subset relationship. More specifically, a theory can

describe more things (predicates) than the other is capable of handling, and vice-versa. Therefore,

we cannot expect that the function L from S to T admits an inverse. However, they have parts in

common. That is, probably we need one function L to map from S to T, and another function R

from T to S, which are usually named left and right adjoint. This kind of link is named a Galois

connection, whose definition we borrow from [HH98] and adapt to our representation in Figure 3.5.

T

P

L

R

S

S

Q

T

Figure 3.5: A Galois connection.

Definition 1 (Galois connection). Let S and T be complete lattices. Let L be a function from S

to T, and let R be a function from T to S. The pair (L,R) is a Galois connection is for all P ∈ S

2Symbols used in a theory and their semantics.

32 3. Introduction to the Unifying Theories of Programming

and Q ∈ T

L(P) ⊒ Q iff P ⊒ R(Q)

R is called a weak inverse of L, and L is called a strong inverse of R.

In [HH98] the functions andP(X) =̂ P ∧ X and impP(X) =̂ (P ⇒ Y) are provided as examples

of a Galois connection (andP , implP), that is, (P ∧ X) ⊑ Y iff X ⊑ (P ⇒ Y).

3.8 Closedness

Another important aspect of predicates in a theory is that they are expected to be combined to

allow describe complex examples in that theory. More important, however, is that these combina-

tions of predicates must lie in the original set of valid predicates; operations must be closed with

respect to valid predicates. As pointed out by Hoare and He, in program languages these restric-

tions are usually part of a type theory; for example, if c1 is a command, c2 is a command then

c1; c2 must be command. Another example in the UTP: if we have two designs, their sequential

composition must be a design as well. This is called closedness.

If we are working with a given theory and we are requested to use, for example, disjunction,

it cannot generate a predicate outside the theory set of valid predicates. We are posed to prove

that this is true if we expect to use disjunction in our formulas. This is the motivation to show

that if some predicates satisfy a given HC the results of operations between these predicates

must also satisfy the original HC. In the next chapter, after defining our HCs we show that

disjunction, conjunction, conditional, sequential composition and recursion are closed under these

HCs, otherwise we could not use them to define richer predicates for object-orientation.

3.9 Conclusions

This chapter presented a brief introduction to the UTP formalism which we use in the following

chapters to define our theory for object-orientation, with copy and reference semantics.

In this thesis we present a stepwise integration between four theories: designs (terminating

programs), higher order procedures (variables which record procedures), object-orientation (con-

cepts) and pointers (sharing). The big picture of theories integration in this thesis can be resumed

by the Figure 3.6.

The starting point is the definition of a theory for object-orientation using designs and higher

order procedures theories. Using the pre- and postconditions (P ⊢ Q) and variables capable of

recording procedures we define the concepts of the new theory (subtype, for example) and obser-

vational variables (cls, sc, and atts) are introduced to record object-oriented features information.

3.9. Conclusions 33

Relations

Designs OO

HOP Pointers

ok, ok’ cls, sub, atts

<A,V,S>var x:Proc

Predicates

X
Y

Figure 3.6: Theories integration.

Next we characterise the set of valid values for such variables using healthiness conditions, selecting

a subset of relations. The union of regions Y and X represents the set object-oriented programs (or

specifications) that are designs, includes higher order variables and also respects the restrictions

imposed by the object-oriented theory.

Chapter 4 shows how it is done, and Chapter 5 shows how to merge it with the theory of

pointers firstly presented in [CHW06] and extended in [HCW07], thus reducing the set of predicates

of interest to X, a theory for object-orientation with pointers.

34 3. Introduction to the Unifying Theories of Programming

Chapter 4

Object-Orientation in the UTP

This chapter is organized as follows. In the next section we provide a brief introduction of our

approach. Next, in Section 4.2 we introduce the alphabet of our theory, more specifically, the

observational variables related to subtyping, inheritance, and dynamic binding. Section 4.3 gives

the healthiness conditions and some laws. In Section 4.4, we define class, attribute and method

declaration. In Section 4.5, we review the concept of variables, to include type information explic-

itly. In Section 4.6, we describe well-definedness rules for expressions and the meaning of object

creation, type test, type cast, and attribute access. In Section 4.7, we review the semantics of

commands emphasizing method call. Finally, in Section 4.8, we provide an overview of what has

been achieved so far.

4.1 Introduction

Hoare and He’s Unifying Theories of Programming (UTP) has been successfully used to give

semantics to several design and programming languages that combine constructs from several

paradigms, like, for example, concurrency and time. In this chapter, we study object-oriented

concepts present in languages like Java and C++, described in the previous chapters, in the

framework of the UTP.

We show how subtyping, data inheritance, (mutually) recursive methods, and dynamic binding

can be described in the UTP by combining and extending the theories of designs (terminating

programs specified using pre- and postcondition) and higher-order procedures. A distinguishing

feature of our approach is modularity: following the style of the UTP, we deal with each concept

in isolation; this makes our theory convenient to model integrated languages.

We target general object-oriented concepts, rather than any specific language. We introduce

concepts of object-oriented languages progressively and in isolation. We cover subtyping, single in-

heritance, dynamic binding, and (mutual) recursion. By introducing these features independently,

35

36 4. Object-Orientation in the UTP

we provide a general theory of object-orientation that can be combined with other UTP theories

in the usual way. At present, we consider copy semantics; reference semantics will be addressed

as a next step; as discussed in Chapter 5.

In our theory, a class declaration is not a single block, as usual in object-oriented languages. We

have separate constructs to declare a class and its immediate superclass, to declare an attribute,

and to declare a method. This follows the approach presented in [Kas05].

Example 2 (Syntax example). By way of illustration, we consider a simple banking system; we

define a class Account, and its attributes and methods as follows.

class Account;
att Account number : Z, balance : Z;
meth Account credit =

(
val x : Z • self.balance := self.balance + x

)

The declarations of the attributes and methods are independent, and combined in sequence; in

particular, the declarations indicate the classes of the attributes and methods that are introduced.

This approach simplifies the semantics, and makes the treatment of (mutual) recursion straight-

forward, as it should be. 2

It is well-known that, in the semantics of an object-oriented language, the types of the variables

play a central role due to subtyping and dynamic binding [CN00]. In our theory, we have a

collection of observational variables that are used to model declarations. They record important

typing information and are used to define the semantics of commands. We also drop the UTP

assumption that expressions are total; this is not realistic for object-oriented languages due to the

possibility of attempts to access attributes and methods of a “null object” (that is, “null pointer

exceptions”). As a consequence, we have to characterize well-defined expressions, and extend the

semantics of assignments and conditionals.

Method names are also part of the alphabet of our theory. Their values are parametrised

programs [Bac87]. Their treatment follows the approach originally proposed in [Nau95], and

adopted in [CN00] to handle methods. It is also the approach followed in the UTP for higher-

order procedures.

Dynamic binding is reflected in the value of a method variable: it is a conditional that checks

the type of the target object (self) and determines the right program that defines the behaviour

of the method in each case. In this way, we capture dynamic binding in isolation. This follows the

style adopted in an algebraic semantics for object-orientation presented in [BSCC04].

In [SCS06] we presented a preliminary theory of object-orientation in the UTP. Here, we have

also presented a brief introduction to the UTP, and revised the semantics to simplify constructs.

Moreover, in this thesis we introduce the healthiness conditions that characterise our theory, and

prove some of their basic properties as well as closedness of the programming constructs. In the

4.2. Observational Variables 37

next chapter, we also present some laws inspired by [BS00, CN00, BSCC04, Cor04] and prove

their soundness. Our theory allows us to provide simple and elegant proofs mainly concerning

with properties of method declaration and call. Due to our treatment of dynamic binding our

proofs follow an algebraic style, as we show in Chapter 6.

4.1.1 Assumptions

Object-oriented features such as attribute overriding, variable shading, and the use of super or

related notations (to refer to elements of a superclass) are not considered here. They are only

syntactic abbreviations that can be easily eliminated by preprocessing.

We consider that the names of classes, attributes, methods (except for method overriding),

local variables and parameters are different. This allows us to write simpler predicates while not

imposing any relevant practical limitation, both in the semantics and in the laws.

As we have said in the introductory chapters, we are interested in general object-oriented

features. By now we postponed the treatment of exceptions, garbage collection or concurrency,

for example. These features can be a target of future work.

4.2 Observational Variables

In addition to the programming variables and their dashed counterparts, and to ok and ok ′ from

the theory of designs, our theory includes several extra observational variables. We introduce a

variable cls to record the class names; a variable sc to record the subclass relation; and a variable

atts to record the names and types of the attributes of every class.

Definition 2 (Classes). The set of classes is recorded in cls : P name.

This observational variable allows us to introduce new types other than the primitive ones. For

this variable, a special value, useful in the context of examples, is given below.

cls0 = {Object}

We consider that Object is a valid class name.

Definition 3 (Subclasses). The subclass relation is recorded in sc : name 7→ name.

This is a mapping that associates a class name to the name of its immediate superclass. One

special value for this variable is defined below.

sc0 = {}

38 4. Object-Orientation in the UTP

Usually, in object-oriented languages, Object does not have a parent. Therefore, it cannot be

present in the domain of sc, as constrained by OO2 presented in the next section.

Using sc, we can define the subtyping relation A � B, which holds if A is associated to B in

the reflexive and transitive closure sc∗ of sc, or if both types are equal (it includes primitives).

The inclusion of primitive types allows us to simplify definitions.

A � B =̂ (A,B) ∈ sc∗ ∨ A = B

The subtyping relation is important in an object-oriented context to establish the well-definedness

of assignments and attribute accesses, as we explain in Sections 4.6.1 and 4.7.1. The inclusion of

extra primitive types, apart from B (booleans) and Z (integers) presented in this work, is not a

problem. The strict subtyping relation is denoted by ≺, and is defined by

A ≺ B =̂ (A,B) ∈ sc+

Definition 4 (Attributes). The attributes information is recorded in atts : name 7→ (name 7→ Type).

This is a mapping from a class name to a description of its attributes that maps each attribute

name to its type. Here Type stands for any primitive type, or any name in cls, that is,

Type := {B,Z} ∪ cls

Once again, because of Object special characteristics, we define a special value for this mapping

to be used in examples. In this case, we have a mapping which says that the set of attributes for

Object is empty.

atts0 = {Object 7→ ∅}

Notice, however, that using the normalization strategy presented in [BSCC04], this set of attributes

associated to Object can be extended.

Definition 5 (Methods). Method names are part of the alphabet of the theory. Their values are

texts of parametrised programs (pds • p), where pds is a list of parameter declarations, and p is

a program: the body of the parametrised program, which uses the parameters.

We write (pds • p) rather than (pds • p) to indicate that the values are texts (pds • p) of

parametrised programs, rather than their meanings (pds • p). Value (val), result (res), and value-

result (valres) parameters are allowed. The notation pds stands for any parameter declaration list,

possibly including the three parameter passing mechanisms. For example, val x : X ; res y : Y ;

valres z : Z is a valid instance of pds, where x, y, and z are variable names and X , Y , and Z are

their types. The function types applied to a list of parameter declarations yields the parameter

types as a set. For instance, types applied to the example above yields {X ,Y ,Z}.

4.3. Healthiness Conditions 39

The values of the observational variables named after methods are parametrised nested con-

ditionals with each branch representing the meaning of a method redefinition. For instance, con-

sidering that C is a subclass of B, which is itself a subclass of A, and that m is a parameterless

method defined in A (with body ma), and redefined in both B and C , with bodies mb and mc,

the value of m is

valres self:Object • mc � self is C � (mb � self is B � (ma � self is A �⊥oo))

Based on the type of the current object (self), the nested conditional allows selection of the most

specialized version of m. When m is not defined for a given class, then the behaviour of a call

to m with an object of this class as a target is unpredictable (the bottom predicate of our theory

⊥oo, defined in the next section). The type test self is N , for a class name N , checks whether

the value of self is an object of class N , or one of its subclasses. This is why, in the type tests for

self, the more specialized classes are considered first. In the UTP, programs (and specifications)

are predicates; there is no notation to distinguish the text of a program from its semantics. Here,

just like in [HH98, Chapter 10] we introduce the distinction. The values of method observational

variables have to be texts to allow the use of a syntactic function to capture dynamic binding (see

Section 4.4.3).

Finally, for each programming variable x, besides x itself and x ′, we include in the alphabet

two more observational variables xt and xt ′ to record the declared type of x. This is potentially

different from the actual (runtime) type of the value of x, which can be an object of a subclass of

the type recorded in xt, when this is a class.

4.3 Healthiness Conditions

We have identified some healthiness conditions of our theory, that is, some predicates that are

expected to be valid for all object-oriented specifications (and programs). The first one says that

Object is a valid type.

OO1 P = P ∧ Object ∈ cls

Our theory relies on a superclass of all classes, represented by the Object type. An example of a

cls instance that satisfy this predicate is cls0. Also, every class has a parent, except Object.

OO2 P = P ∧ dom sc = cls \ {Object}

The top most superclass for all classes is Object, therefore cyclic references are not allowed.

Moreover, according to OO2, a parent class in sc is necessarily present in cls.

OO3 P = P ∧ ∀C : dom sc • (C ,Object) ∈ sc+

40 4. Object-Orientation in the UTP

For all classes present in cls, there is a corresponding mapping in atts that records the attribute

names and types.

OO4 P = P ∧ dom atts = cls

The names of attributes are different for all classes.

OO5 P = P ∧ ∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅

All attributes must have valid types, primitives or defined in cls.

OO6 P = P ∧ ran(
⋃

ran atts) ⊆ {B,Z} ∪ cls

We name the composition of these conditions OOI =̂ OO1 ◦OO2 ◦OO3 ◦OO4 ◦OO5 ◦OO6.

These healthiness conditions constrain the initial values of the variables. Predicates in our theory

must preserve these properties for the final values of these observational variables; thus we have a

similar set of healthiness conditions for the output variables.

OO7 P = P ∧ Object ∈ cls′

OO8 P = P ∧ dom sc′ = cls′ \ {Object}

OO9 P = P ∧ ∀C : dom sc′ • (C ,Object) ∈ sc′+

OO10 P = P ∧ dom atts′ = cls′

OO11 P = P ∧ ∀C1,C2 : dom atts′ • C1 6= C2 ∧ dom(atts′(C1)) ∩ dom(atts′(C2)) = ∅

OO12 P = P ∧ ran(
⋃

ran atts′) ⊆ {B,Z} ∪ cls′

The healthiness conditions OO7-12, however, can be replaced by the following condition expressed

in terms of the identity of our theory. In Law <OO7-12,OO13-equivalence> we prove this

equivalence.

OO13 P = P; IIoo

The set of predicates that satisfy all these healthiness conditions is our theory of object-orientation.

It is a complete lattice, and its bottom is

⊥oo =̂ OO(⊥)

4.3. Healthiness Conditions 41

where OO is the functional composition of OO1-12. The identity of our theory, denoted by IIoo, is

the result of the application of OOI to the relational identity, II (cls′ = cls ∧ sc′ = sc ∧ atts′ = . . .).

IIoo =̂ OOI(II)

Our healthiness conditions are idempotent, and the UTP constructs are closed under these

conditions. Below, we present some laws that are valid confirming this result; those rules left out

are similar. All laws and their proofs are fully presented in the Appendix B.

Law <OO1-idempotent>

OO1 ◦OO1 = OO1

�

Law <OO1-∧-closure>

OO1(P ∧ Q) = P ∧ Q, provided P and Q are OO1 healthy.

�

Law <OO1-∨-closure>

OO1(P ∨ Q) = P ∨ Q, provided P and Q are OO1 healthy.

�

Law <OO1- � � -closure>

OO1(P � b � Q) = P � b � Q, provided P and Q are OO1 healthy.

�

Law <OO1-; -closure>

OO1(P; Q) = P; Q, provided P and Q are OO1 healthy.

�

Law <OO1-µ-closure>

OO1(µX • F(X)) = µX • F(X), provided F(X) is OO1 healthy.

�

Similar results are proved for the other healthiness conditions in much the same way. The

order of application of OO1 and OO2 is irrelevant. This result, the forthcoming laws related to

commutativity, and similar results for OO7-12 prove that there is a subset of relations involving

cls, sc and atts where all healthiness conditions OO1-12 are satisfied. As already said, this subset

42 4. Object-Orientation in the UTP

is our theory of object-orientation, and we have already shown that the application of conjunction,

disjunction, sequence and recursion are closed in this subset.

Law <OO1-OO2-commutativity>

OO1 ◦OO2 = OO2 ◦OO1

�

Law <OO1-OO3-commutativity>

OO1 ◦OO3 = OO3 ◦OO1

�

Law <OO1-OO4-commutativity>

OO1 ◦OO4 = OO4 ◦OO1

�

Law <OO1-OO5-commutativity>

OO1 ◦OO5 = OO5 ◦OO1

�

Law <OO1-OO6-commutativity>

OO1 ◦OO6 = OO6 ◦OO1

�

Law <OO2-OO3-commutativity>

OO2 ◦OO3 = OO2 ◦OO3

�

Law <OO2-OO4-commutativity>

OO2 ◦OO4 = OO2 ◦OO4

�

The complete list is in Appendix B. The composition of OO7-OO12 can be replaced by the

application of OO13.

Law <OO7-12,OO13-equivalence>

OO13 = OO7 ◦OO8 ◦OO9 ◦OO10 ◦OO11 ◦OO12

�

4.4. Declarations 43

4.4 Declarations

In this section we provide the meaning for class, attribute, and method declarations, and some

examples. The general form of the declarations are shown in Table 4.1.

Construct Description

class A extends B Introduces a new class A, subclass of B.

att A x : T Introduces an attribute x of type T in the class named A.

meth A m =
(

pds • p
)

Introduces a method m with formal parameters pds and body p

in the class named A.

Table 4.1: Object-oriented declarations.

To each design that we define, we apply the composition of the healthiness conditions OO1

to OO12, that is OO, to guarantee that the initial values of the variables are valid and the

restrictions over cls′, sc′, and atts′ hold.

4.4.1 Classes

As mentioned before, our aim is to add each feature of object-orientation in isolation. In this

direction, a class declaration introduces just a new type, with an empty set of attributes and

methods.

Definition 6 (Class introduction). The declaration of a class is defined as shown below.

class A extends B =̂ OO



(

A /∈ Type ∧
B ∈ cls

)
⊢




cls′ = cls ∪ {A} ∧
sc′ = sc ∪ {A 7→ B} ∧
atts′ = atts ∪ {A 7→ ∅} ∧
w′ = w







where w = inα(class A extends B) \ { cls, sc, atts}

The design introduces a record of class A in cls and associates it in the relation sc with B

as its immediate superclass. Only new names are allowed (A /∈ Type), and class B needs to

have been previously declared (B ∈ cls). An entry for A in atts is added associated with an

empty mapping. No other observational variable w is modified. As explained before, in the UTP,

inα(class A extends B) is the input alphabet of the program class A extends B.

The postcondition of the design establishes new final values for the observational variables

of our theory; these values satisfy the properties required by the healthiness conditions OO7-12.

More specifically, we do not remove Object from cls’ (OO7 satisfied); the domain of sc is extended

with a new class (A) in cls associated with B, and the precondition guarantees that B is already

44 4. Object-Orientation in the UTP

in cls’ (OO8 and OO9 satisfied); the domain of atts is extended to include the new class A

introduced in cls (OO10 satisfied); and attribute name is new and has a valid type (OO11 and

OO12 satisfied). For a simple declaration class A, we have the obvious meaning.

class A = class A extends Object

Example 3 (Class declaration). For our simple banking application, we declare the classes

Account, which depicts an account of a bank, BAccount, an extension of Account to hold bonus

information, Contact, to hold traditional contact information, and EContact, an extension of

Contact to hold electronic contact information. The meaning of the sequence of declarations of

these classes is the sequence below.

class Account;
class BAccount extends Account;
class Contact;
class EContact extends Contact

=

OO



(

Account /∈ {B,Z} ∪ cls ∧
Object ∈ cls

)
⊢




cls′ = cls ∪ {Account} ∧
sc′ = sc ∪ {Account 7→ Object} ∧
atts′ = atts ∪ {Account 7→ ∅}




 ;

OO



(

BAccount /∈ {B,Z} ∪ cls ∧
Account ∈ cls

)
⊢




cls′ = cls ∪ {BAccount} ∧
sc′ = sc ∪ {BAccount 7→ Account} ∧
atts′ = atts ∪ {BAccount 7→ ∅}




 ;

OO



(

Contact /∈ {B,Z} ∪ cls ∧
Object ∈ cls

)
⊢




cls′ = cls ∪ {Contact} ∧
sc′ = sc ∪ {Contact 7→ Object} ∧
atts′ = atts ∪ {Contact 7→ ∅}




 ;

OO



(

EContact /∈ {B,Z} ∪ cls ∧
Contact ∈ cls

)
⊢




cls′ = cls ∪ {EContact} ∧
sc′ = sc ∪ {EContact 7→ Contact} ∧
atts′ = atts ∪ {EContact 7→ ∅}






The meaning of sequence in our theory is the same as that in the UTP. If we consider that cls, sc,

and atts are equal to cls0, sc0, and atts0, respectively, the sequence above specifies the following

values for cls′, sc′ and atts′.

cls′ =





Object,
Account,
BAccount,
Contact,
EContact





, sc′ =





Account 7→ Object,
BAccount 7→ Account,
Contact 7→ Object,
EContact 7→ Contact





, and atts′ =





Object 7→ ∅,
Account 7→ ∅,
BAccount 7→ ∅,
Contact 7→ ∅,
EContact 7→ ∅





2

4.4.2 Attributes

We can introduce attributes in atts for those classes already in cls.

4.4. Declarations 45

Definition 7 (Attribute introduction). To introduce an attribute x of type T in class A we can

use the construct defined below.

att A x : T =̂ OO






A ∈ cls ∧
x /∈ dom C(atts, cls) ∧
T ∈ Type


 ⊢

(
atts′ = atts ⊕ {A 7→ (atts(A) ∪ {x 7→ T})} ∧
w′ = w

)


where w = inα(att A x : T) \ {atts}
and C(amap, cset) =

⋃{N : cset • amap N},
amap is an attribute mapping, and cset is class set.

If we try to declare an attribute of a class that has not been declared previously, with a

name that was already used, or of a type that is not primitive or present in cls, the declaration

aborts. The set C is a useful abbreviation for a mapping of all attributes of any class to their

corresponding types, calculated from an attribute mapping as defined for atts, and a class set

as cls. Our healthiness conditions OO7-12 are not a problem; the design does not change the

variables cls and sc, and the domain of atts is not changed.

We can declare several attributes simultaneously, with the obvious meaning.

att A x1 : T1, x2 : T2, . . . = att A x1 : T1; att A x2 : T2; . . .
att A x1 : T1,B x2 : T2, . . . = att A x1 : T1; att B x2 : T2; . . .

Our notation allows interleaving concerning with the order of class, attribute, and method decla-

ration. For example, the sequence below is allowed.

class A; att A x : Z; class B extends A; att A y : B; att B z : A

In this case, the attribute y of class A is declared after the declaration of class B. In fact, if

we have recursive classes, the required order of the declaration is different from that adopted in

languages where classes are blocks. For example, if a class A has an attribute x whose type is a

subclass B of A, then the following order of declaration is required.

class A; class B extends A; att A x : B

Transforming the class-based declarations of an object-oriented language into an appropriate se-

quence of class and attribute declarations is a simple task. For methods, similar considerations

apply; mutual recursion, however, is further discussed in Section 4.7.4.

Example 4 (Attribute declaration). This example adds some attributes to the classes of Example

3.

att Account number : Z, balance : Z, contact : Contact;
att BAccount bonus : Z;
att Contact phone : Z;
att EContact icq : Z

46 4. Object-Orientation in the UTP

=

OO






Account ∈ cls ∧
number /∈ dom C(atts, cls) ∧
Z ∈ {B,Z} ∪ cls


 ⊢ atts′ = atts ⊕ {Account 7→ atts(Account) ∪ {number 7→ Z}}


 ;

OO






Account ∈ cls ∧
balance /∈ dom C(atts, cls) ∧
Z ∈ {B,Z} ∪ cls


 ⊢ atts′ = atts ⊕ {Account 7→ atts(Account) ∪ {balance 7→ Z}}


 ;

OO






Account ∈ cls ∧
contact /∈ dom C(atts, cls) ∧
Contact ∈ {B,Z} ∪ cls


 ⊢ atts′ = atts ⊕ {Account 7→ atts(Account) ∪ {contact 7→ Contact}}


 ;

OO






BAccount ∈ cls ∧
bonus /∈ dom C(atts, cls) ∧
Z ∈ {B,Z} ∪ cls


 ⊢ atts′ = atts ⊕ {BAccount 7→ atts(BAccount) ∪ {bonus 7→ Z}}


 ;

OO






Contact ∈ cls ∧
phone /∈ dom C(atts, cls) ∧
Z ∈ {B,Z} ∪ cls


 ⊢ atts′ = atts ⊕ {Contact 7→ atts(Contact) ∪ {phone 7→ Z}}


 ;

OO






EContact ∈ cls ∧
icq /∈ dom C(atts, cls) ∧
Z ∈ {B,Z} ∪ cls


 ⊢ atts′ = atts ⊕ {EContact 7→ atts(EContact) ∪ {icq 7→ Z}}




We use the definition of attribute declaration for each element of the sequence, starting with the

attribute number , and ending with icq. If we suppose that the declaration above comes after the

class declarations of Example 3, the expected final value of atts is as follows.

atts′ =





Object 7→ ∅,
Account 7→ {number 7→ Z, balance 7→ Z, contact 7→ Contact},
BAccount 7→ {bonus 7→ Z},
Contact 7→ {phone 7→ Z},
EContact 7→ {icq 7→ Z}





2

For a given class N , we define U(amap, smap,N) to be a mapping that records all the attributes

of N , including those declared in its superclasses, considering an attribute mapping amap, and

a subclass relation smap defined with the same types of atts, and sc, respectively. We define

U(amap, smap,N) as:

U(amap, smap,N) =
⋃

amap(| smap∗(| {N} |) |)

In words, U(atts, sc,N) contains all the attribute declarations of all classes related to N by the

reflexive and transitive closure of the superclass relation, considering the current attributes in atts

and subclass relation sc. This function is useful to define object creation and also to check if an

instance of an object is well-defined.

4.4. Declarations 47

4.4.3 Methods

For a method declaration to succeed, the class to which it is associated must have been introduced

before, and all formal parameters, passed by value (val), result (res) or value-result (valres), must

have primitive types or those introduced in cls. The result depends on whether the method is being

declared for the first time or not. If it is (m /∈ α(meth A m = pds • p)), then the definition below

applies. The new name m is introduced in the alphabet using a variable declaration.

Definition 8 (New method introduction). For new methods, the declaration is defined as follows.

meth A m =
(
pds • p

)
=̂

OO

(
var m;

(
A ∈ cls ∧
∀ t ∈ types(pds) • t ∈ Type

)
⊢
(

m′ = pdse • (p � self is A �⊥oo) ∧
w′ = w

))

provided m /∈ α(meth A m =
(
pds • p

)
)

where pdse = valres self:Object; pds and w = inα(meth A m =
(
pds • p

)
)

The value of m′ is the text of a parametrised program. Methods are higher-order, parametrised

program-valued variables, much in the same way as in the theory of higher-order procedures and

parameters of the UTP. The parameters of m′ are those in pds and an extra parameter self to

represent the target of a call; its type is Object. We use the notation pdse to represent this

extended parameter list. Just as with var x, which introduces in the alphabet new variables x

and x ′, for meth A m, we introduce in the alphabet the variables m and m′, and use a design to

define the value of m′.

For the case of a redefinition of a method m (m ∈ α(meth A m = pds • p)) we have another

definition.

Definition 9 (Method redefinition). If the method name declared is not new, the corresponding

definition is the following.

meth A m =
(
pds • p

)
=̂ OO



(

A ∈ cls ∧
∃ q • m = pdse • q

)
⊢


∃ q •




m = pdse • q ∧
m′ = pdse • join(A, p, q) ∧
w′ = w








provided m ∈ α(meth A m =
(
pds • p

)
)

where pdse = valres self:Object; pds, w = inα(meth A m =
(
pds • p

)
) \ {m}

and

join(A, p,⊥oo) = p � self is A �⊥oo

join(A, p, ql � self is B � qr) =

{
p � self is A � (ql � self is B � qr), if A ≺ B
ql � self is B � join(A, p, qr) , otherwise

join(A, p, q) = ⊥oo, for programs q of every other form

48 4. Object-Orientation in the UTP

If the method declaration is a redefinition, the method signature must be exactly the same as

that of the existing method, and a new conditional is built to take into account the class hierarchy.

The definition of the syntactic function join deals with redefinition of m both in superclasses

and in subclasses of the class where the original definition is placed. The use of join allows us

to introduce the method values as (parametrised) programs in a form where dynamic binding

is already resolved, as in algebraic methods [BS00, BSCC04] and in the weakest precondition

approach [CN00]. As already said, the special variable self denotes the target of the method call.

All references to attributes in method bodies must be prefixed with self ; variables without this

prefix are formal parameters or local variables.

We give the meaning of a parametrised program as a function from a value or a variable name to

a program (or predicate). We consider each of the mechanisms of parameter passing individually;

the definitions reflect the standard way of implementing them.

For a value parameter, the semantics is a higher-order function that takes the value of the ar-

gument and gives the program that declares the formal parameter as a local variable and initializes

it with the argument.

(val v : T • p) =̂ (λw : T • (var v : T ; v := w; p; end v : T))

A function that models a parametrised program with a parameter passed by result takes as argu-

ment the name of a variable: an element of the syntactic category N . This is the argument in a

method call.

(res v : T • p) =̂ (λw : N • (var v : T ; p; w := v; end v : T))

In this case, the local variable corresponding to the formal parameter is not initialized; its value

is assigned to the argument.

For a value-result parameter, the definition is as expected: the local variable is initialized and

then assigned to the argument in the end.

(valres v : T • p) =̂ (λw : N • (var v : T ; v := w; p; w := v; end v : T))

The parameter of the function is again a program variable.

Lambda-reduction is extended to cope with variable parameters: elements of the syntactic

category N . It is an abstraction over four arguments: a variable, the corresponding type variable,

and their dashed counterparts. A similar semantics for parametrisation was presented in [CSW05].

(λ x : N • p)(y) =̂ p [y, y′, yt, yt ′/x, x ′, xt, xt ′]

Example 5 (Method declaration). In this example we show the semantics of method declarations,

considering that cls is the one defined in Example 3, and atts is that defined in Example 4. We

4.5. Variables 49

introduce a method credit for Account, and we redefine it for class BAccount to also increase the

value of a bonus variable.

meth Account credit =
(
val x : Z • self.balance := self.balance + x

)
;

meth BAccount credit =
(
val x : Z • self.bonus := self.bonus + 1; self.balance := self.balance + x

)

We observe that, in the body of the redefinition of credit for BAccount, we have a repetition of

the code in the body of credit as defined for Account. In a programming language, this is likely

to be written as super.credit(x) or using some other similar notation that avoids code repetition.

As we explained in Section 4.2, however, semantically, these constructs can be removed using a

copy rule. For this reason, we do not consider this issue here. The meaning of the two method

declarations is given by the sequence below.

OO

(
var credit;

(
Account ∈ cls ⊢ credit ′ =

(
valres self:Object; val x:Z •

self.balance...� self is Account �⊥oo

)))
;

OO




(
BAccount ∈ cls ∧
∃ q • credit = (valres self:Object; val x:Z • q)

)

⊢(
∃ q •

(
credit = (valres self:Object; val x:Z • q) ∧
credit ′ = valres self:Object; val x:Z • join

(
BAccount, (self.bonus :=...), q

)
))




If we eliminate the sequential composition, the value of the variable q existentially quantified in

the second design is determined to be the body of credit as defined in the first design. With that,

we can calculate the result of join. The final value of credit is of the following form.

valres self:Object; val x:Z •
self.bonus := self.bonus + 1;... � self is BAccount�

(self.balance := self.balance + x � self is Account�⊥oo)

The conditional generated by join selects the appropriate command depending on the type of self.

This is the expected behaviour in the presence of dynamic binding. 2

4.5 Variables

In [HH98], type information is not explicitly recorded for the variables. In an object-oriented

language, where types play a central role, this is not appropriate. In our theory, the values of the

variables are pairs, whose first element is the (runtime) type of the variable, and the second is the

value itself. We define the construct var x : T for typed declaration of variables, where T is the

static type of the variable x.

Definition 10 (Variable declaration).

var x : T =̂ OO({T ∈ Type}⊥; var xt, x; true ⊢ xt ′ = T ∧ x ′ ∈ V(T) ∧ w′ = w)

provided x /∈ inα(var x : T) and w = inα(var x : T)

50 4. Object-Orientation in the UTP

We use the existing var construct to introduce both x and xt in the alphabet. In the definition,

we require that T is a valid type, if it is invalid the sequential composition aborts. For that, we

use an assertion, defined in Chapter 3. Otherwise, the type xt of x is defined to be T , and an

arbitrary element of T is chosen as its initial value. All the other variables are not changed. In

assignments to x its value, which is a pair (et , ev), may change, but xt does not.

To complete this definition, we need to define the set of elements V(C) of a type C . These

are pairs in which the first element is a subclass A of C , possibly C itself, and the second element

is either the special value null or a mapping (record) that associates a value to the name of each

of the attributes of A, in the case of classes. For primitives types the second value is a primitive

value, such as 1, for integer, or true for booleans. A formal definition is a function that takes

sc and atts as parameters; a similar function is specified in [CN00]. As with var x, our typed

declaration is a non-homogeneous relation: the alphabet of var x : T does not include x or xt.

The definition of end x : T (the construct used to finalize the scope of x) is similar to that in

the UTP for end x. There are no concerns with type at the end of the scope of a variable, but we

need to close the scope of both x and xt.

Definition 11 (Variable removal).

end x : T =̂ OO(end x, xt)

The discussion about the structure of values is extremely important to the definition of object

value, and the correctness of assignments and method calls. This interpretation of variables and

values is not against the principles of the UTP; we have just made explicit the representation of

values in order to handle the concepts of object-orientation.

4.6 Expressions

In this section, we specify well-definedness rules for expressions, and the semantics of object cre-

ation, type test, type cast, and attribute accesses.

4.6.1 Well-definedness

Our theory includes new forms of expression e characterised by the BNF-like definition in Ta-

ble D.1. There, v is a primitive or object value. The expressions le, named left expressions are

e ::= v | le | new N | e is N | (N)e | f (e) | null

le ::= x | self | le.x

Table 4.2: BNF for object-oriented expressions.

4.6. Expressions 51

ordinary variable names or the special variable named self, followed by a (possibly empty) se-

quence of dot-separated names. The expression new N is an object creation, e is N is a type

test, and (N)e is a type cast. There is also a group of built-in operations over expressions, like,

for instance, arithmetic and relational operators, denoted by f (e).

For an expression e, we write et to denote the first element of the value of e, and ev to denote

the second element. In other words, et is the type of the value of e, and ev is the value itself

forming a pair (et , ev). The construct null actually stands for a family of values, one for each

class. The type held by et in this case is inferred from the context. For instance, in an assignment

x := null, we have that et = xt; this means that the runtime type of null is the declared type of

x.

The well-definedness of expressions, and commands, is specified by a function named D. If an

expression has a primitive value, it is well-defined if the value belong to the set of possible values

of the type. For objects, we must check if the type belongs to cls, and if the value belongs to the

set of values of type T , V(T). For primitive types the test is simpler.

Primitive Values Objects

D((B, v)) =̂ v ∈ B D((T ,null)) =̂ T ∈ cls
D((Z, v)) =̂ v ∈ Z D((T , v)) =̂ T ∈ cls ∧ (T , v) ∈ V(T)

Variables are well-defined if their types are either primitive or present in cls. If a variable has the

special name self, it cannot be of a primitive type.

Variables

D(x) =̂ xt ∈ Type
D(self) =̂ selft ∈ cls

An attribute access le.x is valid only if le is well-defined, the type of le is not primitive, the value

of le is different from null, and x is in the domain of the value of le.

Attribute Accesses

D(le.x) =̂ D(le) ∧ let ∈ cls ∧ lev 6= null ∧ x ∈ dom lev

A new N declaration is valid only if the class N is recorded in cls. A type test e is N or casting

(N) e can be done only if e is a well-defined expression and N is not primitive. For a type cast,

the expression has to be of a valid subtype of N .

Typing

D(new N) =̂ N ∈ cls
D(e is N) =̂ D(e) ∧ N ∈ cls
D((N)e) =̂ D(e) ∧ N ∈ cls ∧ et � N

The well-definedness restrictions for built-in operations for primitive types, f (e), are defined in-

dividually and are very similar. We show the example of the remainder of a division operator,

52 4. Object-Orientation in the UTP

usually written ‘%’ in programming languages.

Remainder

D(x%y) =̂ D(x) ∧ D(y) ∧ xt = Z ∧ yt = Z ∧ yv 6= 0

In Section 4.7.1, we use the functionD on expressions to define well-definedness rules for commands.

4.6.2 Object Creation

An object value is a pair (type, value): the type is a class name and the value is a mapping from

names to attribute values. Using sc and atts to recover attributes and inheritance information, we

provide a definition for new as follows.

new N =̂




N ,








x : dom map;
t : Type;
v : {T : Type; i : T • i }


 |







map(x) = B ∧
t = B ∧
v = false




∨


map(x) = Z ∧
t = Z ∧
v = 0




∨
∃T : cls •




map(x) = T ∧
t = T ∧
v = null









• x 7→ (t, v)








where map = U(atts, sc,N)

This definition says that the value of a newly created object is a mapping from attribute names

x to values (t, v) that associate all boolean attributes to false, all integer attributes to 0, and all

class-typed attributes to null. For example, the value of new BAccount, considering the values of

sc and atts obtained after the declarations of Examples 3 and 4, is

(BAccount, {number 7→ (Z, 0), balance 7→ (Z, 0), contact 7→ (Contact,null), bonus 7→ (Z, 0)})

In this example, all attributes from class Account (number ,balance,contact), as well as those from

BAccount (bonus), are included.

4.6.3 Type Test

The expression e is N is a boolean that indicates whether the value of e belongs to the class N or

to one of its subclasses. The result yielded by such an expression is

e is N =̂ (B, et � N)

4.6. Expressions 53

For example, (new BAccount) is Account = (BAccount, {. . . }) is Account

= (B,BAccount � Account)

= (B, true)

This is justified by the definitions of new, type test, and �, if we assume that cls and sc are

as defined in Example 3.

4.6.4 Type Cast

The result of a cast (N)e is the expression e itself, if the casting is well defined. Since we are only

defining the meaning of well-defined expressions, our specification is surprisingly trivial.

(N)e =̂ e

For example, provided that BAccount � Account

(Account) new BAccount = (Account)(BAccount, {. . .})
= (BAccount, {. . .})

In the semantics of assignments and conditionals, well-definedness is checked.

4.6.5 Attribute Access

An attribute access le.x recovers from the object value mapping (lev) the attribute named x.

le.x =̂ lev(x)

Again, we have a very simple definition, because we are only considering well-defined attribute

accesses. For example, suppose that we have an instance of BAccount such as in the following

program.

var x : BAccount;

x := new BAccount;

The result of the expression x.bonus is given by

x.bonus = (xt , xv).bonus

= (BAccount, {. . . , bonus 7→ (Z, 0)}).bonus

= {. . . , bonus 7→ (Z, 0)}(bonus)

= (Z, 0)

As expected, we select the value associated to bonus in the mapping of attribute values for x. If

we have a composite name like le.x.y, we successively apply the lookup – (lev(x)).y – to select the

expected value.

54 4. Object-Orientation in the UTP

4.7 Commands

Our theory includes assignments le := e of a value e to a left expression le, and method calls

le.m(a) with target le and list of arguments a. Moreover, since expressions have changed, we need

to consider well-definedness for some commands. We also introduce mutual recursion. Sequence

remains unchanged.

c ::= le := e | II | var x : T | end x : T | c1 � e � c2 | c1; c2 | µX • F(X) | le.m(e)

Table 4.3: BNF for object-oriented commands.

4.7.1 Well-definedness

In this section, we specify well-definedness for assignments, conditionals, and method calls. We

consider two forms of assignment: assignments to variables, and assignments to object attributes.

An assignment of an expression e to a variable x is considered well-defined if x is well-defined, e

is well-defined, and the type of e is a subtype of the type xt of x.

Assignment to variables

D(x := e) =̂ D(x) ∧ D(e) ∧ et � xt

For an assignment of an expression e to an attribute x of le to be well-defined, the expres-

sion le.x must be well-defined, e must be well-defined, and the type of e must be a subtype

of U(atts, sc, let)(x), the type of the attribute x in the class let .

Assignment to attributes

D(le.x := e) =̂ D(le.x) ∧ D(e) ∧ et � U(atts, sc, let)(x)

For a conditional to be well-defined, the condition must be well-defined and yield a boolean value.

Conditional

D(P � e � Q) =̂ D(e) ∧ et = B

The definition of well-definedness for method calls is the most extensive. A method call of the

form le.m(a) is valid if:

• le is well-defined;

• the value of le is different from null;

• the method m is defined for the type of le;

• to avoid aliasing, le is not passed as an argument and is not involved in any argument. For

further details about this restriction, see [CN00];

4.7. Commands 55

• the types of the arguments in the list a must be compatible with the formal parameters list

of m.

We present well-definedness definitions according to the parameter passing mechanism. Starting

with value parameters, we have the definition below.

Method call

D(le.m(e)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ et � T

provided ∃ p • m = (val x:T • p),
where compatible(le,m) =̂ ∃ pds, p •m = (pds • p) ∧ let ∈ scan(p)
with

scan(⊥oo) = {}
scan(pl � self is A � pr) = {B : cls | B � A} ∪ scan(pr)

The scan function yields the set of class names for which the method m may have a definition

different from ⊥oo. For result and value-result parameters, we use the function sdisjoint [CN00],

which verifies if le is involved in any of the arguments.

D(le.m(y)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ sdisjoint(le, y) ∧ T � yt

provided ∃ p • m = (res x:T • p)

D(le.m(z)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ sdisjoint(le, z) ∧ T = zt

provided ∃ p • m = (valres x:T • p)

The definition for a method call with multiple arguments is a straightforward extension of these

definitions.

4.7.2 Assignments

Now we define assignments to variables, and assignments to attributes of object variables. In our

theory, we observe that modifying the value of method variables, type variables xt, cls, sc, atts, or

ok is not allowed, in much the same way that assignments to ok are not allowed in the theory of

designs as well.

If we establish the well-definedness of an assignment, we can update the value of the variable

to be that of the expression.

x := e =̂ OO(D(x := e) ⊢ x ′ = e ∧ w′ = w)

where w = inα(x := e) \ {x}

For example, given a variable x of type Account (xt = Account), we can calculate the meaning of

the assignment x := newBAccount as follows, provided that y is the list of undashed variables in

the alphabet, other than x, and that cls, sc and atts are as in Examples 3 and 4.

x := new BAccount

56 4. Object-Orientation in the UTP

={ assignment }
OO

(
D(x := (BAccount, {number 7→ . . . })) ⊢ x ′ = (BAccount, {number 7→ . . . }) ∧ y′ = y

)

={ D for variable assignments }

OO





D(x) ∧
D((BAccount, {number 7→ . . . })) ∧
BAccount � Account


 ⊢ x ′ = (BAccount, {number 7→ . . . }) ∧ y′ = y




={ D for variables and instances; assumptions on cls and subtyping }

OO






Account ∈ {B,Z} ∪ cls ∧
BAccount ∈ cls ∧
(BAccount, {number 7→ . . . }) ∈ V(BAccount)


 ⊢ x ′ = (BAccount, {number 7→ . . . }) ∧ y′ = y




={ assumptions on cls; and definition of V }
OO

(
true ⊢ x ′ = (BAccount, {number 7→ . . . }) ∧ y′ = y

)

To update an attribute of an object-valued expression, we check the well-definedness of the assign-

ment, and if it is valid, then we update the mapping that records the attribute value, maintaining

the left expression type unchanged.

le.x := e =̂ OO(D(le.x := e) ⊢ le′ = (let , lev ⊕ {x 7→ e}) ∧ w′ = w)

where w = inα(le.x := e) \ α(le)

We use α(le) to denote a variable in the alphabet whose value is being inspected by the left-

expression le. If le is a variable, then α(le) is the variable itself. On the other hand, for x.y

and x.y.z, for example, the result is x. The equality le′ = (let , lev ⊕ { x 7→ e }) for the case

in which le is itself an attribute access y.z, for instance, is an abbreviation for the equality

y′ = (yt , yv ⊕ { z 7→ y.z ⊕ { x 7→ e } }).
For example, given a variable x of type Account (xt = Account), which has been initialized with

new BAccount (x = (BAccount, {number 7→ (Z, 0), . . . })), we can describe the attribute update

x.number := 1 as follows, provided that y is the list of undashed variables in the alphabet, other

than x, and cls, sc, atts are as in Examples 3 and 4.

x .number := 1

={ assignment to attributes }

OO

(
D((BAccount, {number 7→ (Z, 0), . . . }).number := (Z, 1))

⊢
(
x ′ = (BAccount, {number 7→ (Z, 0), . . . } ⊕ {number 7→ (Z, 1)}) ∧ y′ = y

)
)

={ D for attribute assignments; and mapping replacement }

OO





D((BAccount, {number 7→ (Z, 0), . . . }).number) ∧
D((Z, 1)) ∧
Z � U(atts, sc,Account)(number)


 ⊢




x ′ = (BAccount, {number 7→ (Z, 1), . . . })
∧
y′ = y






4.7. Commands 57

={ D for attribute accesses and primitive instances; and definition of U }

OO







D((BAccount, {number 7→ (Z, 0), . . . })) ∧
BAccount ∈ cls ∧
{number 7→ (Z, 0), . . . } 6= null ∧
number ∈ dom{number 7→ (Z, 0), . . . } ∧
Z � Z



⊢




x ′ = (BAccount, {number 7→ (Z, 1), . . . })
∧
y′ = y







={ D for object instance; set properties; and assumptions on cls and subtyping }

OO

((
BAccount ∈ cls ∧
(BAccount, {number 7→ . . . }) ∈ V(BAccount)

)
⊢ x ′ = (BAccount, {number 7→ (Z, 1), . . . }) ∧ y′ = y

)

={ definition of V ; and set properties }
OO

(
true ⊢ x ′ = (BAccount, {number 7→ (Z, 1), . . . }) ∧ y′ = y

)

If we had not initialized the variable x, the assignment would not be well-defined and would abort.

4.7.3 Conditional

We need to redefine the conditional to consider the well-definedness of the condition.

P � e � Q =̂ OO(D(P � e � Q) ∧ ((ev ∧ P) ∨ (¬ev ∧ Q)))

For example, suppose we have the variables cls, sc and atts as in the Examples 3 and 4. If we

declare a variable var self : Account, and initialize it as self := new BAccount, the result of the

conditional P � self is BAccount � Q, with arbitrary P and Q, is P, as shown below.

OO (P � self is BAccount � Q)

={ definition of conditional; and definition of type test }

OO


D(P � self is BAccount � Q) ∧




(B, (BAccount, {number 7→ . . . })t � BAccount)v ∧ P)
∨
(¬(B, (BAccount, {number 7→ . . . })t � BAccount)v ∧ Q)






={ type selection }

OO


D(P � self is BAccount � Q) ∧




(B,BAccount � BAccount)v ∧ P)
∨
(¬(B,BAccount � BAccount)v ∧ Q)






={ D for conditionals; value selection; assumptions on cls and subtyping }

OO


D(self is BAccount) ∧ (B, (BAccount, {number 7→ . . . })t � BAccount)t = B ∧




(true ∧ P)
∨
(false ∧ Q)






58 4. Object-Orientation in the UTP

={ D for type test; type selection; and ∧-∨-elimination }
OO(D(self) ∧ BAccount ∈ cls ∧ B = B ∧ P)

={ D for self ; assumptions on cls }
OO(selft ∈ cls ∧ P)

={ assumptions on cls }
OO(P)

If the type test were false, the branch selected would be Q. Moreover, according to the well-

definedness rules for the variable self, it cannot be an instance of a primitive type. If this were the

case, the meaning of the conditional would be abort. It may be the case that P is not well-defined;

in this case, abortion arises from the definition of P.

4.7.4 Recursion

Basically, the meaning of recursion is as in the UTP: defined in terms of least fixed points. The

complete lattice is that of parametrised programs, with refinement as the partial order. For each

parameter declaration, the set of programs with those parameters is a complete lattice; refinement

is defined pointwise [BvW98].

Definition 12 (Recursive Method). The general form for the declaration of a recursive method

m of class A is the following.

meth A m = µX •
(

pds • F(X)
)

For example, a method to calculate factorials could be added to a class A as follows

meth A m = µX •
(
val n : Z; res r : Z • r := 1� n ≤ 0� r := n ∗X(n − 1, r)

)

This is not in conflict with the expected form of a method declaration meth A m =
(

pds • p
)

,

since, of course, the least fixed point operator results in a parametrised program. In particular,

the parameters are the same as those in the body of the recursion. For each parameter declaration,

we take the fixed point in the lattice of parametrised programs with those parameters.

Definition 13 (Mutually Recursive Methods). The general form for the declaration of mutually

recursive methods m of class A, and n of class B is the following.

meth A m,B n = µX ,Y •
(

pdsm • F(X ,Y), pdsn • G(X ,Y)
)

Mutual recursion is easily addressed in our theory. In this case, since m and n are mutually

recursive, they are defined together, even though they are methods of different classes. This

follows the standard approach to the definition of mutually recursive procedures. The vector of

4.7. Commands 59

programs m,n is defined as the least fixed point of the function from vectors of predicates to

vectors of predicates defined by the bodies of m and n: pdsm • F(X ,Y) and pdsn • G(X ,Y). As

an example, calling the methods m or n defined below, with a variable a as the result parameter,

leads to the assignment of 0 to a.

meth A m,B n = µX ,Y •
(

val x : Z; res i : Z • i := x � x = 0� Y (−x, i),
val y : Z; res j : Z • X(y − 1, j) � x > 0� X(y + 1, j)

)

Once the recursion is resolved and the fixed-point operators are eliminated, the description of a

multiple method declaration like meth A m,B n = (pdsm • mb), (pdsn • nb) is a trivial extension

of the definition of simple method declarations presented in Section 4.4. In many theories of

object-orientation, mutual recursion is a difficulty. The complication is really attached to the fact

that the mutually recursive methods may be declared in an independent way in separate classes.

By splitting the block structure of a class into its basic semantic blocks, we trivially overcome this

difficulty.

4.7.5 Method Call

Since we have already solved dynamic binding when dealing with the semantics of method decla-

ration in Section 4.4.3, the semantics of method call is just a call to the value of the method. In

other words, we have isolated the several aspects involved in a method call, so that dynamic bind-

ing is captured in the definition of the value of the method variable, which holds a parametrised

program, and a method call is given mainly by the copy rule.

le.m(args) =̂ OO({D(le.m(args))}⊥ ; (pdse • p)(le, args))

where m = pdse • p

Example 6. Suppose that sc = sc0, cls = cls0, and atts = atts0, and after the declaration of

classes, attributes and methods in the Examples 3 and 4, we have the program fragment below.

var a : Account;
a := new BAccount;
a.credit(10)

Due to dynamic binding, a.credit(10) must execute the body of the method credit defined for the

subclass BAccount. As described in Section 4.4, the value of credit is a conditional over the special

variable named self. Below, we show how the program associated to the variable credit resolves

the dynamic binding. The meaning of a.credit(10) is defined in terms of credit(a, 10), which we

60 4. Object-Orientation in the UTP

consider below.

credit(a, 10)
={ method expansion }(

valres self : Object; val x : Z •
self.bonus . . .� self is BAccount � (. . .� self is Account �⊥oo)

)
(a, 10)

={ semantics of valres }
var self : Object;

self := a;(
val x : Z •
self.bonus . . . � self is BAccount � (. . .� self is Account �⊥oo)

)
(10);

a := self;
end self : Object

={ semantics of val }
var self : Object;

self := a;
var x : Z;

x := 10;
self.bonus . . .� self is BAccount � (. . . � self is Account �⊥oo);

end x : Z;
a := self;

end self : Object

={ as self t is BAccount, the conditional reduces to its left branch }
var self : Object;

self := a;
var x : Z;

x := 10;
self.bonus := self.bonus + 1;
self.balance := self.balance + x;

end x : Z;
a := self;

end self : Object

This can be expanded to a predicate that establishes the final value of a to be its initial value with

attributes updated by assignments. 2

4.8 Conclusions

We have presented a stepwise introduction to object-oriented concepts in the Unifying Theories of

Programming. We started with the definition of observational variables and healthiness conditions

4.8. Conclusions 61

(HCs), that restrict the values of these variables. The closedness properties of the HCs were

stated and proved, to show, for example, that any two programs (or specifications) which are

independently valid for a given HC can be combined by conjunction, disjunction or sequential

composition, and the resulting program is still part of the lattice of predicates.

The declarations of classes, attributes and methods are defined in terms of the theory of designs,

which itself filters the subset of terminating programs, combined with higher-order programming,

which allows variables to record the behaviour associated to methods (abstractions), including

dynamic binding resolution. We saw that each of these declarations preserves the defined HCs.

Type checking is an important issue in object-oriented languages. To record typing information,

special variables were introduced and well-definedness conditions were specified for the new object-

oriented commands and expressions. Those forms of commands and expressions already introduced

by Hoare and He for a sequential programming language, however, had to be revised to cope

with typing information, including method calls. We allow methods co- and contra-variance of

arguments and return types.

We have seen also that the separation of declarations in different blocks has allowed the defini-

tion of (mutually) recursive methods in a straightforward manner. Furthermore, this has allowed

a compositional approach which focuses on each feature in isolation. Another facility is specially

related to dynamic binding resolution. When processing a method declaration, the observational

variable responsible for that method is updated to reflect the new method’s meaning. This might

introduce a new observational variable for the method (when processing the first definition of a

method), or updating the value of an existing variable to take into account the dynamic binding

resulting from a method redefinition.

By all presented, we have a theory of object-orientation that handles inheritance, recursive data

types, dynamic binding, polymorphism, and mutually recursive methods. Some considerations

about verification are discussed in the sequel.

4.8.1 Verification

As we have already presented, the concept of refinement for the UTP is universal implication. If

we are expected to introduce pre- and postconditions, in Hoare style, we have a straightforward

manner to perform verification. As an example, suppose we have the following specification for

the method debit: informally, we cannot perform a debit without enough funds.

pre self.balance > value

post self.balance′ = self.balance − value

62 4. Object-Orientation in the UTP

To check this specification against its method definition, at any method call le.m(args) the seman-

tics could be extended to

OO({D(le.m(args)) ∧ pre(argsc)}⊥; (pdse • p)(le, args); post(argsr)),

where the precondition is extended with the copy-by-value variables (val and valres) and the

postcondition is extended with the result variables (res and valres). Notice that, if the precon-

dition is violated, the method call behaves like abort (true; P =̂ true, from designs), and if the

postcondition is violated it aborts the remaining program.

Moreover, there is a simpler alternative. Remember that in the UTP programs and specifica-

tions are interchangeable, the verifications thus would be part of the method body itself, and in

this case the method call semantics remains the same. The expression

OO({D(le.m(args))}⊥ ; (pdse • pre; p; post)(le, args)),

is the same of declaring a lengthier method body with pre- and post-conditions.

Chapter 5

Pointers in the UTP

This chapter is concerned with how pointers are handled in formalisations of object-orientation

and how it can be introduced in the UTP, firstly as a separated theory and them in a combined

way. Section 5.1 provides an overview of pointers in the formalisms presented in Chapter 2, and

the approach we follow. After that, Section 5.2 introduces the theory of pointers for UTP proposed

by Cavalcanti, Harwood and Woodcock, with some minor revisions, and Section 5.3 discusses some

ideas towards its integration with the theory of object-orientation presented in Chapter 4. Finally,

Section 5.4 highlights our conclusions about the integration process.

5.1 Overview

It is well-known that most of the languages that are based on the imperative or the object-

oriented paradigm in use today allow some sort of sharing. Some of them permit a more explicit

manipulation of memory, like those where pointers can be directly handled, such as C or C++,

and others are more restrictive like Java. In spite of its complexity, mainly due to the possibility

of side-effects during memory manipulation, sharing is a design facility that cannot be excluded

from programming language designs. It allows, for example, a better utilization of computational

resources like memory, where objects can be recorded as graphs, instead of trees with replicated

values; like CPU cycles, by avoiding cloning on assignments; or even the use of better practices of

programming as described in design patterns, like Observers [GHJV95], where mutual references

are required. As a consequence, the introduction of pointers in the theory of object-orientation is a

natural step in its development. It surely allows more realistic programming languages modelling;

on the other hand, however, it usually increases the complexity of the formalisation.

As presented in Section 2.1, there are many approaches [AL97, MPH97, PdB03, HLL06] that

define object-orientation with a pointer semantics, and because of that, object creation, or ma-

nipulation, becomes more complex than we have presented in our theory so far. Notably, most

63

64 5. Pointers in the UTP

part of the works with sharing consider the existence of an object environment, where references

and instances of objects are recorded, accessed or removed. A typical characterization, firstly

introduced by Milner and Strachey [MS76], is a pair of functions to associate variable names to

addresses and addresses to values, which can be primitive or objects formed by other references:

environment : name 7→ address and store : address 7→ value. Using pointers (aliasing) one needs

also to be concerned more strictly with framed variables to avoid side-effects: unexpected changes

in instances.

In general, such a characterisation requires a more detailed operational description of com-

mands and expressions to show how the object environment is altered. Each of the approaches

presented in Chapter 2, with the exception of ROOL that has a copy semantics, has its own set

of variables to represent the object environment and rules to describe how it is affected by the

constructions present in each formalism. The approach by He et al. presented in [HLL06], for

example, considers a current configuration (a runtime environment) and uses it to describe re-

finement relations. Other approaches [AL97, MPH97, PHM98, PHM99, PdB03] use these object

environments to define general Hoare-like axioms for object-oriented commands, or provide an

operational semantics using these variables to establish a soundness theorem.

Our approach, presented in Chapter 4, which considers a copy semantics, assumes that there is

an implicit object environment. In that case, objects are standard record values, and are treated in

the same way as all the other kind of values in the UTP theories. When a new variable (var x : T)

is declared, it implicitly introduces a variable in the object environment (a non-hierarchical binding

scheme), and allows the assignment of values or updates (:=), and its finalization (end x : T). The

set of variables present in this implicit environment is formed by (i) variables that hold objects, and

also by (ii) variables capable of recording procedures (method meaning). It seems to be reasonable

to consider the inclusion of a specific, and explicit, new set of observational variables to represent

the object store as in He et al. [HLL06]. The approach adopted, however, abstracts from memory

addresses. The next section shows that to handle sharing a detailed knowledge of the memory

model implementation is not required; the main point is which objects share the same location.

Instead of altering the description of our theory for object-oriented programs, we choose to

follow the design principles of the UTP, where theories are composed; we integrate our theory of

object-orientation with an independent theory of pointers. We combine the two theories and thus

define a subset of programs (predicates) that can be used to describe the behaviour of object-

oriented programs with sharing. To do that we must consider new forms of (un)declaration of

variable and object creation, among other concepts.

Another work that allows pointers introduction is Separation Logic [Rey02] which defines a

model where heaps (object stores) can be divided in parts and specific logical operations can operate

on these parts to locally state properties of the entire memory. Since it contains a different logic

5.2. Pointers Theory 65

background from the UTP, the characterisation of a theory for pointer and its integration with our

theory for object-orientation would be more complex than integrating two theories of interest that

use the UTP as a semantic framework. We are interested in the correct representation of features

present in pointer and object-orientation theories, and its capacity to simplify the descriptions and

proofs for object-oriented laws, with or without sharing. We are not concerned with the complexity

of the memory model itself and its factoring.

5.2 Pointers Theory

A preliminary version of the theory summarised in this section has been published in [CHW06].

A more recent and detailed presentation is available as a technical report in [HCW07]; the focus

of this work is on a theory for pointers in the presence of record values that can share fields.

The authors define what they call a pointer machine to record sharing information and two forms

of assignments are considered: value and pointer. All these operations are defined by means of

predicates over observational variables that define a model for the pointer machine, in the UTP

style.

The main difference between [HCW07] and [HLL05, HLL06] is the use of an implicit addressing

scheme, more specifically, this theory is not concerned with addresses (as numbers) but with the

valid variables, and whether they are sharing a given value or not. This strategy is inspired by

the work of Brookes [Bro86] on an Algo-like language, and by Paige and Ostroff [PO04] with

Eiffel. In the following subsections we present the observational variables, healthiness conditions,

and operators of the pointer theory, before we consider its integration with our theory of object-

orientation, which we discuss in the next section.

At the end of this section, in Example 7, a program using the theory allows us to analyse the

dynamic behavior of the observational variables.

5.2.1 Observational Variables

To record pointers information, the pointer machine records addresses in use, the values associated

to these addresses, and which ones identify the same location, and therefore are expected to have

the same value. Addresses are represented by sequences of Labels separated or not by ‘.’ such as x,

x.a, y, x.b and x.a.c. In the following definitions, for a set X , seq X stands for a set which contains

all finite sequences of elements in X ; thus, seq Label contains all finite sequences of labels1. The

set of finite addresses Ad excludes the empty sequence of labels.

Ad =̂ (seq Label)\{<>}
1In [HCW07], the hypothetical machine can address finite or infinite non-empty sequences of labels, for simplicity

we consider only finite addresses. This simplification is reflected in some forthcoming definitions.

66 5. Pointers in the UTP

The observational variables A, V , and S that model the pointer machine form a triple:

< A : PAd,V : Ad 7→ Value,S : Ad ↔ Ad >

where A is the set of valid addresses, V is a partial function from addresses to values, and S

is an equivalence relation that associates addresses that share a location. The set Value include

primitives or records. In other words, if an address is in A, then it is a valid variable (or field)

access, V represents the store from the previous approaches; the environment has not a direct

representation. A preliminary analysis reveals some relations between these three elements.

• dom V ⊆ A: only valid addresses have values;

• S ⊆ A × A: the equivalence relation S must be a subset of the cartesian product of valid

addresses, in other words, only valid addresses can be shared;

• S = S∗: the S relation is the reflexive, symmetric and transitive, that is, all addresses that

are shared are associated to all their peers and vice-versa.

Next section shows that these restrictions are imposed by healthiness conditions.

Equality In this theory, two kinds of equality of values are considered: address test, denoted

as =p, and value test =v. To define this new equality, a projection < A.p,V .p > of the machine

address for the variables tested is considered. The projection of A

A.p =̂ {q : Ad | p.q ∈ A}

filters all addresses suffixes that have the same prefix p. For example, if A = {x, y, x.a, y.b, x.d, x.d.c}
then A.x yields {a, d, d.c}. The projection of V

V .p =̂ {q : Ad | p.q ∈ dom V • q 7→ V (p.q)}

filters all values of the variables prefixed by p, which we call children of p. For example, if

V = {x.a 7→ v1, y.b 7→ v2, x.d.c 7→ v3} then V .x yields {a 7→ v1, d.c 7→ v3}. The values of two

variables (or field accesses) p and q are equivalent if the projections of these variables for the sets

A and V are equal.

p =v q≡ A.p = A.q ∧ V .p = V .q

The pointer test is simpler; two addresses point to the same value if the pair (p, q) belongs to the

equivalence S .

p =p q≡ (p, q) ∈ S

5.2. Pointers Theory 67

5.2.2 Healthiness Conditions

This section introduces the HCs of this theory. During their presentation, other necessary defini-

tions are explained and used. The first one is the concept of a prefix: x < y is used to denote that

x is a prefix of y, where x is an address. For example, x is a prefix for x.a and x.a.c, and x.a is a

prefix for x.a.c. The first HC says that A is prefix closed, that is, all valid prefixes for addresses

in A must be in A, otherwise we could have a sequence of labels which does not exist. i.e. x.a ∈ A

and x /∈ A.

HP1 P = P ∧ ∀ a1 : A; a2 : Ad | a2 < a1 • a2 ∈ A

Another interesting concept is that of terminal nodes; addresses in A which are not prefixes. The

function term(X) filters all those sequences of labels in X which are terminal. It is defined as

term(X) =̂ {x : X | ¬ ∃ y : X • x < y}

The second HC says that only terminal nodes have values.

HP2 P = P ∧ dom V = term(A)

The next healthiness condition connects the variables in the alphabet to those in the pointer

machine. A new notation ′x is used to refer to the name of x in the pointer machine. The

variables of the alphabet are the first elements of the addresses in the set A; for filtering these

names a function

vars(X) =̂ {x : X • x(1)}

is defined. For example, the result of vars({x, y, x.a, y.b, x .d, x.d.c}) is {x, y}. The next step is to

de-reference the variables to recover its values; for every variable which is in the set of programming

variables a new function ‘!’ is used (A, V and S are not in this set). If the address x is a terminal

node, the result is the value itself, V (x), otherwise it is a projection of V . The definition of ‘!’ is

similar for initial or final variables, as presented below.

!x =̂

{
V (x) , if x ∈ term(A)
V .x , otherwise.

!x ′ =̂

{
V ′(x) , if x ∈ term(A′)
V ′.x , otherwise.

Thus, variables are related to pointer machine entries2 as follows. Where NPV stands for non

programming variables: the set of variables which are not present in the pointer machine.

HP3 P = P ∧ ∧{ ′x : vars(A) • x =!′x}

where NPV ∩ vars(A) = ∅
2The original definition of HP3 presented in [HCW07] is too restrictive to be used in theories integration. There

NPV = inα(P) \ {A,V , S}, which requires other observational variables to be in the pointer machine, and this is

not truth.

68 5. Pointers in the UTP

and {A,V ,S} ⊆ NPV .

In theory extension (or integration) NPV may be larger. The next HC establishes that the elements

in S must belong to A and S is the reflexive, symmetric and a transitive closure of itself.

HP4 P = P ∧ S ∈ (A↔ A) ∧ S = S∗

The fifth healthiness condition relates all suffixes to their prefixes; in other words, if two different

address prefixes (x, y) that share a value ((x, y) ∈ S) have the same suffixes (x.a, y.a), then these

suffixes also share the same values ((x.a, y.a) ∈ S).

HP5 P = P ∧ fclosA S

where fclosA E =̂ ∀ x, y : Ad | (x, y) ∈ E • ∀ a : Ad | x.a ∈ A ∧ y.a ∈ A • (x.a, y.a) ∈ E

Finally, the sixth HC guarantees that if two terminals share the same location then their values

are equal.

HP6 P = P ∧ ∀ a, b : Ad • (a, b) ∈ S ∧ a ∈ dom V ⇒ b ∈ dom V ∧ V (a) = V (b)

The corresponding HCs for terminal variables are named HP7-12, and are similar to these

replacing the initial variables by final variables. For example, HP11(P) = P ∧ fclosA
′ S ′. HPI

is defined as HP1 ◦HP2 ◦HP3 ◦HP4 ◦HP5 ◦HP6 and restricts initial values only. For the

composition of HP1-12 we refer as HP.

Conjunctive Healthiness Conditions

An important result provided by the work of Harwood et al. is the characterisation of conjunctive

healthiness conditions (CH). HCs that are described in terms of conjunctions

CH(P) = P ∧ ψ

where ψ is a predicate. This general characterisation allows the study of general properties of such

kind of HCs, in special that CH are closed with respect to conjunction, disjunction, conditional,

composition and recursion. In other words, once a HC is defined as conjunction, it is granted that

it is closed under this set of operators. This result could be used, for example, to justify closeness

of operators introduced in Chapter 4 and proved in Appendix B.

Another particularity of this kind of healthiness conditions, not observed in [HCW07], is that

if two HCs are conjunctive, let say CH1 and CH2, they also commute, as proved below.

Law 1. <CHs-commutativity>

CH1 ◦CH2 = CH2 ◦CH1

5.2. Pointers Theory 69

Proof.
CH1 ◦CH2(P) [definition of CHs, composition]
= (P ∧ ψ2) ∧ ψ1 [propositional logic]
= (P ∧ ψ1) ∧ ψ2 [definition of CHs, composition]
CH2 ◦CH1(P)

5.2.3 Variables

The introduction of a new variable has to be reflected in the pointer machine. The following

definition shows the declaration of a variable x includes it as a valid address name, associate it to

an arbitrary value, and relates the variable to itself.

var x =̂ HPI ◦HP9


∃ v : Value •




A′ = A ∪ {x} ∧
V ′ = V ⊕ {x 7→ v} ∧
S ′ = S ∪ {x 7→ x}






provided x /∈ A

This definition does not pose any restrictions on the possible values associated to a given variable.

We have seen that restricting the values taken by variables is essential to the correct behaviour of

object-oriented programs, therefore we have to review this definition when addressing integration.

The finalization of a variable x implies in its removal from A, V , and S . The removal, however,

must consider that all addresses with that prefix, denoted as ‘x∞’, also become invalid, and are

expected to be removed as well.

end x =̂ HPI ◦HP9




A′ = A \ {x∞∪ {x}} ∧
V ′ = (x∞∪ {x}) −⊳ V ∧
S ′ = (x∞∪ {x}) −⊳ S −⊲ (x∞∪ {x})




provided x ∈ A
where x∞ =̂ {a : Ad • x.a}

In this definition, the Z notation [Spi92] for domain and image anti restrictions are used. These

functions filter a relation considering elements in domain and image. For example, the V ′ mapping

does not contain x or elements prefixed by x in its domain.

5.2.4 Commands

When dealing with pointers one can associate values to variables or make variables to share lo-

cations (aliasing). Thus, the theory of pointers has two kinds of assignments: an assignment of

values denoted as ‘:=’, expected to change variable values recorded in V , and pointer assignments

‘ :– ’, expected to associate two addresses to the same value. The complexity of these commands

70 5. Pointers in the UTP

arise when non-terminal variables are assigned; in this case more complex adjustment have to be

performed in the variables A, V and S to keep their consistency.

It is important to emphasise that this theory does not handle types. All variations of assign-

ments are possible between variables and values. Compatibility between variable types and their

assigned values is not checked, this will be our first step into the goal of integration, associate

types to values.

Before defining the assignments, a function shareS (x) is introduced to recover all variables in

the equivalence relation S that have their values shared with x. Its general form is described below,

where X is an equivalence relation.

shareX (x) =̂ X(| {x} |)

Assignments of values can be split into two cases: the address is terminal (x∞ is empty) or is an

internal node. The case of terminal nodes :=t is simpler; the expected result is the association of

a new value e to all those addresses that share the value with x, and the other variables remain

unchanged.

x :=t e =̂ HPI ◦HP9




A′ = A ∧
V ′ = V ⊕ {a : shareS(x) • a 7→ e} ∧
S ′ = S




provided x ∈ dom V

The second type of value assignment is that of non-terminal addresses3. In its definition the update

of the prefixed addresses is also required. That is, in x :=i e all variables that have prefix x (i.e.

x.a, x.d, x.d.c) are expected to be updated appropriately. Two auxiliary functions are defined to

filter all addresses of interest. The function X↑ yields all addresses that have prefixes in X , and

extS(x) selects all address names that are prefixed by x or addresses that share their values with

x.

X↑ =̂
⋃{x : X • x∞}

extX (x) =̂ shareX (x)↑

All extensions of x are removed from A, all values associated to children (addresses with prefix

x) of x have their values removed and a new association to the value of e is considered, and at

last, all relations between these children are also removed from the sharing equivalence S . The set

shareS (x)∪ extS (x) is the set of all variables that share values with x and all their extensions, and

shareS (x) \ extS (x) selects only those addresses which share values with x excluding their children

3This kind of assignment exist in this theory because of its absence of typing restrictions, in the object-oriented

theory assignments of values to non-terminals are restricted to null assignments.

5.2. Pointers Theory 71

that became inexistent after this assignment.

x :=i e =̂ HPI ◦HP9




A′ = A \ extS(x) ∧
V ′ = (extS(x)−⊳ V) ∪ {a : (shareS(x) \ extS(x)) • a 7→ e} ∧
S ′ = extS(x)−⊳ S −⊲ extS(x)




provided x ∈ A, x /∈ dom V

The second type of assignment is that of pointers. Again, a distinction between terminal and

internal nodes is made. For terminal nodes, the set of valid addresses prefixed by x is extended

with all the suffixes of addresses prefixed by y, values previously associated to x are removed and

the values associated with the new suffixes of y are associated to the new addresses included in

A, and finally, for S , the original relations of x are replaced by the relation of x with y and its

forward closure.

x :– t y =̂ HPI ◦HP9




A′ = A ∪ {a : Ad | y.a ∈ A • x .a} ∧
V ′ = ({x} −⊳ V)⊕ {a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ V (y.fa)} ∧
S ′ = ((({x} −⊳ S −⊲ {x}) ∪ {x 7→ y}) ∪ {a : Ad | y.a ∈ A • x .a 7→ y.a})∗




provided x ∈ dom V

The internal case is a generalization of the terminal case, where all addresses with prefix x (x∞)

are expected to be removed from A, V and S before the required adjustments.

x :– i y =̂ HPI ◦HP9




A′ = (A \ x∞) ∪ {a : Ad | y.a ∈ A • x .a} ∧
V ′ = (x∞−⊳ V)⊕ {a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ V (y.fa)} ∧
S ′ = (((x∞∪ {x})−⊳ S −⊲ (x∞∪ {x})) ∪ {x 7→ y}∪

{a : Ad | y.a ∈ A • x .a 7→ y.a})∗




provided x ∈ A, x /∈ dom V

In [HCW07] these kinds of assignments are proved to be HP7-12 healthy, and moreover theorems

and laws, such as share(extS (x)−⊳S−⊲extS(x))
(x) = shareS (x)\extS (x) for finite addresses, are described

and proved.

5.2.5 Records

The last concept relevant to our integration is record creation. It defines what are the effects

on the pointer machine of allocating a new memory space. Different from [HCW07] we consider

new(f) as an expression whose value is defined as a mapping from names to values as defined

below, where f stand for a set of names for record fields.

new(f) =̂ {n : name; v : Value | n ∈ f • n 7→ v}

72 5. Pointers in the UTP

The assignment of a new(f) expression to x, ‘x :=r new(f)’, is thus defined as

x :=r new(f) =̂ HPI ◦HP9




A′ = (A \ x∞) ∪ {n : name | n ∈ dom map • x .n} ∧
V ′ = ((x∞∪ {x})−⊳ V)⊕ {n : name | n ∈ dom map • x .n 7→ map(n)} ∧
S ′ = (x∞∪ {x})−⊳ S −⊲ (x∞∪ {x})




provided x ∈ A
where map = new(f)

With a detailed analysis it is possible, and not surprising, to verify that there is a close relation

with the definition of variable declaration:

• in declarations x is introduced in A; record creation associates the record fields f0, . . . , fn to

addresses prefixed by x in A (x.f0, . . . , x.fn);

• in declarations x is associated to an arbitrary value, and in record creation the values previ-

ously associated to x and all addresses with prefix x are removed from V and the new record

fields values are included4;

• in declarations x shares a value with itself, after record creation all new addresses x.f0, . . . , x.fn

are fresh and x itself has not a value, therefore must be removed from S .

The record creation is valid for any set of names defined in f , but the record assignment is defined

only for those addresses in A.

Example 7 (Pointer theory). This example shows how the pointer machine behaves for a simple

program presented in Figure 5.1. Considering A, V , and S initially empty, the effect of program

l1: var x;

l2: var y;

l3: x := new(a, b);

l4: y :– x;

l5: y := new(c, d);

l6: y.c :– x;

l7: y.c.a := v7;

l8: x := v8;

l9: end x;

l10: end y

Figure 5.1: A program using pointers.

execution is presented in the sequel, where we describe the values of the observational variables
4In the context of object-orientation it could be seen as a variable previously with null, and after object creation

(new) an instance is associated.

5.2. Pointers Theory 73

after each command. The values from v1 to v8 are arbitrary, but we assume that v7 and v8 are

primitives. The assignment types (:=t , :=i , or :=r) are inferred from the context where they are

used.

{ just before starting all variables are empty }

A = {} ∧ V = {} ∧ S = {}

l1, l2 :‘var x; var y’ { variable declaration }

A′ =
{

x, y
}
∧ V ′ =

{
x 7→ v1, y 7→ v2

}
∧ S ′ =

{
x 7→ x, y 7→ y

}

l3 :‘x := new(a, b)’ { record creation and assignment (:=r) for variable x }

A′ =

{
x, x.a, x.b,

y

}
∧ V ′ =

{
x.a 7→ v3, x.b 7→ v4,

y 7→ v2

}
∧ S ′ =

{
x 7→ x, y 7→ y

}

l4 :‘y :– x’ { pointer assignment, associate a chain of references (:– i) }

A′ =

{
x, x.a, x.b,

y, y.a, y.b

}
∧ V ′ =

{
x.a 7→ v3, x.b 7→ v4,

y.a 7→ v3, y.b 7→ v4

}
∧ S ′ =





x 7→ x, y 7→ y,

x 7→ y,

x.a 7→ y.a, x.b 7→ y.b





∗

l5 :‘y := new(c, d)’

{
record creation and assignment (:=r),

creates new values for y.c . . . and undo references to x

}

A′ =

{
x, x.a, x.b,

y, y.c, y.d

}
∧ V ′ =

{
x.a 7→ v3, x.b 7→ v4,

y.c 7→ v5, y.d 7→ v6

}
∧ S ′ =

{
x 7→ x, y 7→ y

}

l6 :‘y.c :– x’ { pointer assignment, of a terminal address y.c to a non-terminal x (:– i) }

A′ =





x, x.a, x.b,

y, y.c, y.d,

y.c.a, y.c.b




∧ V ′ =





x.a 7→ v3, x.b 7→ v4,

y.d 7→ v6,

y.c.a 7→ v3, y.c.b 7→ v4




∧ S ′ =





x 7→ x, y 7→ y,

y.c 7→ x,

y.c.a 7→ x.a,

y.c.b 7→ x.b





∗

l7 :‘y.c.a := v7’ { value assignment, to a terminal address which shares a value (:=t) }

A′ =





x, x.a, x.b,

y, y.c, y.d,

y.c.a, y.c.b




∧ V ′ =





x.a 7→ v7, x.b 7→ v4,

y.d 7→ v6,

y.c.a 7→ v7, y.c.b 7→ v4




∧ S ′ =





x 7→ x, y 7→ y,

y.c 7→ x,

y.c.a 7→ x.a,

y.c.b 7→ x.b





∗

74 5. Pointers in the UTP

l8 :‘x := v8’ { value assignment, to a non-terminal address (:=i) }

A′ =

{
x,

y, y.c, y.d

}
∧ V ′ =





x 7→ v8,

y.c 7→ v8,

y.d 7→ v6




∧ S ′ =

{
x 7→ x, y 7→ y,

y.c 7→ x

}∗

l9 :‘end x’{ undeclaration }

A′ =
{

y, y.c, y.d
}
∧ V ′ =

{
y.c 7→ v8,

y.d 7→ v6

}
∧ S ′ =

{
y 7→ y

}

l10 :‘end y’{ undeclaration }

A′ = {} ∧ V ′ = {} ∧ S ′ = {}

Observing this example we conclude that to consider object instances instead of records some

changes are required, as the use of class information to select the appropriate fields of a record.

Moreover, the assignment of line 8 is not a valid assignment for typed languages. These are some

of the topics handled in the next section. 2

5.3 Integration

The objective of this section is to relate concepts present in both theories under a combined one

where all previous observational variables and healthiness conditions are considered. That is, we

consider all variables already presented; all definitions from object-orientation are inherited and

some definitions are progressively changed to be characterised in terms of the pointer machine.

For example, record creation is related to object creation and some adjustments are required for

a combined theory, i.e. record creation of pointers changes to use and record typing information

required by object-orientation.

The set of predicates that satisfy this new hybrid theory lies in the intersection of predicated

delimited by OO and HP. Moreover, during the integration process some extra information is

required and a new observational variable is used; this new observational variable uses information

of both theories and its restrictions are provided by healthiness conditions identified by PO. In

the following sections we present the changes required for the integration; in the Appendix D all

definitions and constructs of the integrated theory are presented.

5.3.1 Observational Variables and HCs

The following observational variable is responsible for recording the dynamic type of addresses;

given an address, which has a value, it is possible to recover its dynamic type. This information is

5.3. Integration 75

required for the integrated definition of commands such as assignments, and expressions such as

type tests.

Definition 14 (Dynamic types). The type of a value associated to an address is recorded in

dts : Ad 7→ Type.

A possible value for this variable is dts0 defined below, which is useful in examples.

dts0 = {}

There is a close relationship between this new observational variable and some variables present in

the theories of object-orientation and pointer. We represent this relationship as a new healthiness

condition which establishes that all valid addresses have a dynamic type in dts, and all dynamic

types associated to a given address are present in cls or are primitives.

PO1 P = P ∧ dom dts = A ∧ ran dts ⊆ Type

PO2 stands for the restriction of final values.

PO2 P = P ∧ dom dts′ = A′ ∧ ran dts′ ⊆ {B,Z} ∪ cls′

As usual, PO is used to refer to their composition PO1 ◦ PO2. Since PO1 is a conjunctive

healthiness condition (CH) the results of Harwood et al. with respect to closeness of operators,

and our law for commutativity, can be applied.

All definitions in the integrated theory are supposed to be OO, HP and PO healthy; therefore,

they are all surrounded by IT, defined as:

IT =̂ OO ◦HP ◦PO

An important remark is that according to Law 1<CHs-commutativity>, the order of application

of HP, OO and PO is irrelevant for this definition, and in the forthcoming ones.

5.3.2 Restricting HP3

In a perfect integration, the healthiness conditions of a theory should not interfere with the HCs

from the other one. Unfortunately this is not the case, in order to allow integration we have to

extend the set of variables considered for NPV presented in HP3. Observe that the theory of

object-orientation has other observational variables cls, sc and atts, and method variables, which

are not programming variables and cannot be de-referenced in the pointer machine. Thus, in the

integration we have that

{A,V ,S , cls, sc, atts, dts} ∪M ⊆ NPV

where : M is the set of method variables.

76 5. Pointers in the UTP

Only variables outside this set can be de-referenced; from HP3 we have that NPV * vars(A).

Since we are restricting the set of variables for NPV , we are strengthening the condition associated

to HP3, therefore, the set of valid predicates for this new restriction is smaller than before

{A,V ,S , cls, sc, atts, dts} ∪M ⊆ NPV ⇒ {A,V ,S} ⊆ NPV

In other words, the set of predicates filtered by this condition is smaller than, and a subset of,

those filtered by the original version of HP3.

5.3.3 Variables

In the theory of pointers, variable information is recorded in the pointer machine. We reuse the

definition of object-orientation where the type has to be previously defined, and we extended it to

consider dts. The definition had to change to accommodate a new proviso in the design (x /∈ A),

and the postcondition had to include all changes required in dts, A, V and S . All other variables

not mentioned remain unchanged (w′ = w).

var x : T =̂ IT




{T ∈ Type}⊥; var xt, x; x /∈ A ⊢ ∃ v : Value •




xt ′ = T ∧
x ′ ∈ V(T) ∧
A′ = A ∪ {x} ∧
V ′ = V ⊕ {x 7→ v} ∧
S ′ = S ∪ {x 7→ x} ∧
dts′ = dts ⊕ {x 7→ T} ∧
w′ = w







provided x /∈ inα(var x : T)
where w ∈ inα(var x : T) \ {x, xt,A,V ,S , dts}

In this definition the dynamic type of x is recorded in dts, and the pointer machine variables are

updated according to the pointer machine definition for variable declaration. Only typed variables

are recorded in A; method variables receive the same treatment as in object-orientation theory.

The variable removal is a simple merge of both theory definitions, with adjusts.

end x : T =̂ IT







x ∈ A ⊢




A′ = A \ {x∞∪ {x}} ∧
V ′ = (x∞∪ {x}) −⊳ V ∧
S ′ = (x∞∪ {x}) −⊳ S −⊲ (x∞∪ {x}) ∧
dts′ = (x∞∪ {x}) −⊳ dts ∧
w′ = w







; end x, xt




provided x ∈ inα(end x : T)
where w ∈ inα(end x : T) \ {x,A, dts,V ,S}

In this removal, since x is excluded of the pointer machine, the x ′ becomes undefined, therefore,

it is not part of w.

5.3. Integration 77

5.3.4 What is a Value?

We have seen that the pointer theory records values in a pointer machine; those values recorded

by pointer machines are generally referred as elements of the set Value. For this combined theory,

Value is defined as

Value =̂ {T : Type; i : name | i ∈ T • i}

Considering each type in isolation: if T = Z, we have {−∞, . . . , 0, . . . ,+∞}; if T = B, we have

{true, false}; the elements for T ∈ cls, however, are null. Thus, Value represents the set

{−∞, . . . , 0, . . . ,+∞} ∪ {true, false} ∪ {null}

5.3.5 Expressions

Since types are important in the definitions of valid assignments and other operations in object-

orientation, we have to characterize what are the values yielded by expressions like 9999 (a primitive

value) or x (an address) in the integrated theory.

In the theory for object-orientation the result yielded by an expression is formed by type and

value (et , ev) which is used to perform type checking in the program. If a constant is used, for

example 9999, it implicitly carries type information (Z, 9999); for objects the same happens. If x

records an object, the value for x is characterised as a pair (xt , xv), where xt is the dynamic type

for x and xv is null, or a mapping from attribute names to values, which are also pairs.

In the pointer theory, the types are not considered. The result of an expression is a Value,

for primitive types, or the result of the de-referencing function ‘!’, for variables recorded into the

pointer machine.

The challenge is how to connect both theories in such a way that the HCs of the object-

orientation theory and the HCs of the pointer theory hold. In the object-orientation theory, the

HCs OO do not restrict the values associated to variables, but its formalization rely on type

information associated to values to validate assignments and other constructions. For pointers,

however, HP3 establishes that the value of a variable is the result of the de-referencing function

‘!’.

To satisfy these two restrictions we introduce type information in the interpretation of !x.

As already said, the typing information is required for the correct behavior of object-oriented

programs. It is the reason for a new variable dts which records type information associated to

addresses. The dynamic type of a variable is recorded in dts, and the value in V .

In the integrated theory, if an expression is a constant value as 9999, it still stands for (Z, 9999).

In other words, we have implicit type information. For a variable x we have that the value yielded

78 5. Pointers in the UTP

by its de-referencing is also a pair defined as follows.

!x =̂

{
(dts(x),V (x)) , if x ∈ term(A)
(dts(x),V .x) , otherwise.

!x ′ =̂

{
(dts(x ′),V ′(x)) , if x ∈ term(A′)
(dts(x ′),V ′.x) , otherwise.

The value of a variable is a pair with its dynamic type, and its de-referencing in the pointer

machine. For example, in a context where

dts =

{
x 7→ Z,

y 7→ B

}
,A =

{
x,

y

}
,V =

{
x 7→ 1,

y 7→ false

}

the values of x and y are respectively (Z, 1) and (B, false). In a context

dts =





x 7→ Account,

x.number 7→ Z,

x.balance 7→ Z,

x.contact 7→ Contact




,A =





x,

x.number ,

x.balance,

x.contact




,V =





x.number 7→ 1234,

x.balance 7→ 1,

x.contact 7→ null





the value of x is (Account, {number 7→ 1234, balance 7→ 1, contact 7→ null}). The value of x.contact

is (Contact,null).

Well-definedness

In integrated theory well-definedness conditions described for object-orientation are still valid with

the exception of variables rules. For a variable be valid it must also belong to A.

Variables

D(x) =̂ xt ∈ Type ∧ x ∈ A
D(self) =̂ selft ∈ cls ∧ self ∈ A

Object Creation, Type Test, Type Cast and Variable Accesses

The definition of object creation reflects the object-orientation type restriction for attributes and

add type information for the register. The result of new, is a constant structure; changes are not

allowed until this structure is recorded in the pointer machine.

new N =̂ (N , {n : name; v : Value | n ∈ dom map ∧ v ∈ map(n) • n 7→ v})

where map = U(atts, cls,N)

Values assigned to attributes are in Value: an integer, a boolean or an object value, and the

well-definedness for new N is preserved as N ∈ cls. Moreover, the new declaration yields the

same representation of an object as previously argued for a variable access (a pair of a type and a

mapping of attribute to values).

5.3. Integration 79

In the definition for assignment of new values, this structure is recorded in the pointer machine

as records used to be in the pointer theory, but extra information about attribute types are also

recorded in dts with the help of U(atts, cls,N).

The type test and type cast are resolved in the same manner as in the theory of object-

orientation; the variable and attribute accesses, however, are much simpler, !x and !le.x, respec-

tively.

Equality The definition of equality of values in the theory of pointers must be changed to

p =v q≡ A.p = A.q ∧ !p =!q

since the previous one could not be used to compare two addresses like x and y whose values were

primitives, for example. The value of an address p is provided by the ‘!’ function, if it holds a

primitive or an object value. The comparison of addresses is the same as that of the pointer theory.

5.3.6 Commands

This section shows how command definitions in the theory for object-orientation have to change

to accommodate the pointer machine.

Well-definedness

All well-definedness rules, with the exception of method call, remain unchanged. For example, the

definition of well-definedness for assignments

Assignment to variables

D(x := e) =̂ D(x) ∧ D(e) ∧ et � xt

Assignment to attributes

D(le.x := e) =̂ D(le.x) ∧ D(e) ∧ et � U(atts, sc, let)(x)

remain unchanged, but D(x) includes x ∈ A, and for D(le.x) the first label in le.x must be in A.

As we have another type of assignment (:–), we describe its well-definedness rules below, which

are similar to assignment of values.

D(x :– y) =̂ D(x) ∧ D(y) ∧ yt � xt

D(le.x :– y) =̂ D(le.x) ∧ D(y) ∧ yt � U(atts, sc, let)(x)

The well-definedness of method calls le.m(x) using res and valres specify that the frame of

le and x must be disjoint. In this hybrid theory instead of using sdisjoint, as defined in ROOL to

verify if two address do not overlap, the frame of a variable (address) can be easily calculated as

frame(x) =̂ shareS (x) ∪ extS (x)

80 5. Pointers in the UTP

thus, the predicate sdisjoint(le, x) can be replaced by

frame(le) ∩ frame(x) = ∅

in the well-definedness rules for method calls, which is simpler to calculate.

Assignments

The five forms of assignments presented in the theory for pointers are reduced to three. They per-

form updates of dts, and also are presented as designs where preconditions include well-definedness

restrictions. The definitions were changed to associate the addresses with their corresponding dy-

namic types. This information is crucial in type testing and casting, and to recover the value of

an object, as previously discussed.

Different from variable (un)declaration, the definitions of assignments do not refer to those

variables that remain unchanged w; this is due to the impact of changing the information in the

pointer machine that can affect variables other than x which share values or locations.

The first form is assignment of values; we have joined definitions. The assignment x := e

where e is a constant is trivial, the second case was an assignment to a non-terminal node, in this

integrated theory the only value assignable to such addresses is null. For both cases the definition

below, applies.

x := e =̂

IT


D(x := e) ⊢




A′ = A \ extS(x) ∧
V ′ = ((extS(x) ∪ shareS(x))−⊳ V)⊕ {a : (shareS(x) \ extS(x)) • a 7→ ev} ∧
S ′ = extS(x)−⊳ S −⊲ extS(x) ∧
dts′ = ((extS(x) ∪ shareS(x))−⊳ dts)⊕ {a : (shareS(x) \ extS(x)) • a 7→ et}







Notice that in the pointer theory :– i is a generalization of :– t ; we combined them into a single

definition and introduced updates for dts.

The assignment of a newly created structure is different and defined in the sequel. In this case

we have a structure associated to a type, and we record its information into the pointer machine

with dynamic type information associated.

x :=r new N =̂

IT



D(x := new N) ⊢




A′ = (A \ x∞) ∪ {n : name | n ∈ dom map • x .n} ∧
V ′ = ((x∞∪ {x})−⊳ V)⊕ {n : name | n ∈ dom map • x .n 7→ map(n)} ∧
S ′ = (x∞∪ {x})−⊳ S −⊲ (x∞∪ {x}) ∧
dts′ = ((x∞∪ {x})−⊳ dts)⊕ ({x 7→ N} ∪ {x .f 7→ aclos(f) | f ∈ dom map}) ∧
w′ = w







where (N ,map) = new N
with aclos = U(atts, cls,N)
and w ∈ inα(x :=r new N) \ {A,V , S , dts}

5.3. Integration 81

For pointer assignments the behaviour is the same as of that for pointers, but for each new shared

entry a corresponding dynamic type is added to dts. Moreover, since ‘ :– t ’ is a generalization of

‘ :– i ’ only the general form is considered.

x :– y =̂

IT




D(x :– e)
⊢


A′ = (A \ x∞) ∪ {a : Ad | y.a ∈ A • x .a} ∧
V ′ = (x∞−⊳ V)⊕ {a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ V (y.fa)} ∧
S ′ = (((x∞∪ {x})−⊳ S −⊲ (x∞∪ {x})) ∪ {x 7→ y} ∪ {a : Ad | y.a ∈ A • x .a 7→ y.a})∗ ∧
dts′ = (x∞−⊳ dts)⊕ ({a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ dts(y.fa)} ∪ {x 7→ dts(y)})







Method Call

The semantics of method calls has also to consider HCs from pointers and POs; thus the new

definition is

le.m(args) =̂ IT({D(le.m(args))}⊥ ; (pdse • p)(le, args))

where m = pdse • p

as explained before, but with the restrictions over observational variables of both theories and dts.

Call-by-reference With assignment of pointers, we can define another type of parameter pass-

ing mechanism: ref, passed by reference. The corresponding λ-abstraction is defined as follows.

(ref v : T • p) =̂ (λw : N • (var v : T ; v :– w; p; end v : T))

Its well-definedness rule is similar to the call-by-value.

Call-by-reference

D(le.m(e)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ et � T

provided ∃ p • m = (ref x:T • p)

Example 8 (Integrated theory). This is an example where two Accounts share the same contact
information. The program considered is presented in Figure 5.2. In its stepwise execution we
consider the initial variables of object-orientation as described in Example 4, all pointer machine
variables A, V and S are empty, and the dynamic type mapping dts is empty. The execution is
concerned only with the states of dts, A, V and S since cls, sc and atts are not affected by the
program execution. To reduce the example size we use the abbreviations nu, ba, co, bo and ph to
refer to attributes number , balance, contact, bonus and phone, respectively, and for simplicity we
use 0 for integers or null for objects as initial values of attributes, in spite of their non-determinism
on initialization.

{ just before starting all variables are empty }

A = {} ∧ dts = {} ∧ V = {} ∧ S = {}

82 5. Pointers in the UTP

l1: var y : Account;

l2: var x : Account;

l3: y := new BAccount;

l4: x :– y;

l5: x := new Account;

l6: y.contact := new Contact;

l7: x.contact :– y.contact;

l8: x.contact.phone := 9;

l9: end y : Account;

l10: end x : Account

Figure 5.2: An object-oriented program with sharing.

l1, l2 :‘var y : Account; var x : Account’ { variable declaration }

A′ =

{
y,

x

}
∧ dts′ =

{
y 7→ Account,

x 7→ Account

}
∧ V ′ =

{
y 7→ null,

x 7→ null

}
∧ S ′ =

{
y 7→ y,

x 7→ x

}

l3 :‘y := new BAccount’ { object creation and assignment (:=r) for variable y }

A′ =





x ,

y,

y.nu, y.ba,

y.co,

y.bo





∧ dts′ =





x 7→ Account,

y 7→ BAccount,

y.nu 7→ Z, y.ba 7→ Z,

y.co 7→ Contact,

y.bo 7→ Z





∧ V ′ =





x 7→ null,

y.nu 7→ 0, y.ba 7→ 0,

y.co 7→ null,

y.bo 7→ 0




∧ S ′ =

{
y 7→ y,

x 7→ x

}

l4 :‘x :– y’ { pointer assignment, associate a chain of references }

A′ =





x ,

x .nu, x .ba,

x .co,

x .bo,

y,

y.nu, y.ba,

y.co,

y.bo





∧ dts′ =





x 7→ BAccount,

x .nu 7→ Z, x .ba 7→ Z,

x .co 7→ Contact,

x .bo 7→ Z,

y 7→ BAccount,

y.nu 7→ Z, y.ba 7→ Z,

y.co 7→ Contact,

y.bo 7→ Z





∧ V ′ =





x .nu 7→ 0,

x .ba 7→ 0,

x .co 7→ null

x .bo 7→ 0

y.nu 7→ 0,

y.ba 7→ 0,

y.co 7→ null,

y.bo 7→ 0





∧ S ′ =





x 7→ y,

x 7→ x ,

x .nu 7→ y.nu,

x .ba 7→ y.ba,

x .co 7→ y.co,

x .bo 7→ y.bo





∗

5.3. Integration 83

l5 :‘x := new Account’ { object creation and assignment (:=r) for variable x }

A′ =





x ,

x .nu, x .ba,

x .co,

y,

y.nu, y.ba,

y.co,

y.bo





∧ dts′ =





x 7→ Account,

x .nu 7→ Z, x .ba 7→ Z,

x .co 7→ Contact,

y 7→ BAccount,

y.nu 7→ Z, y.ba 7→ Z,

y.co 7→ Contact,

y.bo 7→ Z





∧ V ′ =





x .nu 7→ 0, x .ba 7→ 0,

x .co 7→ null

y.nu 7→ 0, y.ba 7→ 0,

y.co 7→ null,

y.bo 7→ 0





∧ S ′ =

{
x 7→ y,

x 7→ x

}

l6 :‘y.contact := new Contact’{ object creation and assignment (:=r) to attribute contact of x }

A′ =





x ,

x .nu, x .ba,

x .co,

y,

y.nu, y.ba,

y.co,

y.bo,

y.co.ph





∧ dts′ =





x 7→ Account,

x .nu 7→ Z, x .ba 7→ Z,

x .co 7→ Contact,

y 7→ BAccount,

y.nu 7→ Z, y.ba 7→ Z,

y.co 7→ Contact,

y.co.ph 7→ Z,

y.bo 7→ Z





∧ V ′ =





x .nu 7→ 0, x .ba 7→ 0,

x .co 7→ null

y.nu 7→ 0, y.ba 7→ 0,

y.co.ph 7→ 0,

y.bo 7→ 0





∧ S ′ =

{
x 7→ y,

x 7→ x

}

l7 :‘x .contact :– y.contact’ { pointer assignment }

A′ =





x ,

x .nu, x .ba,

x .co,

x .co.ph,

y,

y.nu, y.ba,

y.co,

y.bo,

y.co.ph





∧ dts′ =





x 7→ Account,

x .nu 7→ Z, x .ba 7→ Z,

x .co 7→ Contact,

x .co.ph 7→ Z,

y 7→ BAccount,

y.nu 7→ Z, y.ba 7→ Z,

y.co 7→ Contact,

y.co.ph 7→ Z,

y.bo 7→ Z





∧ V ′ =





x .nu 7→ 0,

x .ba 7→ 0,

x .co.ph 7→ 0

y.nu 7→ 0,

y.ba 7→ 0,

y.co.ph 7→ 0,

y.bo 7→ 0





∧ S ′ =





x 7→ y,

x 7→ x ,

x .co 7→ y.co,

x .co.ph 7→ y.co.ph





∗

l8 :‘x .contact.phone := 9’ { value assignment to a shared attribute, 9 stands for (Z,9) }

A′ =





x ,

x .nu, x .ba,

x .co,

x .co.ph,

y,

y.nu, y.ba,

y.co,

y.bo,

y.co.ph





∧ dts′ =





x 7→ Account,

x .nu 7→ Z, x .ba 7→ Z,

x .co 7→ Contact,

x .co.ph 7→ Z,

y 7→ BAccount,

y.nu 7→ Z, y.ba 7→ Z,

y.co 7→ Contact,

y.co.ph 7→ Z,

y.bo 7→ Z





∧ V ′ =





x .nu 7→ 0,

x .ba 7→ 0,

x .co.ph 7→ 9

y.nu 7→ 0,

y.ba 7→ 0,

y.co.ph 7→ 9,

y.bo 7→ 0





∧ S ′ =





x 7→ y,

x 7→ x ,

x .co 7→ y.co,

x .co.ph 7→ y.co.ph





∗

84 5. Pointers in the UTP

l9 :‘end y : Account’{ undeclaration }

A′ =





x ,

x .nu,

x .ba,

x .co,

x .co.ph





∧ dts′ =





x 7→ Account,

x .nu 7→ Z,

x .ba 7→ Z,

x .co 7→ Contact,

x .co.ph 7→ Z





∧ V ′ =





x .nu 7→ 0,

x .ba 7→ 0,

x .co.ph 7→ 9




∧ S ′ =

{
x 7→ x

}

l10 :‘end x : Account’{ undeclaration }

A′ = {} ∧ dts′ = {} ∧ V ′ = {} ∧ S ′ = {}

This example shows that the integration is feasible. Other lengthier examples can be derived using

sharing and method calls. 2

5.4 Conclusions

This chapter has shown how the theory for object-orientation is progressively adapted to consider

a pointer machine introducing type information to records. The theory proposed by Harwood et

al. has been presented with a simple example to show how the constructs of this theory work, then

the representation of a value for the object-orientation theory was changed to handle the pointer

machine. Many concepts are common for both theories but, the UTP framework allowed us to

combine concepts in single definitions. This task would become easier if one theory were subset of

the other, or related by a Galois connection as presented in Section 3.7.

We have seen that the integration process required some adjustments in some concepts such as

the interpretation of values, the value of a variable (address) is a combined version of the concept

of value for object-orientation (typed and hierarchically structured) and the concept of value for

pointers (untyped and flat). As a consequence a new observational variable dts with its associated

healthiness conditions PO was introduced to record dynamic types of addresses. Moreover, we

have seen that if healthiness conditions are too restrictive the integration process may become

impossible; in the case of HP3 we had to generalize its definition to allow further integration.

This made clear that the healthiness conditions of a theory should only refer to the observational

variables of that theory, and might not use the alphabet as reference for restrictions, as in the

original HP3 definition.

Other important observation is that all elements of both theories, combined or not, must

be OO, HP and PO healthy; for example, in class, attribute or method declarations, the OO

application in object-orientation with copy semantics should be replaced by this composition in

the object-orientation with reference semantics. In Appendix D all definitions with all required

adjustments are presented.

5.4. Conclusions 85

An important result of the integration process is its preservation of many definitions for object-

orientation features such as subtyping, recursion and dynamic binding which did not change.

The introduction of a memory model impacted the process of object creation and assignment

commands, which had to be redefined with respect to both theories. The methods definitions and

calls, however, present very similar behaviour to the versions in Chapter 4. In the case of method

declarations, however, for the integrated theory the ⊥oo used in method texts must be replaced

by ⊥po which is defined as ⊥po =̂ OO ◦HP ◦PO(⊥).
The definition of assignments of values in the pointer theory seems to lack a definition of this

kind x := y, that is, an assignment which copies the value of y (address) to x, like in the copy

semantics. Its definition is similar to that of ‘ :– ’, but the inclusion of pairs in S is not considered,

therefore, x and y are not expected to share the same location. After this assignment they have

the same value, but are not aliased. The definition of such assignment is

x := y =̂

IT




D(x := y)
⊢


A′ = (A \ x∞) ∪ {a : Ad | y.a ∈ A • x .a} ∧
dts′ = (x∞−⊳ dts)⊕ ({a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ dts(y.fa)} ∪ {x 7→ dts(y)}) ∧
V ′ = (x∞−⊳ V)⊕ {a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ V (y.fa)} ∧
S ′ = ((x∞∪ {x})−⊳ S −⊲ (x∞∪ {x}))







Since an expression can be a variable (address), these definitions are required to complete the

formalisation of assignments. They are also required for method calls; for example, if we have

. . . ; var y : Account; y := new BAccount; le.m(y); . . .

where m is defined for the type of le and has a ‘val x : Account’ parameter, the copy of y to x

is required. The assignments of expressions different of variables in pointer assignments are not

allowed, therefore, the form x :– e does not exist.

The benefits of all these kinds of assignments is that depending on the kind of assignments

we use in the program, or in the λ-abstraction interpretations, we should have a mix of pointer

and copy semantics as in Java, where primitives are passed by value and objects are passed by

references. For example, suppose we have only one kind of parameter named par, to provide a

Java like semantics for method calls then we could have the following λ-abstractions

(par v : B • p) =̂ (λw : N • (var v : T ; v := w; p; end v : T))
(par v : Z • p) =̂ (λw : N • (var v : T ; v := w; p; end v : T))
(par v : T • p) =̂ (λw : N • (var v : T ; v :– w; p; end v : T))

where primitive values are copied to new local variables, and objects are aliased. In this case, the

86 5. Pointers in the UTP

interpretation of the dynamic binding of calling a.credit(10) in Example 6 would be

var self : Object;
self :– a;
var x : Z;

x := 10;
self.bonus := self.bonus + 1;
self.balance := self.balance + x;

end x : Z;
end self : Object

This Chapter has shown that the integration of theories in the UTP can be performed and

the result reuse concepts of both theories considered. Depending on the concepts of the theories

under consideration the integration can become easier if links between theories are found. The

integration of theories we have presented follows a compositional approach from a simpler theory

to a more complex one formed by concepts of different theories. The composition process, however,

was not as simple as wanted.

Chapter 6

Laws for Object-Orientation

This chapter presents laws for object-oriented programs. We start, in Section 6.1, with a short

introduction to the topic and discuss related works. In Section 6.2 we present the laws themselves

and discuss their applicability. Finally, in Section 6.3 we conclude our discussion on object-oriented

laws.

6.1 Introduction

An important aspect of object-oriented programming is the use of program transformations during

software construction or maintenance. In spite of their informal descriptions, some transformation

techniques have been introduced for different programming languages, like Java and C++, and

their corresponding IDEs. In his classic work [FBB+99], Fowler catalogs a set of program trans-

formations (refactorings), and describes how to apply them. The correctness of the refactorings,

however, is only informally addressed based on test cases executed before and after the program

manipulation.

Following an algebraic approach, in [BS00] we find a set of laws of object-orientation for a subset

of sequential Java enriched with refinement constructs. In [Cor04], Cornélio describes a subset of

Fowler’s refactorings in the same language of [BS00] and proves that these transformations are

sound according to a semantics defined in terms of weakest preconditions. This set of refactorings,

however, are restricted to those which not required a reference semantics.

In this chapter we present some laws of object-oriented programs, which are inspired by the

works reported in [BS00, CN00, BSCC04, Cor04], providing laws applicable to open (libraries of

classes) or closed systems; this taxonomy is characterised in the next subsection. Our sources of

inspiration, however, deal only with closed programs, in this way we can say that we have a more

general approach. Moreover, we show that out theory for object-orientation can be used to prove

the soundness of these laws in a relatively concise way. This is a major contribution of this work.

87

88 6. Laws for Object-Orientation

Closed Vs Open Systems

The objective of this subsection is to contextualise two kinds of object-oriented systems that restrict

the set of laws of programming that can be used. More specifically, we provide an short overview

of why closed systems are of simpler refactoring than open systems.

We say that a system is closed if their component parts are fully described and composed

before its analysis or execution. In this context, we have a sequence of object-oriented declarations

which are expected to work with only one specific program, that is, a dedicated library which can

be used only by one program. We could characterise such systems as

cds • c

where cds stands for declarations and c is the program for which these declarations are expected

to provide services. In this kind of systems one can identify what services of cds are used by c and

inside cds what features of one class are referred by the others, and, moreover, other programs

which would rely on services provided by cds are not considered.

With all these detailed information about the declarations, and the program itself, this kind of

program becomes a good candidate for refactoring. These systems are those considered by [BS00,

CN00, BSCC04, Cor04]. A law for class removal, shortly described below, when applied from left

to right (‘→’), for example, can be described as: let N be a class, if in cds there aren’t references

to N or to its attributes or methods besides their own declarations, and in c N is not used, then

class N ; cds • c = cds • c

Observe also that the opposite direction (from right to left – ‘←’) can be interpreted as a law for

class introduction. In this case, we can introduce a class which has not been previously defined.

Since the laws is applicable in both directions (‘⇆’) we use the ‘=’ symbol. This is just one

example of the many laws provided for closed systems.

Now, imagine that you don’t have an specify program c to consider; it is left unspecified and can

use any services provided by cds or even extend cds and them perform something, this is exactly

the case of an open system. An open systems is characterised as a system where its components

are unknown until its use. That is, we have a sequence of declarations, but we don’t know how

many programs are using or extending such declarations, and who they are. A general form would

be

cds; . . . • c; . . .

where the set of classes and programs that uses the declarations are undefined, probably infinite.

It poses one important general restriction if we are expected to perform refactorings in cds; since

6.2. Laws 89

we don’t know which services of cds are being used we cannot perform refactorings that reduce

the set of such services, i.e. remove a class as in the case of closed systems.

Notice, however, that a class cannot be remove, but it can be introduced without any restriction,

besides the fact that it cannot be already defined. That is, for open systems the law is valid only

in one direction (from right to left).

class N ; cds; . . . • c; . . . ← cds; . . . • c; . . .

The left side contains a larger set of classes and thus can be used to constructs a larger set of

programs than the right side of the law. In the following section we provide the description and

proofs of laws considering these two contexts.

6.2 Laws

Most part of the basic laws of programming for sequential programs were already stated and proved

in [HH98]. For example: (i) ‘(var x : T ; c) = c’, if x is not free in c; or (ii) ‘(x := x) = II ’. This

section shows some laws, not an extensive list, valid both for open or closed systems. We concen-

trate on laws for object-oriented expressions, methods and attributes, but different of healthiness

conditions the proofs are not presented in the appendix.

The following two laws exemplify that some proofs in the UTP can be very simple, depending

on how the constructs of object-orientation are modeled. In a context where B is a subclass of A,

a disjunction of type tests over these two types can be reduced to a type test on A. Informally,

if a given expression e is an instance of type B, this instance is of type A too, which is a more

general condition. This is formally described and proved below.

Law 2. <∨-subtyping>

e is B ∨ e is A = e is A

provided

B � A.

Proof.
LHS [semantics of type test, assumption]
= (et � B ∨ et � A) ∧ B � A [∧-distribution]
= (et � B ∧ B � A) ∨ (et � A ∧ B � A) [�-transitivity]
= (et � A ∧ B � A) ∨ (et � A ∧ B � A) [assumption]
= et � A [type test]
= e is A
= RHS

90 6. Laws for Object-Orientation

On the other hand, if we have that B is a subclass of A in a conjunction of type tests, we can

reduce the condition to e is B.

Law 3. <∧-subtyping>

e is B ∧ e is A = e is B

provided

B � A.

Proof.
RHS [semantics of type test, assumption]
= et � B ∧ B � A [�-transitivity]
= et � B ∧ et � A ∧ B � A [type test]
= (e is B ∧ e is A) ∧ B � A [assumption]
= LHS

Notice that these two laws, and the forthcoming, are valid in a reference semantics context as

well. This is because the value of an expression is formed by a pair (et , ev) in both theories for

object-orientation, either with reference semantics or not, as presented in Chapters 4 and 5.

A more interesting law is that the introduction of a method redefinition (m) with the same

body (ma) of the superclass (A) into a given subclass (B) does not change the expected result of

the method call for any instances of classes A and B. That is, the command executed will always

be ma, or for invalid method calls it will be abort. The HCs required for law proofs are those OO

which are part of IT, and the ⊥ used in methods can be easily replaced by ⊥d , ⊥oo and ⊥po for

an specific context.

Law 4. <introduce trivial method redefinition>

meth A m =
(
pds • ma

)
=

meth A m =
(
pds • ma

)
;

meth B m =
(
pds • ma

)

provided

B ≺ A ∧ m /∈ inα.

Proof.
meth A m =

(
pds • ma

)
; meth B m =

(
pds • ma

)

[definition and pdse = valres self:Object; pds]
= IT(var m;

(
A ∈ cls ⊢m′ = pdse • (ma � self is A �⊥)

)
);

IT
(
B ∈ cls ∧ ∃ q • m = pdse • q ⊢

(
∃ q •

(
m = pdse • q ∧ m′ = pdse • join(B, ma, q)

)))

[assuming IT and premisses (B ≺ A⇒ A ∈ cls ∧ B ∈ cls)]
= var m; true ⊢ m′ = pdse • (ma � self is A �⊥);

6.2. Laws 91

∃ q • (m = pdse • q) ⊢ ∃ q •
(
m = pdse • q ∧ m′ = pdse • join(B, ma, q)

)

[variable declaration, ;-associativity]

= ∃m •
(

true ⊢ m′ = pdse • (ma � self is A �⊥);
∃ q • (m = pdse • q) ⊢ ∃ q •

(
m = pdse • q ∧ m′ = pdse • join(B, ma, q)

)
)

[T3’ of designs]

= ∃m •




true ∧ ¬(m′ = pdse • (ma � self is A �⊥); ¬∃ q • (m = pdse • q))(i)
⊢
m′ = pdse • (ma � self is A �⊥); ∃ q •

(
m = pdse • q ∧ m′ = pdse • join(B, ma, q)

)
(ii)


 (0)

(i) [by sequential composition]
= true ∧ ¬

(
∃m0 • m0 = pdse • (ma � self is A �⊥) ∧ ¬∃ q • (m0 6= pdse • q)

)

[propositional calculus]
= true ∧ ¬

(
∃m0,¬∃ q • m0 = pdse • (ma � self is A �⊥) ∧ m0 = pdse • q

)

[contradiction]
= true ∧ ¬

(
false

)

[propositional calculus]
= true

(ii) [by sequential composition]
= ∃m0 • m0 = pdse • (ma � self is A �⊥) ∧ ∃q •

(
m0 = pdse • q ∧ m′ = pdse • join(B, ma, q)

)

[propositional calculus]
= ∃m0, q • m0 = pdse • (ma � self is A �⊥) ∧ m0 = pdse • q ∧ m′ = pdse • join(B, ma, q)

[∃-elimination]
= m′ = pdse • join(B, ma, ma � self is A �⊥)

[join, B ≺ A]
= m′ = pdse • (ma � self is B � (ma � self is A �⊥))

(0)
= ∃m • true ⊢ m′ = pdse • (ma � self is B � (ma � self is A �⊥)) [by L7 of conditional]
= ∃m • true ⊢ m′ = pdse • (ma � self is B ∨ self is A �⊥) [by Law 2]
= ∃m • true ⊢ m′ = pdse • (ma � self is A �⊥) [variable]
= var m; true ⊢ m′ = pdse • (ma � self is A �⊥) [assuming IT and premisses (A ≺ B)]
= IT(var m;

(
A ∈ cls ⊢m′ = pdse • (ma � self is A �⊥)

)
) [method definition]

= meth A m =
(
pds • ma

)

Also, we can combine method redefinitions, as long as we preserve the behaviour of that method

for the handled subclasses.

Law 5. <move redefined method to superclass>

meth A m =
(
pds • ma

)
;

meth B m =
(
pds • mb

) = meth A m =
(
pds • mb � self is B � ma

)

provided

B ≺ A ∧ m /∈ inα.

Proof.
meth A m =

(
pds • ma

)
; meth B m =

(
pds • mb

)

92 6. Laws for Object-Orientation

[definition and pdse = valres self:Object; pds]
= IT(var m;

(
A ∈ cls ⊢m′ = pdse • (ma � self is A �⊥)

)
);

IT
(
B ∈ cls ∧ ∃ q • m = pdse • q ⊢

(
∃ q •

(
m = pdse • q ∧ m′ = pdse • join(B, mb, q)

)))

[assuming IT and premisses (B ≺ A⇒ A ∈ cls ∧ B ∈ cls)]
= var m; true ⊢ m′ = pdse • (ma � self is A �⊥);

∃ q • (m = pdse • q) ⊢ ∃ q •
(
m = pdse • q ∧ m′ = pdse • join(B, mb, q)

)

[variable declaration, ;-associativity]

= ∃m •
(

true ⊢ m′ = pdse • (ma � self is A �⊥);
∃ q • (m = pdse • q) ⊢ ∃ q •

(
m = pdse • q ∧ m′ = pdse • join(B, mb, q)

)
)

[T3’ of designs]

= ∃m •




true ∧ ¬(m′ = pdse • (ma � self is A �⊥); ¬∃ q • (m = pdse • q))(i)
⊢
m′ = pdse • (ma � self is A �⊥); ∃ q •

(
m = pdse • q ∧ m′ = pdse • join(B, mb, q)

)
(ii)


 (0)

(i) [by sequential composition]
= true ∧ ¬

(
∃m0 • m0 = pdse • (ma � self is A �⊥) ∧ ¬∃ q • (m0 6= pdse • q)

)

[propositional calculus]
= true ∧ ¬

(
∃m0,¬∃ q • m0 = pdse • (ma � self is A �⊥) ∧ m0 = pdse • q

)

[contradiction]
= true ∧ ¬

(
false

)

[propositional calculus]
= true

(ii) [by sequential composition]
= ∃m0 • m0 = pdse • (ma � self is A �⊥) ∧ ∃q •

(
m0 = pdse • q ∧ m′ = pdse • join(B, mb, q)

)

[propositional calculus]
= ∃m0, q • m0 = pdse • (ma � self is A �⊥) ∧ m0 = pdse • q ∧ m′ = pdse • join(B, mb, q)

[∃-elimination]
= m′ = pdse • join(B, mb, ma � self is A �⊥)

[join, B ≺ A]
= m′ = pdse • (mb � self is B � (ma � self is A �⊥))

(0)
= ∃m • true ⊢ m′ = pdse • (mb � self is B � (ma � self is A �⊥))

[by Law 3]
= ∃m • true ⊢ m′ = pdse • (mb � self is B ∧ self is A � (ma � self is A �⊥))

[by L3 of conditional]
= ∃m • true ⊢ m′ = pdse • ((mb � self is B � ma)� self is A �⊥)

[variable]
= var m; true ⊢ m′ = pdse • ((mb � self is B � ma)� self is A � ⊥)

[assuming IT and premisses (A ≺ B)]
= var m; IT(A ∈ cls ⊢ m′ = pdse • ((mb � self is B � ma)� self is A �⊥))

[method definition]
= meth A m =

(
pds • mb � self is B � ma

)

These laws are also valid for copy or references semantics. Their validity relies on method

variables (re)declarations which have the same format in both contexts.

6.3. Conclusions 93

6.3 Conclusions

As Hoare and He have done for other theories, we have introduced laws and proved them us-

ing our definitions. This initial set of laws provide evidence that we are capable of comparing

implementations of libraries and conclude whether they are equivalent or not.

This set of laws tends to increase as we extend the approach to handle more closed programs

refactorings, considering, for example, laws to allow introduction or removal of classes from a

program that become valid in this context. For instance, if a given class is not used anywhere

in the declarations or in the program main body, we can just drop its declaration as we have

informally described in Section 6.1.

A deeper analysis of other laws presented in [BSCC04] will reveal other laws valid for open

systems and those defined for closed programs are the target of our next research steps. These

new laws may also require extra healthiness conditions to be identified and used to characterise a

more restricted set of valid programs.

For example, for open systems we cannot remove classes from a class domain, but we can

extend the set of classes; therefore a HC could be

OO14 =̂ P ∧ cls ⊆ cls′

We could also generalise the idea of moving an attribute up as a a healthiness condition

OO15 =̂ P ∧ ∀C : dom atts • U(atts, sc,C) ⊆ U(atts′, sc′,C)

Notice, however, that these conditions are trivially satisfied in languages without the possibility

of undeclaration of classes and attributes, for closed or open programs.

For the correct characterisation of laws involving two different groups of classes we should have,

rather, the test

clsLHS ⊆ clsRHS

where the left-hand side of the law represents the library before introducing a new element, cap-

tured by the right-hand side.

∀C : dom attsLHS • U(attsLHS, scLHS,C) ⊆ U(attsRHS, scRHS,C)

where the attsLHS and scLHS represent the mapping of attributes and the set of classes before

moving the attribute up.

94 6. Laws for Object-Orientation

Chapter 7

Conclusions

In this Chapter we present a resume of the thesis and its results in Section 7.1. Section 7.3 presents

the next planned steps to thesis extension and finalisation. Finally, in Section 7.4, we highlight

some of possible extensions of our work.

7.1 Resume and Results

We started in Chapter 1 and Chapter 2 with an overview of our motivation, works in the area

of formalisation of object-orientation, and resumed some of the most important representant.

We have seen that many works were progressively developed and evolved to describe features of

object-orientation such as subtyping and dynamic binding, specially after 90’s.

The semantics frameworks of most part of them, however, are different and their approach

are non-compositional. By non-compositional, we mean, different formalisms cannot be combined

and give rise to more elaborated theories (descriptions) for representing richer paradigms in a

simple way. To solve this problem, Hoare and He proposed a semantic framework named Unifying

Theories of Programming (UTP) capable of describing many different paradigms using a common

formalism and thus allow their straightforward comparison and combination. In Chapter 3 we

provided an introductory overview of the UTP framework presenting their important concepts to

understand the following chapters of the thesis.

Next, in Chapter 4 we have demonstrated that object-orientation with subtyping, data inher-

itance and dynamic binding can be defined in the UTP, using a theory that combines designs

and higher-order procedures. In particular, we have introduced three observational variables to

capture information about class declarations, extra variables xt and xt ′, for each programming

variable x, to capture the type of the variables, and, finally, variables m and m′ to capture the

meaning (parameters and body) of each method named m. In our theory, recursion and mutual

recursion (with minor restrictions) are handled in a simple way.

95

96 7. Conclusions

The concept of variable in the object-orientation context requires explicit typing information

to allow the specification of well-definedness rules for expressions and commands, and to provide

the correct semantics of object-oriented expressions and commands such as assignments, condi-

tional, and method calls. We have a number of restrictions related to typing; all operations, and

commands, over variables, values and expressions are checked. We have seen that invalid decla-

rations and commands associated with object-oriented elements lead to abortion; in other words,

the meaning of a badly-typed program is ⊥oo (in the integrated theory ⊥po), which has the most

unpredictable behaviour that we would expect.

In contrast to [HLL05], we do not use a runtime environment nor concentrate on a particular

language; in the first moment we adopt a copy semantics, as in [CN00], and general concepts of

object-orientation. We observe that this formalism is enough to write object-oriented programs but

its applicability in real world language modeling can be restricted because of its copy semantics.

The next natural step was to extend the formalism, in a compositional manner to handle object-

oriented programs with references.

In this way, in Chapter 5 we presented the concept of sharing as a separate and complementary

theory proposed by Harwood et al.. Then, we included extra information, healthiness conditions,

and review well-definedness, expressions and commands for a hybrid theory which combines the

object-orientation presented in Chapter 4 and this theory for sharing and records. With object

sharing, the view of the target of a method call as a value-result parameter, whose value is updated

to reflect changes carried out by the method, becomes unnecessary, since changes are reflected

directly in the objects, not in a copy. Moreover, the kinds of assignments (of values and pointers)

and changes in interpretations of λ-abstractions for methods resolutions allows us to have different

semantics with copy or reference for object-orientation.

This work also introduces laws for object-oriented programs proved to be sound in the UTP

semantic framework. As in [Kas05], here, we also pursue modularity and decoupling, but we

concentrate on object-oriented constructs, and moreover we introduce laws and their proofs of

soundness. We have presented some laws related to basic constructs such as type tests and laws

for method declarations, and due to our representation of methods in the theory, we have some

proofs in an algebraic style. The main contribution and novelty related to laws are the simple

proofs that are made possible by our modular semantics.

In resume, we:

• defined a semantics for object-orientation paradigm in the UTP;

• integrated an independent theory for sharing and records to object-orientation where

object-oriented programs with copy or reference semantics can be characterized;

• proved general laws for object-orientation which are valid for copy or reference semantics.

7.2. Next Steps 97

One of the major results expected by the project of which this thesis is part is to produce a

hybrid theory involving classes and processes to describe the semantics in the UTP for languages

like OhCircus [CSW05] or TCOZ [MD98]. That is, a plan to combine our theory (with copy or

reference semantics) with that of CSP processes already introduced in the reference book. The

result of this integration, for example, can give rise to a new generation of laws relating classes

and processes which can be proved at semantics level and be valid for many different languages as

the laws we have presented in this thesis. Our work is a step towards the definition of a semantics

for OhCircus, an object-oriented combination of Z and CSP.

7.2 Next Steps

The next steps in the thesis development are:

• a better characterisation of open and closed systems to allow

• the description of refinement, or refactoring, presented as

• laws for object-oriented programs.

The first development in this direction is represented by Chapter 6 where we started to charac-

terise open and closed system and provided some laws. Next, we might present the general notion

of refinement in the UTP in the context of our theory in order to verify that, as in the other

theories, refinement is defined by the logical implication.

Besides these steps, and since we have now an integrated theory capable of handling pointers,

we might be able to verify that some of the laws considered for copy semantics are not sound in a

context where pointers are handled.

7.3 Schedule

In Table 7.1 we highlight our activities to achieve the thesis’ conclusion.

Month/Year

Task [May-Jul]08 [Ago-Oct]08 [Nov]08-[Feb]09

A.1
√

A.2
√

A.3
√

Table 7.1: Timetable.

98 7. Conclusions

A.1: Revision of the paper submitted to FACJ to resubmission to Theoretical Computer Science.

Introduction of a refinement notion and extension of the set of laws already considered;

A.2: Extend the set of examples related to reference semantics, and finalize the selection and

proofs for laws for object-oriented programs considering refinement;

A.3: Thesis finalization stage, write missing parts and omissions detected after thesis’s proposal

and new developments.

In parallel, we expect to be revising and submitting parts of the thesis as papers to conferences,

symposiums and journals, as usual. As well as participating of events related to our research area.

Our main goal is to finalize in time with the expected quality. Surely it will be a challenging

and laborious task which is up to us. To perform these remaining tasks we will request 6 months

of additional time.

7.4 Future Works

There are still many issues to explore in the formalisation using the UTP, and to extend in this

object-oriented theory. In fact the formalization of object-oriented languages pose many problems

as considered in [LLM06a]. In the sequel we list some of our guidelines of future work.

7.4.1 Features Set Extension

Features like visibility mechanisms, exception handling, concurrency and garbage collection are

important candidates in the future extensions of our theory. With an more expressive set of

features in the object-oriented theory, we could use this theory to model more realistic programming

languages, or object-oriented specification languages like Object-Z [Smi00]. With the introduction

of sharing, an important feature of object-oriented programs we have already given a big step

in the direction of representing a language like Java in the UTP, but some other features would

be required for different applications. For example, in hard-real-time applications the garbage

collection must be carefully handled.

7.4.2 Refactorings

The set of laws could also be extended and composed to handle more general laws of programming

also known as refactorings. The focus of this thesis is not refactoring itself, the laws are used to

allow us to verify theories soundness and their simplicity to carry out proofs. An extensive set of

laws and their composition would be desired to allow descriptions of more elaborated refactorings

as those proposed by Fowler [FBB+99] and proved by Cornélio [Cor04]. For example, since our

7.4. Future Works 99

theory provides a reference semantics, some refactorings proposed by Fowler and not considered

by Cornélio should also be handled.

7.4.3 Mechanization

In fact the mechanization of the formalism could be auxiliary in laws proofs, and speed up not

only the use of such formalism but also to allow an mechanization of the integration between

theories. The construction of a tool, or the formalisation of theories of UTP in theorem provers

like ProofPower of PVS will contribute to improve the use of the UTP to formalise different

paradigms and thus popularize its use as a semantics background.

100 7. Conclusions

Appendix A

Theory of Object-Orientation

A.1 Observational Variables

Class Names

cls : P name.

Subtype Relation

sc : name 7→ name.

Attribute Information
atts : name 7→ (name 7→ Type).
where

Type := {B,Z} ∪ cls

Methods

Methods texts are recorded in high-order-variables in the form

var m : proc = pds

where pds is a parametrised command, as in the example below.

valres self:Object • mc � self is C � (mb � self is B � (ma � self is A �⊥oo))

A.2 Healthiness Conditions

OO1 P = P ∧ Object ∈ cls

OO2 P = P ∧ dom sc = cls \ {Object}

101

102 A. Theory of Object-Orientation

OO3 P = P ∧ ∀C : dom sc • (C ,Object) ∈ sc+

OO4 P = P ∧ dom atts = cls

OO5 P = P ∧ ∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅

OO6 P = P ∧ ran(
⋃

ran atts) ⊆ {B,Z} ∪ cls

OO7 P = P ∧ Object ∈ cls′

OO8 P = P ∧ dom sc′ = cls′ \ {Object}

OO9 P = P ∧ ∀C : dom sc′ • (C ,Object) ∈ sc′+

OO10 P = P ∧ dom atts′ = cls′

OO11 P = P ∧ ∀C1,C2 : dom atts′ • C1 6= C2 ∧ dom(atts′(C1)) ∩ dom(atts′(C2)) = ∅

OO12 P = P ∧ ran(
⋃

ran atts′) ⊆ {B,Z} ∪ cls′

OO13 P = P; IIoo

Other Definitions

OOI ≡ OO1 ◦OO2 ◦OO3 ◦OO4 ◦OO5 ◦OO6

IIoo =̂ OOI(II)

OO ≡ OO1 ◦OO2 ◦OO3 ◦OO4 ◦OO5 ◦OO6 ◦OO7 ◦OO8 ◦OO9 ◦OO10 ◦OO11 ◦OO12

⊥oo =̂ OO(⊥)

A.3 Declarations

Class Introduction

class A extends B =̂ OO



(

A /∈ Type ∧
B ∈ cls

)
⊢




cls′ = cls ∪ {A} ∧
sc′ = sc ∪ {A 7→ B} ∧
atts′ = atts ∪ {A 7→ ∅} ∧
w′ = w







where w = inα(class A extends B) \ { cls, sc, atts}
or

class A = class A extends Object

A.4. Abstractions 103

Attribute Introduction

att A x : T =̂ OO






A ∈ cls ∧
x /∈ dom C(atts, cls) ∧
T ∈ Type


 ⊢

(
atts′ = atts ⊕ {A 7→ (atts(A) ∪ {x 7→ T})} ∧
w′ = w

)


where w = inα(att A x : T) \ {atts}
and C(amap, cset) =

⋃{N : cset • amap N},
amap is an attribute mapping, and cset is class set.

Closure of attributes

U(amap, smap,N) =
⋃

amap(| smap∗(| {N} |) |)

Method Introduction

meth A m =
(
pds • p

)
=̂

OO

(
var m;

(
A ∈ cls ∧
∀ t ∈ types(pds) • t ∈ Type

)
⊢
(

m′ = pdse • (p � self is A �⊥oo) ∧
w′ = w

))

provided m /∈ α(meth A m =
(
pds • p

)
)

where pdse = valres self:Object; pds and w = inα(meth A m =
(
pds • p

)
)

Method Redefinition

meth A m =
(
pds • p

)
=̂ OO



(

A ∈ cls ∧
∃q • m = pdse • q

)
⊢


∃ q •




m = pdse • q ∧
m′ = pdse • join(A, p, q) ∧
w′ = w








provided m ∈ α(meth A m =
(
pds • p

)
)

where pdse = valres self:Object; pds, w = inα(meth A m =
(
pds • p

)
) \ {m}

and

join(A, p,⊥oo) = p � self is A �⊥oo

join(A, p, ql � self is B � qr) =

{
p � self is A � (ql � self is B � qr), if A ≺ B
ql � self is B � join(A, p, qr) , otherwise

join(A, p, q) = ⊥oo, for programs q of every other form

A.4 Abstractions

Call by Value

(val v : T • p) =̂ (λw : T • (var v : T ; v := w; p; end v : T))

Call by Result

(res v : T • p) =̂ (λw : N • (var v : T ; p; w := v; end v : T))

104 A. Theory of Object-Orientation

Call by Value-Result

(valres v : T • p) =̂ (λw : N • (var v : T ; v := w; p; w := v; end v : T))

(λ x : N • p)(y) =̂ p [y, y′, yt, yt ′/x , x ′, xt, xt ′]

A.5 Variables

Declaration

var x : T =̂ OO({T ∈ Type}⊥; var xt, x ; true ⊢ xt ′ = T ∧ x ′ ∈ V(T) ∧ w′ = w)

provided x /∈ inα(var x : T) and w = inα(var x : T)

Undeclaration

end x : T =̂ OO(end x , xt)

A.6 Expressions

BNF

e ::= v | le | new N | e is N | (N)e | f (e) | null

le ::= x | self | le.x

Table A.1: BNF for object-oriented expressions.

Well-definedness

Primitive Values Objects

D((B, v)) =̂ v ∈ B D((T ,null)) =̂ T ∈ cls
D((Z, v)) =̂ v ∈ Z D((T , v)) =̂ T ∈ cls ∧ (T , v) ∈ V(T)

Variables

D(x) =̂ xt ∈ Type
D(self) =̂ selft ∈ cls

Attribute Accesses

D(le.x) =̂ D(le) ∧ let ∈ cls ∧ lev 6= null ∧ x ∈ dom lev

A.7. Commands 105

Typing

D(new N) =̂ N ∈ cls
D(e is N) =̂ D(e) ∧ N ∈ cls
D((N)e) =̂ D(e) ∧ N ∈ cls ∧ et � N

Remainder

D(x%y) =̂ D(x) ∧ D(y) ∧ xt = Z ∧ yt = Z ∧ yv 6= 0

Object Creation

new N =̂




N ,








x : dom map;
t : Type;
v : {T : Type; i : T • i }


 |







map(x) = B ∧
t = B ∧
v = false




∨


map(x) = Z ∧
t = Z ∧
v = 0




∨
∃T : cls •




map(x) = T ∧
t = T ∧
v = null









• x 7→ (t, v)








where map = U(atts, sc,N)

Type Test

e is N =̂ (B, et � N)

Type Cast

(N)e =̂ e

Attribute Access

le.x =̂ lev(x)

A.7 Commands

BNF

106 A. Theory of Object-Orientation

c ::= le := e | II | var x : T | end x : T | c1 � e � c2 | c1; c2 | µX • F(X) | le.m(e)

Table A.2: BNF for object-oriented commands.

Well-definedness

Assignment to variables

D(x := e) =̂ D(x) ∧ D(e) ∧ et � xt

Assignment to attributes

D(le.x := e) =̂ D(le.x) ∧ D(e) ∧ et � U(atts, sc, let)(x)

Conditional

D(P � e � Q) =̂ D(e) ∧ et = B

Method call

D(le.m(e)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ et � T

provided ∃ p • m = (val x:T • p),
where compatible(le,m) =̂ ∃ pds, p •m = (pds • p) ∧ let ∈ scan(p)
with

scan(⊥oo) = {}
scan(pl � self is A � pr) = {B : cls | B � A} ∪ scan(pr)

D(le.m(y)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ sdisjoint(le, y) ∧ T � yt

provided ∃ p • m = (res x:T • p)

D(le.m(z)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ sdisjoint(le, z) ∧ T = zt

provided ∃ p • m = (valres x:T • p)

Assignment of Variables

x := e =̂ OO(D(x := e) ⊢ x ′ = e ∧ w′ = w)

where w = inα(x := e) \ {x}

Assignment of Attributes

le.x := e =̂ OO(D(le.x := e) ⊢ le′ = (let , lev ⊕ {x 7→ e}) ∧ w′ = w)

where w = inα(le.x := e) \ α(le)

A.7. Commands 107

Conditional

P � e � Q =̂ OO(D(P � e � Q) ∧ ((ev ∧ P) ∨ (¬ev ∧ Q)))

Simple Recursion

meth A m = µX •
(

pds • F(X)
)

Mutual Recursion

meth A m,B n = µX ,Y •
(

pdsm • F(X ,Y), pdsn • G(X ,Y)
)

Method Call

le.m(args) =̂ OO({D(le.m(args))}⊥; (pdse • p)(le, args))

where m = pdse • p

108 A. Theory of Object-Orientation

Appendix B

Healthiness Condition Laws

B.1 Closedness of OO HCs

Law 6. <OO1-idempotent>

OO1 ◦OO1 = OO1

Proof.
OO1 ◦OO1(P) [composition, OO1]
= OO1(Object ∈ cls ∧ P) [OO1, propositional calculus]
= Object ∈ cls ∧ P [OO1]
= OO1(P)

Law 7. <OO1-∧-closure>

OO1(P ∧ Q) = P ∧ Q, provided P and Q are OO1 healthy.

Proof.
OO1(P ∧ Q) [OO1]
= Object ∈ cls ∧ P ∧ Q [propositional calculus]
= Object ∈ cls ∧ P ∧ Object ∈ cls ∧ Q [OO1]
= OO1(P) ∧ OO1(Q) [assumption]
= P ∧ Q

Law 8. <OO1-∨-closure>

OO1(P ∨ Q) = P ∨ Q, provided P and Q are OO1 healthy.

Proof.
Similar to that of OO1-∧-closure.

Law 9. <OO1- � � -closure>

OO1(P � b � Q) = P � b � Q, provided P and Q are OO1 healthy.

109

110 B. Healthiness Condition Laws

Proof.
OO1(P � b � Q) [OO1]
= Object ∈ cls ∧ (P � b � Q) [conditional-disjunction]
= (Object ∈ cls ∧ P)� b � (Object ∈ cls ∧ Q) [OO1]
= OO1(P)� b � OO1(Q) [assumption]
= P � b � Q

Law 10. <OO1-; -closure>

OO1(P; Q) = P; Q, provided P and Q are OO1 healthy.

Proof.
OO1(P; Q) [assumption]
= OO1(OO1(P); OO1(Q)) [OO1]
= ((Object ∈ cls ∧ P); (Object ∈ cls ∧ Q)) ∧ Object ∈ cls [sequence]

= ∃ cls0, v0 •
(

Object ∈ cls ∧ P[cls0, v0/cls′, v′] ∧
Object ∈ cls0 ∧ Q[cls0, v0/cls, v]

)
∧ Object ∈ cls

[propositional calculus]

= ∃ cls0, v0 •
(

Object ∈ cls ∧ P[cls0, v0/cls′, v′] ∧
Object ∈ cls0 ∧ Q[cls0, v0/cls, v]

)
[sequence]

= OO1(P); OO1(Q) [assumption]
= P; Q

Law 11. <OO1-µ-closure>

OO1(µX • F(X)) = µX • F(X), provided F(X) is OO1 healthy.

Proof.
OO1(µX • F(X)) [µ,OO1]
= Object ∈ cls ∧ ⊓{X | X ⇒ F(X)} [L3 of relations, assumption]
= ⊓{X ∧ Object ∈ cls | X ⇒ OO1(F(X))} [OO1, F(X) is healthy]
= ⊓{X ∧ Object ∈ cls | X ⇒ (Object ∈ cls ∧ F(X))} [case analysis]
= ⊓{X ∧ false | X ⇒ (false ∧ F(X))} ∨ ⊓{X ∧ true | X ⇒ (true ∧ F(X))}

[propositional calculus]
= ⊓{false | X ⇒ false} ∨ ⊓{X | X ⇒ F(X)} [⊓-definition]
= false ∨ ⊓{X | X ⇒ F(X)} [disjunction unit- false ∨ A = A]
= ⊓{X | X ⇒ F(X)} [µ]
= µX • F(X)

Law 12. <OO2-idempotent>

OO2 ◦OO2 = OO2

Proof.
Similar to that of OO1-idempotent.

Law 13. <OO2-∧-closure>

OO2(P ∧ Q) = P ∧ Q, provided P and Q are OO2 healthy.

B.1. Closedness of OO HCs 111

Proof.
Similar to that of OO1-∧-closure.

Law 14. <OO2-∨-closure>

OO2(P ∨ Q) = P ∨ Q, provided P and Q are OO2 healthy.

Proof.
Similar to that of OO1-∧-closure.

Law 15. <OO2- � � -closure>

OO2(P � b � Q) = P � b � Q, provided P and Q are OO2 healthy.

Proof.
Similar to that of OO1- � � -closure.

Law 16. <OO2-; -closure>

OO2(P; Q) = P; Q, provided P and Q are OO2 healthy.

Proof.
OO2(P; Q) [assumption]
= OO2(OO2(P); OO2(Q)) [OO2]

=




((
dom sc = cls \ {Object} ∧
P

)
;

(
dom sc = cls \ {Object} ∧
Q

))

∧
dom sc = cls \ {Object}




[sequence]

=



∃ cls0, sc0, v0 •

((
dom sc = cls \ {Object} ∧
P[cls0, sc0, v0/cls′, sc′, v′]

)
∧
(

dom sc0 = cls0 \ {Object} ∧
Q[cls0, sc0, v0/cls, sc, v]

))

∧
dom sc = cls \ {Object}




[propositional calculus]

= ∃ cls0, sc0, v0 •
((

dom sc = cls \ {Object} ∧
P[cls0, sc0, v0/cls′, sc′, v′]

)
∧
(

dom sc0 = cls0 \ {Object} ∧
Q[cls0, sc0, v0/cls, sc, v]

))

[sequence]
= OO2(P); OO2(Q) [assumption]
= P; Q

Law 17. <OO2-µ-closure>

OO2(µX • F(X)) = µX • F(X), provided F(X) is OO2 healthy.

Proof.
Similar to that of OO1-µ-closure.

112 B. Healthiness Condition Laws

Law 18. <OO3-idempotent>

OO3 ◦OO3 = OO3

Proof.
Similar to that of OO1-idempotent.

Law 19. <OO3-∧-closure>

OO3(P ∧ Q) = P ∧ Q, provided P and Q are OO3 healthy.

Proof.
Similar to that of OO1-∧-closure.

Law 20. <OO3-∨-closure>

OO3(P ∨ Q) = P ∨ Q, provided P and Q are OO3 healthy.

Proof.
Similar to that of OO1-∧-closure.

Law 21. <OO3- � � -closure>

OO3(P � b � Q) = P � b � Q, provided P and Q are OO3 healthy.

Proof.
Similar to that of OO1- � � -closure.

Law 22. <OO3-; -closure>

OO3(P; Q) = P; Q, provided P and Q are OO3 healthy.

Proof.
OO3(P; Q) [assumption]
= OO3(OO3(P); OO3(Q)) [OO3]

=




((
∀C : dom sc • (C ,Object) ∈ sc+

∧ P

)
;

(
∀C : dom sc • (C ,Object) ∈ sc+

∧ Q

))

∧
∀C : dom sc • (C ,Object) ∈ sc+




[sequence]

=



∃ sc0, v0 •

((
∀C : dom sc • (C ,Object) ∈ sc+

∧ P[sc0, v0/sc
′, v′]

)
∧
(
∀C : dom sc0 • (C ,Object) ∈ sc+0
∧ Q[sc0, v0/sc, v]

))

∧
∀C : dom sc • (C ,Object) ∈ sc+




[propositional calculus]

= ∃ sc0, v0 •
((
∀C : dom sc • (C ,Object) ∈ sc+

∧ P[sc0, v0/sc
′, v′]

)
∧
(
∀C : dom sc0 • (C ,Object) ∈ sc+0
∧ Q[sc0, v0/sc, v]

))

[sequence]
= OO3(P); OO3(Q) [assumption]
= P; Q

B.1. Closedness of OO HCs 113

Law 23. <OO3-µ-closure>

OO3(µX • F(X)) = µX • F(X), provided F(X) is OO3 healthy.

Proof.
Similar to that of OO1-µ-closure.

Law 24. <OO4-idempotent>

OO4 ◦OO4 = OO4

Proof.
Similar to that of OO1-idempotent.

Law 25. <OO4-∧-closure>

OO4(P ∧ Q) = P ∧ Q, provided P and Q are OO4 healthy.

Proof.
Similar to that of OO1-∧-closure.

Law 26. <OO4-∨-closure>

OO4(P ∨ Q) = P ∨ Q, provided P and Q are OO4 healthy.

Proof.
Similar to that of OO1-∧-closure.

Law 27. <OO4- � � -closure>

OO4(P � b � Q) = P � b � Q, provided P and Q are OO4 healthy.

Proof.
Similar to that of OO1- � � -closure.

Law 28. <OO4-; -closure>

OO4(P; Q) = P; Q, provided P and Q are OO4 healthy.

Proof.
OO4(P; Q) [assumption]
= OO4(OO4(P); OO4(Q)) [OO4]
=

(
(dom atts = cls ∧ P); (dom atts = cls ∧ Q)

)
∧ dom atts = cls [sequence]

=



∃ cls0, atts0, v0 •

(
dom atts = cls ∧ P[cls0, atts0, v0/cls′, atts′, v′] ∧
dom atts0 = cls0 ∧ Q[cls0, atts0, v0/cls, atts, v]

)

∧
dom atts = cls




[propositional calculus]

114 B. Healthiness Condition Laws

= ∃ cls0, atts0, v0 •
(

dom atts = cls ∧ P[cls0, atts0, v0/cls′, atts′, v′] ∧
dom atts0 = cls0 ∧ Q[cls0, atts0, v0/cls, atts, v]

)
[sequence]

= OO4(P); OO4(Q) [assumption]
= P; Q

Law 29. <OO4-µ-closure>

OO4(µX • F(X)) = µX • F(X), provided F(X) is OO4 healthy.

Proof.
Similar to that of OO1-µ-closure.

Law 30. <OO5-idempotent>

OO5 ◦OO5 = OO5

Proof.
Similar to that of OO1-idempotent.

Law 31. <OO5-∧-closure>

OO5(P ∧ Q) = P ∧ Q, provided P and Q are OO5 healthy.

Proof.
Similar to that of OO1-∧-closure.

Law 32. <OO5-∨-closure>

OO5(P ∨ Q) = P ∨ Q, provided P and Q are OO5 healthy.

Proof.
Similar to that of OO1-∧-closure.

Law 33. <OO5- � � -closure>

OO5(P � b � Q) = P � b � Q, provided P and Q are OO5 healthy.

Proof.
Similar to that of OO1- � � -closure.

Law 34. <OO5-; -closure>

OO5(P; Q) = P; Q, provided P and Q are OO5 healthy.

B.1. Closedness of OO HCs 115

Proof.
OO5(P; Q) [assumption]
= OO5(OO5(P); OO5(Q)) [OO5]

=




(
(∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅ ∧ P);
(∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅ ∧ Q)

)

∧
∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅




[sequence]

=




∃ sc0, v0 •



∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅ ∧ P[sc0, v0/sc

′, v′]
∧
∀C1,C2 : dom atts0 • C1 6= C2 ∧ dom(atts0(C1)) ∩ dom(atts0(C1)) = ∅ ∧ Q[sc0, v0/sc, v]




∧
∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅




[propositional calculus]

= ∃ sc0, v0 •



∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅ ∧ P[sc0, v0/sc

′, v′]
∧
∀C1,C2 : dom atts0 • C1 6= C2 ∧ dom(atts0(C1)) ∩ dom(atts0(C1)) = ∅ ∧ Q[sc0, v0/sc, v]




[sequence]
= OO5(P); OO5(Q) [assumption]
= P; Q

Law 35. <OO5-µ-closure>

OO5(µX • F(X)) = µX • F(X), provided F(X) is OO5 healthy.

Proof.
Similar to that of OO1-µ-closure.

Law 36. <OO6-idempotent>

OO6 ◦OO6 = OO6

Proof.
Similar to that of OO1-idempotent.

Law 37. <OO6-∧-closure>

OO6(P ∧ Q) = P ∧ Q, provided P and Q are OO6 healthy.

Proof.
Similar to that of OO1-∧-closure.

Law 38. <OO6-∨-closure>

OO6(P ∨ Q) = P ∨ Q, provided P and Q are OO6 healthy.

Proof.
Similar to that of OO1-∧-closure.

116 B. Healthiness Condition Laws

Law 39. <OO6- � � -closure>

OO6(P � b � Q) = P � b � Q, provided P and Q are OO6 healthy.

Proof.
Similar to that of OO1- � � -closure.

Law 40. <OO6-; -closure>

OO6(P; Q) = P; Q, provided P and Q are OO6 healthy.

Proof.
OO6(P; Q) [assumption]
= OO6(OO6(P); OO6(Q)) [OO6]

=



(
(ran(

⋃
ran atts) ⊆ {B,Z} ∪ cls ∧ P); (ran(

⋃
ran atts) ⊆ {B,Z} ∪ cls ∧ Q)

)

∧
ran(

⋃
ran atts) ⊆ {B,Z} ∪ cls




[sequence]

=




∃ cls0, atts0, v0 •




ran(
⋃

ran atts) ⊆ {B,Z} ∪ cls ∧ P[cls0, atts0, v0/cls′, atts′, v′]
∧
ran(

⋃
ran atts0) ⊆ {B,Z} ∪ cls0 ∧ Q[cls0, atts0, v0/cls, atts, v]




∧
ran(

⋃
ran atts) ⊆ {B,Z} ∪ cls




[propositional calculus]

= ∃ cls0, atts0, v0 •




ran(
⋃

ran atts) ⊆ {B,Z} ∪ cls ∧ P[cls0, atts0, v0/cls′, atts′, v′]
∧
ran(

⋃
ran atts0) ⊆ {B,Z} ∪ cls0 ∧ Q[cls0, atts0, v0/cls, atts, v]




[sequence]
= OO6(P); OO6(Q) [assumption]
= P; Q

Law 41. <OO6-µ-closure>

OO6(µX • F(X)) = µX • F(X), provided F(X) is OO6 healthy.

Proof.
Similar to that of OO1-µ-closure.

Proofs for healthiness conditions OO7-OO12 are all similar to the closedness proofs of their correspon-
dent initial variables counterparts healthiness conditions.

B.2 Commutativity of OO HCs

Law 42. <OO1-OO2-commutativity>

OO1 ◦OO2 = OO2 ◦OO1

B.2. Commutativity of OO HCs 117

Proof.
OO1 ◦OO2(P) [composition, OO2]
= OO1(dom sc = cls \ {Object} ∧ P) [OO1]
= Object ∈ cls ∧ dom sc = cls \ {Object} ∧ P

[propositional calculus]
= dom sc = cls \ {Object} ∧ Object ∈ cls ∧ P

[OO1]
= dom sc = cls \ {Object} ∧ OO1(P) [OO2]
= OO2 ◦OO1(P)

Law 43. <OO1-OO3-commutativity>

OO1 ◦OO3 = OO3 ◦OO1

Proof.
Similar to that of OO1 ◦OO2.

Law 44. <OO1-OO4-commutativity>

OO1 ◦OO4 = OO4 ◦OO1

Proof.
Similar to that of OO1 ◦OO2.

Law 45. <OO1-OO5-commutativity>

OO1 ◦OO5 = OO5 ◦OO1

Proof.
Similar to that of OO1 ◦OO2.

Law 46. <OO1-OO6-commutativity>

OO1 ◦OO6 = OO6 ◦OO1

Proof.
Similar to that of OO1 ◦OO2.

Law 47. <OO2-OO3-commutativity>

OO2 ◦OO3 = OO2 ◦OO3

Proof.
Similar to that of OO1 ◦OO2.

Law 48. <OO2-OO4-commutativity>

OO2 ◦OO4 = OO2 ◦OO4

118 B. Healthiness Condition Laws

Proof.
Similar to that of OO1 ◦OO2.

Law 49. <OO2-OO5-commutativity>

OO2 ◦OO5 = OO2 ◦OO5

Proof.
Similar to that of OO1 ◦OO2.

Law 50. <OO2-OO6-commutativity>

OO2 ◦OO6 = OO2 ◦OO6

Proof.
Similar to that of OO1 ◦OO2.

Law 51. <OO3-OO4-commutativity>

OO3 ◦OO4 = OO3 ◦OO4

Proof.
Similar to that of OO1 ◦OO2.

Law 52. <OO3-OO5-commutativity>

OO3 ◦OO5 = OO3 ◦OO5

Proof.
Similar to that of OO1 ◦OO2.

Law 53. <OO3-OO6-commutativity>

OO3 ◦OO6 = OO3 ◦OO6

Proof.
Similar to that of OO1 ◦OO2.

Law 54. <OO4-OO5-commutativity>

OO4 ◦OO5 = OO4 ◦OO5

Proof.
Similar to that of OO1 ◦OO2.

Law 55. <OO4-OO6-commutativity>

OO4 ◦OO6 = OO4 ◦OO6

B.3. Other HCs Laws 119

Proof.
Similar to that of OO1 ◦OO2.

Law 56. <OO5-OO6-commutativity>

OO5 ◦OO6 = OO5 ◦OO6

Proof.
Similar to that of OO1 ◦OO2.

B.3 Other HCs Laws

In the following law, we use the notation ‘−’ to stand for any variable name. For example, we use [−0/−′]

to represent the replacement of all final variables, say x ′, with its corresponding version with a 0 subscript,
x0.

Law 57. <OO7-12,OO13-equivalence>

OO13 = OO7 ◦OO8 ◦OO9 ◦OO10 ◦OO11 ◦OO12

Proof.
OO13(P) [OO13]
= P; IIoo [IIoo]
= P; OOI(cls′ = cls ∧ sc′ = sc ∧ atts′ = atts ∧ . . .) [sequence]
= ∃−0 • P[−0/−′] ∧ OOI(cls′ = cls ∧ sc′ = sc ∧ atts′ = atts ∧ . . .)[−0/−]

[OO1-6]

= ∃−0 • P[−0/−′] ∧




Object ∈ cls ∧
dom sc = cls \ {Object} ∧
∀C : dom sc • (C ,Object) ∈ sc+ ∧
dom atts = cls ∧
∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅ ∧
ran(

⋃
ran atts) ⊆ {B,Z} ∪ cls ∧

cls′ = cls ∧ sc′ = sc ∧ atts′ = atts ∧ . . .




[−0/−]

[substitution]

= ∃−0 • P[−0/−′] ∧




Object ∈ cls0
dom sc0 = cls0 \ {Object} ∧
∀C : dom sc0 • (C ,Object) ∈ sc+0 ∧
dom atts0 = cls0 ∧
∀C1,C2 : dom atts0 • dom(atts0(C1)) ∩ dom atts0(C1)) = ∅ ∧
ran(

⋃
ran atts0) ⊆ {B,Z} ∪ cls0 ∧

cls′ = cls0 ∧ sc′ = sc0 ∧ atts′ = atts0 ∧ . . .




[OO7-12, variable values, propositional calculus]
= OO7 ◦OO8 ◦OO9 ◦OO10 ◦OO11 ◦OO12(P)

120 B. Healthiness Condition Laws

Appendix C

Theory of Pointers

C.1 Observational Variables

Pointer Machine

< A : PAd,V : Ad 7→ Value, S : Ad ↔ Ad >

where

Ad =̂ (seq Label)\{<>}

Projections

A.p =̂ {q : Ad | p.q ∈ A}

V .p =̂ {q : Ad | p.q ∈ dom V • q 7→ V (p.q)}

Equality

p =v q ≡ A.p = A.q ∧ V .p = V .q

p =p q≡ (p, q) ∈ S

C.2 Healthiness Conditions

HP1 P = P ∧ ∀ a1 : A; a2 : Ad | a2 < a1 • a2 ∈ A

HP2 P = P ∧ dom V = term(A)

121

122 C. Theory of Pointers

HP3 P = P ∧ ∧{ ′x : vars(A) • x =!′x}

where NPV ∩ vars(A) = ∅

and {A,V , S} ⊆ NPV .

vars(X) =̂ {x : X • x(1)}

!x =̂

{
V (x) , if x ∈ term(A)
V .x , otherwise.

!x ′ =̂

{
V ′(x) , if x ∈ term(A′)
V ′.x , otherwise.

HP4 P = P ∧ S ∈ (A↔ A) ∧ S = S∗

HP5 P = P ∧ fclosA S

where fclosA E =̂ ∀ x , y : Ad | (x , y) ∈ E • ∀ a : Ad | x .a ∈ A ∧ y.a ∈ A • (x .a, y.a) ∈ E

HP6 P = P ∧ ∀ a, b : Ad • (a, b) ∈ S ∧ a ∈ dom V ⇒ b ∈ dom V ∧ V (a) = V (b)

HP7-12 correspond to HP1-6 but restricting the final values for A, V and S .

Other Definitions

HPI ≡ HP1 ◦HP2 ◦HP3 ◦HP4 ◦HP5 ◦HP6

HP ≡ HP1 ◦HP2 ◦HP3 ◦HP4 ◦HP5 ◦HP6 ◦HP7 ◦HP8 ◦HP9 ◦HP10 ◦HP11 ◦HP12

C.3 Variables

Declaration

var x =̂ HPI ◦HP9


∃ v : Value •




A′ = A ∪ {x} ∧
V ′ = V ⊕ {x 7→ v} ∧
S ′ = S ∪ {x 7→ x}






provided x /∈ A

C.4. Commands 123

Undeclaration

end x =̂ HPI ◦HP9




A′ = A \ {x∞∪ {x}} ∧
V ′ = (x∞∪ {x})−⊳ V ∧
S ′ = (x∞∪ {x})−⊳ S −⊲ (x∞∪ {x})




provided x ∈ A
where x∞ =̂ {a : Ad • x .a}

C.4 Commands

Auxiliary Functions

shareX (x) =̂ X(| {x} |)

X↑ =̂
⋃{x : X • x∞}

extX(x) =̂ shareX (x)↑

Value Assignment

x :=t e =̂ HPI ◦HP9




A′ = A ∧
V ′ = V ⊕ {a : shareS(x) • a 7→ e} ∧
S ′ = S




provided x ∈ dom V

x :=i e =̂ HPI ◦HP9




A′ = A \ extS(x) ∧
V ′ = (extS(x)−⊳ V) ∪ {a : (shareS(x) \ extS(x)) • a 7→ e} ∧
S ′ = extS(x)−⊳ S −⊲ extS(x)




provided x ∈ A, x /∈ dom V

Pointer Assignment

x :– t y =̂ HPI ◦HP9




A′ = A ∪ {a : Ad | y.a ∈ A • x .a} ∧
V ′ = ({x} −⊳ V)⊕ {a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ V (y.fa)} ∧
S ′ = ((({x} −⊳ S −⊲ {x}) ∪ {x 7→ y}) ∪ {a : Ad | y.a ∈ A • x .a 7→ y.a})∗




provided x ∈ dom V

x :– i y =̂ HPI ◦HP9




A′ = (A \ x∞) ∪ {a : Ad | y.a ∈ A • x .a} ∧
V ′ = (x∞−⊳ V)⊕ {a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ V (y.fa)} ∧
S ′ = (((x∞∪ {x})−⊳ S −⊲ (x∞∪ {x})) ∪ {x 7→ y}∪

{a : Ad | y.a ∈ A • x .a 7→ y.a})∗




provided x ∈ A, x /∈ dom V

124 C. Theory of Pointers

Register Creation and Assignment

new(f) =̂ {n : name; v : Value | n ∈ f • n 7→ v}

x :=r new(f) =̂ HPI ◦HP9




A′ = (A \ x∞) ∪ {n : name | n ∈ dom map • x .n} ∧
V ′ = ((x∞∪ {x})−⊳ V)⊕ {n : name | n ∈ dom map • x .n 7→ map(n)} ∧
S ′ = (x∞∪ {x})−⊳ S −⊲ (x∞∪ {x})




provided x ∈ A
where map = new(f)

Appendix D

Integrated Theory

D.1 Observational Variables

Class Names

cls : P name.

Subtype Relation

sc : name 7→ name.

Attribute Information
atts : name 7→ (name 7→ Type).
where

Type := {B,Z} ∪ cls

Methods

Methods texts are recorded in high-order-variables in the form

var m : proc = pds

where pds is a parametrised command, as in the example below.

valres self:Object • mc � self is C � (mb � self is B � (ma � self is A �⊥po))

Pointer Machine

< A : PAd,V : Ad 7→ Value, S : Ad ↔ Ad >

where

Ad =̂ (seq Label)\{<>}
and

Value =̂ {T : Type; i : name | i ∈ T • i}

125

126 D. Integrated Theory

Dynamic Types

dts : Ad 7→ Type.

Projections

A.p =̂ {q : Ad | p.q ∈ A}

V .p =̂ {q : Ad | p.q ∈ dom V • q 7→ V (p.q)}

D.2 Healthiness Conditions

OOs

OO1 P = P ∧ Object ∈ cls

OO2 P = P ∧ dom sc = cls \ {Object}

OO3 P = P ∧ ∀C : dom sc • (C ,Object) ∈ sc+

OO4 P = P ∧ dom atts = cls

OO5 P = P ∧ ∀C1,C2 : dom atts • C1 6= C2 ∧ dom(atts(C1)) ∩ dom(atts(C2)) = ∅

OO6 P = P ∧ ran(
⋃

ran atts) ⊆ {B,Z} ∪ cls

OO7 P = P ∧ Object ∈ cls′

OO8 P = P ∧ dom sc′ = cls′ \ {Object}

OO9 P = P ∧ ∀C : dom sc′ • (C ,Object) ∈ sc′+

OO10 P = P ∧ dom atts′ = cls′

OO11 P = P ∧ ∀C1,C2 : dom atts′ • C1 6= C2 ∧ dom(atts′(C1)) ∩ dom(atts′(C2)) = ∅

OO12 P = P ∧ ran(
⋃

ran atts′) ⊆ {B,Z} ∪ cls′

OO13 P = P; IIoo

D.2. Healthiness Conditions 127

HPs

HP1 P = P ∧ ∀ a1 : A; a2 : Ad | a2 < a1 • a2 ∈ A

HP2 P = P ∧ dom V = term(A)

HP3 P = P ∧ ∧{ ′x : vars(A) • x =!′x}

where NPV ∩ vars(A) = ∅

and

{A,V , S , cls, sc, atts, dts} ∪M ⊆ NPV

where : M is the set of method variables.

vars(X) =̂ {x : X • x(1)}

!x =̂

{
(dts(x),V (x)) , if x ∈ term(A)
(dts(x),V .x) , otherwise.

!x ′ =̂

{
(dts(x ′),V ′(x)) , if x ∈ term(A′)
(dts(x ′),V ′.x) , otherwise.

HP4 P = P ∧ S ∈ (A↔ A) ∧ S = S∗

HP5 P = P ∧ fclosA S

where fclosA E =̂ ∀ x , y : Ad | (x , y) ∈ E • ∀ a : Ad | x .a ∈ A ∧ y.a ∈ A • (x .a, y.a) ∈ E

HP6 P = P ∧ ∀ a, b : Ad • (a, b) ∈ S ∧ a ∈ dom V ⇒ b ∈ dom V ∧ V (a) = V (b)

HP7-12 correspond to HP1-6 but restricting the final values for A, V and S .

POs

PO1 P = P ∧ dom dts = A ∧ ran dts ⊆ Type

PO2 P = P ∧ dom dts′ = A′ ∧ ran dts′ ⊆ {B,Z} ∪ cls′

128 D. Integrated Theory

Other Definitions

OOI ≡ OO1 ◦OO2 ◦OO3 ◦OO4 ◦OO5 ◦OO6

OO ≡ OO1 ◦OO2 ◦OO3 ◦OO4 ◦OO5 ◦OO6 ◦OO7 ◦OO8 ◦OO9 ◦OO10 ◦OO11 ◦OO12

IIoo =̂ OOI(II)

HPI ≡ HP1 ◦HP2 ◦HP3 ◦HP4 ◦HP5 ◦HP6

HP ≡ HP1 ◦HP2 ◦HP3 ◦HP4 ◦HP5 ◦HP6 ◦HP7 ◦HP8 ◦HP9 ◦HP10 ◦HP11 ◦HP12

PO ≡ PO1 ◦PO2

IT =̂ OO ◦HP ◦PO

⊥po =̂ IT(⊥)

D.3 Declarations

Class Introduction

class A extends B =̂ IT



(

A /∈ Type ∧
B ∈ cls

)
⊢




cls′ = cls ∪ {A} ∧
sc′ = sc ∪ {A 7→ B} ∧
atts′ = atts ∪ {A 7→ ∅} ∧
w′ = w







where w = inα(class A extends B) \ { cls, sc, atts}
or

class A = class A extends Object

Attribute Introduction

att A x : T =̂ IT






A ∈ cls ∧
x /∈ dom C(atts, cls) ∧
T ∈ Type


 ⊢

(
atts′ = atts ⊕ {A 7→ (atts(A) ∪ {x 7→ T})} ∧
w′ = w

)


where w = inα(att A x : T) \ {atts}
and C(amap, cset) =

⋃{N : cset • amap N},
amap is an attribute mapping, and cset is class set.

D.4. Abstractions 129

Closure of attributes

U(amap, smap,N) =
⋃

amap(| smap∗(| {N} |) |)

Method Introduction

meth A m =
(
pds • p

)
=̂

IT

(
var m;

(
A ∈ cls ∧
∀ t ∈ types(pds) • t ∈ Type

)
⊢
(

m′ = pdse • (p � self is A �⊥po) ∧
w′ = w

))

provided m /∈ α(meth A m =
(
pds • p

)
)

where pdse = valres self:Object; pds and w = inα(meth A m =
(
pds • p

)
)

Method Redefinition

meth A m =
(
pds • p

)
=̂ IT



(

A ∈ cls ∧
∃ q • m = pdse • q

)
⊢


∃ q •




m = pdse • q ∧
m′ = pdse • join(A, p, q) ∧
w′ = w








provided m ∈ α(meth A m =
(
pds • p

)
)

where pdse = valres self:Object; pds, w = inα(meth A m =
(
pds • p

)
) \ {m}

and

join(A, p,⊥po) = p � self is A �⊥po

join(A, p, ql � self is B � qr) =

{
p � self is A � (ql � self is B � qr), if A ≺ B
ql � self is B � join(A, p, qr) , otherwise

join(A, p, q) = ⊥po, for programs q of every other form

D.4 Abstractions

Call by Value

(val v : T • p) =̂ (λw : T • (var v : T ; v := w; p; end v : T))

Call by Result

(res v : T • p) =̂ (λw : N • (var v : T ; p; w := v; end v : T))

Call by Value-Result

(valres v : T • p) =̂ (λw : N • (var v : T ; v := w; p; w := v; end v : T))

130 D. Integrated Theory

Call by Reference

(ref v : T • p) =̂ (λw : N • (var v : T ; v :– w; p; end v : T))

(λ x : N • p)(y) =̂ p [y, y′, yt, yt ′/x , x ′, xt, xt ′]

D.5 Variables

Declaration

var x : T =̂ IT




{T ∈ Type}⊥; var xt, x ; x /∈ A ⊢ ∃ v : Value •




xt ′ = T ∧
x ′ ∈ V(T) ∧
A′ = A ∪ {x} ∧
V ′ = V ⊕ {x 7→ v} ∧
S ′ = S ∪ {x 7→ x} ∧
dts′ = dts ⊕ {x 7→ T} ∧
w′ = w







provided x /∈ inα(var x : T)
where w ∈ inα(var x : T) \ {x , xt,A,V , S , dts}

Undeclaration

end x : T =̂ IT







x ∈ A ⊢




A′ = A \ {x∞∪ {x}} ∧
V ′ = (x∞∪ {x})−⊳ V ∧
S ′ = (x∞∪ {x})−⊳ S −⊲ (x∞∪ {x}) ∧
dts′ = (x∞∪ {x})−⊳ dts ∧
w′ = w







; end x , xt




provided x ∈ inα(end x : T)
where w ∈ inα(end x : T) \ {x ,A, dts,V , S}

D.6 Expressions

BNF

e ::= v | le | new N | e is N | (N)e | f (e) | null

le ::= x | self | le.x

Table D.1: BNF for object-oriented expressions.

D.6. Expressions 131

Well-definedness

Primitive Values Objects

D((B, v)) =̂ v ∈ B D((T ,null)) =̂ T ∈ cls
D((Z, v)) =̂ v ∈ Z D((T , v)) =̂ T ∈ cls ∧ (T , v) ∈ V(T)

Variables

D(x) =̂ xt ∈ Type ∧ x ∈ A
D(self) =̂ selft ∈ cls ∧ self ∈ A

Attribute Accesses

D(le.x) =̂ D(le) ∧ let ∈ cls ∧ lev 6= null ∧ x ∈ dom lev

Typing

D(new N) =̂ N ∈ cls
D(e is N) =̂ D(e) ∧ N ∈ cls
D((N)e) =̂ D(e) ∧ N ∈ cls ∧ et � N

Remainder

D(x%y) =̂ D(x) ∧ D(y) ∧ xt = Z ∧ yt = Z ∧ yv 6= 0

Object Creation

new N =̂ (N , {n : name; v : Value | n ∈ dom map ∧ v ∈ map(n) • n 7→ v})

where map = U(atts, cls,N)

Type Test

e is N =̂ (B, et � N)

Type Cast

(N)e =̂ e

Attribute Access

le.x =̂ !le.x

132 D. Integrated Theory

Equality

p =v q≡ A.p = A.q ∧ !p =!q

p =p q≡ (p, q) ∈ S

D.7 Commands

BNF

c ::= le := e | II | var x : T | end x : T | c1 � e � c2 | c1; c2 | µX • F(X) | le.m(e)

Table D.2: BNF for object-oriented commands.

Well-definedness

Assignment to variables

D(x := e) =̂ D(x) ∧ D(e) ∧ et � xt

Assignment to attributes

D(le.x := e) =̂ D(le.x) ∧ D(e) ∧ et � U(atts, sc, let)(x)

Conditional

D(P � e � Q) =̂ D(e) ∧ et = B

Method call

D(le.m(e)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ et � T

provided ∃ p • m = (val x:T • p),
where compatible(le,m) ≡ ∃ pds, p •m = (pds • p) ∧ let ∈ scan(p)
with

scan(⊥po) = {}
scan(pl � self is A � pr) = {B : cls | B � A} ∪ scan(pr)

D(le.m(y)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ frame(le) ∩ frame(y) = ∅ ∧ T � yt

provided ∃ p • m = (res x:T • p)

D(le.m(z)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ frame(le) ∩ frame(y) = ∅ ∧ T = zt

provided ∃ p • m = (valres x:T • p)

D(le.m(e)) =̂ D(le) ∧ lev 6= null ∧ compatible(le,m) ∧ et � T
provided ∃ p • m = (ref x:T • p)

D.7. Commands 133

Assignments of New Objects

x :=r new N =̂

IT



D(x := new N) ⊢




A′ = (A \ x∞) ∪ {n : name | n ∈ dom map • x .n} ∧
V ′ = ((x∞∪ {x})−⊳ V)⊕ {n : name | n ∈ dom map • x .n 7→ map(n)} ∧
S ′ = (x∞∪ {x})−⊳ S −⊲ (x∞∪ {x}) ∧
dts′ = ((x∞∪ {x})−⊳ dts)⊕ ({x 7→ N} ∪ {x .f 7→ aclos(f) | f ∈ dom map}) ∧
w′ = w







where (N ,map) = new N
with aclos = U(atts, cls,N)
and w ∈ inα(x :=r new N) \ {A,V , S , dts}

Value Assignments of Variables or Attributes

x := e =̂

IT


D(x := e) ⊢




A′ = A \ extS(x) ∧
V ′ = ((extS(x) ∪ shareS(x))−⊳ V)⊕ {a : (shareS(x) \ extS(x)) • a 7→ ev} ∧
S ′ = extS(x)−⊳ S −⊲ extS(x) ∧
dts′ = ((extS(x) ∪ shareS(x))−⊳ dts)⊕ {a : (shareS(x) \ extS(x)) • a 7→ et}







x := y =̂

IT




D(x := y)
⊢


A′ = (A \ x∞) ∪ {a : Ad | y.a ∈ A • x .a} ∧
dts′ = (x∞−⊳ dts)⊕ ({a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ dts(y.fa)} ∪ {x 7→ dts(y)}) ∧
V ′ = (x∞−⊳ V)⊕ {a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ V (y.fa)} ∧
S ′ = ((x∞∪ {x})−⊳ S −⊲ (x∞∪ {x}))







Pointer Assignments of Variables or Attributes

x :– y =̂

IT




D(x :– e)
⊢


A′ = (A \ x∞) ∪ {a : Ad | y.a ∈ A • x .a} ∧
V ′ = (x∞−⊳ V)⊕ {a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ V (y.fa)} ∧
S ′ = (((x∞∪ {x})−⊳ S −⊲ (x∞∪ {x})) ∪ {x 7→ y} ∪ {a : Ad | y.a ∈ A • x .a 7→ y.a})∗ ∧
dts′ = (x∞−⊳ dts)⊕ ({a : dom V ; fa : seq Label | a = y.fa • x .fa 7→ dts(y.fa)} ∪ {x 7→ dts(y)})







Conditional

P � e � Q =̂ IT(D(P � e � Q) ∧ ((ev ∧ P) ∨ (¬ev ∧ Q)))

134 D. Integrated Theory

Simple Recursion

meth A m = µX •
(

pds • F(X)
)

Mutual Recursion

meth A m,B n = µX ,Y •
(

pdsm • F(X ,Y), pdsn • G(X ,Y)
)

Method Call

le.m(args) =̂ IT({D(le.m(args))}⊥; (pdse • p)(le, args))

where m = pdse • p

References

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[AC96] Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science. Springer-
Verlag, 1996.

[AL97] Martín Abadi and K. Rustan M. Leino. A Logic of Object-Oriented Programs. In Michel Bidoit
and Max Dauchet, editors, TAPSOFT, volume 1214 of Lecture Notes in Computer Science, pages
682–696. Springer, 1997.

[AL03] Martín Abadi and K. Rustan M. Leino. A Logic of Object-Oriented Programs. In Nachum
Dershowitz, editor, Verification: Theory and Practice, volume 2772 of Lecture Notes in Computer

Science, pages 11–41. Springer, 2003.

[Ame90] Pierre America. Designing an object-oriented programming language with behavioural subtyping.
In J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg, editors, REX Workshop,
volume 489 of Lecture Notes in Computer Science, pages 60–90. Springer, 1990.

[Bac87] R. J. R. Back. Procedural Abstraction in the Refinement Calculus. Technical report, Department
of Computer Science, Åbo, Finland, 1987. Ser. A No. 55.

[BCC+03] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph Kiniry, Gary T. Leavens,
K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications. In T. Arts and
W. Fokkink, editors, Eighth International Workshop on Formal Methods for Industrial Critical

Systems (FMICS ’03), volume 80 of Electronic Notes in Theoretical Computer Science, pages
73–89. Elsevier, June 2003.

[BCD+06] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In Formal Methods for

Components and Objects, volume 4111 of Lecture Notes in Computer Science, pages 364 – 387.
Springer Berlin / Heidelberg, 2006.

[BDF+04] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–56,
June 2004. Special issue: ECOOP 2003 workshop on Formal Techniques for Java-like Programs.

[BF98] Jean-Michel Bruel and Robert B. France. Transforming UML models to Formal Specifications.
In Pierre-Alain Muller and Jean Bézivin, editors, Proc. International Conference on the Unified

Modelling Language (UML): Beyond the Notation, number 1618. Springer-Verlag, 1998.

135

136 References

[BJR98] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language User Guide.
Addison-Wesley, 1st edition, September 1998.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Programming System: An
Overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, volume
3362 of Lecture Notes in Computer Science, pages 49–69. Springer Berlin / Heidelberg, 2005.

[BM06] F. Bannwart and P. Müller. Changing programs correctly: Refactoring with specifications. In
J. Misra, T. Nipkow, and E. Sekerinski, editors, Formal Methods (FM), volume 4085 of Lecture

Notes in Computer Science, pages 492–507. Springer-Verlag, 2006.

[BMvW00] Ralph-Johan Back, Leonid Mikhajlov, and Joakim von Wright. Formal Semantics of Inheritance
and Object Substitutability. Technical Report TUCS-TR-337, 27, 2000.

[Bor07] Borland Software Corporation. Borland: JBuilder, 2007. At
http://www.borland.com/br/products/jbuilder/. Last accessed in 06/03/2007.

[BRL03] Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. Java Applet Correctness: A Developer-
Oriented Approach. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME, volume
2805 of Lecture Notes in Computer Science, pages 422–439. Springer, 2003.

[Bro86] Stephen D. Brookes. A fully abstract semantics and a proof system for an ALGOL-like language
with sharing. In Proceedings of the international conference on Mathematical foundations of

programming semantics, pages 59–100, New York, NY, USA, 1986. Springer-Verlag New York,
Inc.

[BS00] P. H. M. Borba and A. C. A. Sampaio. Basic Laws of ROOL: an object-oriented language. In 3rd

Workshop on Formal Methods, pages 33–44, Brazil, 2000.

[BSC03] P. H. M. Borba, A. C. A. Sampaio, and M. L. Cornélio. A Refinement Algebra for Object-Oriented
Programming. In Luca Cardelli, editor, ECOOP, volume 2743 of Lecture Notes in Computer

Science, pages 457–482. Springer, 2003.

[BSCC04] P. H. M. Borba, A. C. A. Sampaio, A. L. C. Cavalcanti, and M. L. Cornélio. Algebraic Reasoning
for Object-Oriented Programming. Science of Computer Programming, 52:53–100, 2004.

[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998. Graduate Texts in Computer Science.

[CHW06] A. L. C. Cavalcanti, W. Harwood, and J. C. P. Woodcock. Pointers and Records in the Unifying
Theories of Programming. In S. Dunne and B. Stoddart, editors, Unifying Theories of Program-

ming, volume 4010 of Lecture Notes in Computer Science, pages 200 – 216. Springer-Verlag, 2006.

[CN00] A. L. C. Cavalcanti and D. A. Naumann. A Weakest Precondition Semantics for Refinement of
Object-oriented Programs. IEEE Transactions on Software Engineering, 26(8):713–728, 2000.

[Coo89] William R. Cook. A Proposal for Making Eiffel Type-Safe. The Computer Journal, 32(4):305–311,
1989.

References 137

[Cor04] M. L. Cornélio. Refactorings as Formal Refinements. PhD thesis, Centre de Informatic - Federal
University of Pernambuco, 2004.

[CSW05] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Unifying Classes and Processes.
Software and System Modelling, 4(3):277–296, 2005.

[Dan02] Daniel Jackson. Alloy: a lightweight object modelling notation. Software Engineering and Method-

ology, 11(2):256–290, 2002.

[DE98] S. Drossopoulou and S. Eisenbach. Towards an Operational Semantics and Proof of Type Sound-

ness for Java. Springer-Verlag, March 1998.

[DS95] Jim Davies and Steve Schneider. A brief history of Timed CSP. In MFPS ’92: Selected papers of

the meeting on Mathematical foundations of programming semantics, pages 243–271, Amsterdam,
The Netherlands, The Netherlands, 1995. Elsevier Science Publishers B. V.

[DW06] Donovan Wells. Extreme Programming: A Gentle Introduction., 2006. At
http://www.extremeprogramming.org/. Last accessed in 15/01/2007.

[EFLR99] A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a Formal Modeling Notation. In
J. Bézivin and P. Muller, editors, The Unified Modling Language, UML’98 – Beyond the Notation,
volume 1618 of Lecture Notes in Computer Science, pages 336–348. Springer-Verlag, 1999.

[EPG+06] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely in-
variants. Science of Computer Programming, 2006.

[Eva98] A. Evans. Reasoning with UML Diagrams. In Workshop on Industrial Strength Formal Methods,

WIFT’98. IEEE Press, 1998.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: Im-

proving the Design of Existing Code. Addison-Wesley, Reading, MA, USA, 1999.

[FEL97] Robert France, Andy Evans, and Kevin Lano. The UML as a Formal Modeling Notation. In
Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Proceedings OOPSLA’97 Workshop

on Object-oriented Behavioral Semantics, pages 75–81. Technische Universität München, TUM-
I9737, 1997.

[FL01] Cormac Flanagan and K. Rustan M. Leino. Houdini, an Annotation Assistant for ESC/Java. In
José Nuno Oliveira and Pamela Zave, editors, FME, volume 2021 of Lecture Notes in Computer

Science, pages 500–517. Springer, 2001.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for java. In PLDI ’02: Proceedings of the ACM SIGPLAN

2002 Conference on Programming language design and implementation, pages 234–245, New York,
NY, USA, 2002. ACM Press.

138 References

[FOW01] C. Fischer, E. R. Olderog, and H. Wehrheim. A CSP view on UML-RT structure diagrams. In
Heinrich Hussmann, editor, Fundamental Approaches to Software Engineering, 4th International

Conference, FASE 2001, held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2001, Genova, Italy, April 2-6, 2001, Proceedings, volume 2029 of LNCS,
pages 91–108. Springer, 2001.

[GH93] John V. Guttag and James J. Horning. Larch: languages and tools for formal specification.
Springer-Verlag New York, Inc., New York, NY, USA, 1993.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns - Elements

of Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesley, January
1995.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification. Addison-
Wesley, 2nd edition, June 2000.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem proving environment

for higher order logic. Cambridge University Press, New York, NY, USA, 1993.

[HCW07] W. Harwood, A. L. C. Cavalcanti, and J. C. P. Woodcock. A Model of Pointers for the Unifying
Theories of Programming. Technical report, Citrix Systems (R & D) Ltd and University of York,
2007.

[Heh04] E.C.R. Hehner. A Practical Theory of Programming, the second edition. Springer-Verlag, New
York, 2004.

[HH98] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice-Hall, 1998.

[HHJ+87] C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders, I. H.
Sorensen, J. M. Spivey, and B. A. Sufrin. Laws of programming. Commun. ACM, 30(8):672–686,
1987.

[HHJ+92] C. A. R. Hoare, I. J. Hayes, H. Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders, I. H. Sorenson,
J. M. Spivey, and B. A. Sufrin. Laws of Programming. In M. Broy, editor, Programming and

Mathematical Method, pages 95–122. Springer, Berlin, Heidelberg, 1992.

[HLL05] Jifeng He, Xiaoshan Li, and Zhiming Liu. A Refinement Calculus for Object Systems. Technical
report 322, UNU-IIST, P.O.Box 3058, Macau, 2005.

[HLL06] Jifeng He, Xiaoshan Li, and Zhiming Liu. rCOS: A refinement calculus of object systems. Theor.

Comput. Sci., 365(1-2):109–142, 2006.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580,
1969.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

[Hui01] M. Huisman. Reasoning about Java Programs in Higher Order Logic with PVS and Isabelle. PhD
thesis, University of Nijmegen, 2001.

References 139

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.

[Jon90] Cliff B. Jones. Systematic Software Development using VDM. Prentice-Hall, Upper Saddle River,
NJ 07458, USA, 1990.

[Kas05] Ioannis T. Kassios. Decoupling in Object Orientation. In John Fitzgerald, Ian J. Hayes, and
Andrzej Tarlecki, editors, FM, volume 3582 of Lecture Notes in Computer Science, pages 43–58.
Springer, 2005.

[KW98] A. Kleppe and J. Warmer. The Object Constraint Language : Precise Modeling with UML. Object
Technology Series. Addison-Wesley, 1st edition, October 1998.

[LB98] Kevin Lano and Juan Bicarregui. Semantics and Transformations for UML Models. In Jean
Bézivin and Pierre-Alain Muller, editors, UML, volume 1618 of Lecture Notes in Computer Sci-

ence, pages 107–119. Springer, 1998.

[LBE00] Kevin Lano, Juan Bicarregui, and Andy Evans. Structured Axiomatic Semantics for UML Models.
In Rigorous Object-Oriented Methods, Workshops in Computing. BCS, 2000.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design. In Haim
Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral Specifications of Businesses and

Systems, pages 175–188. Kluwer Academic Publishers, 1999.

[Lei98] K. Rustan M. Leino. Recursive Object Types in a Logic of Object-Oriented Programs. Nordic

Journal of Computing, 5(4):330–360, Winter 1998.

[LLM06a] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification challenges for
sequential object-oriented programs. Formal Aspects of Computing, 2006. to appear.

[LLM06b] Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verification chal-
lenges for sequential object-oriented programs. Technical Report 06-14a, Department of Computer
Science, Iowa State University, Ames, Iowa, Aug 2006.

[Ltd89] International Computers Ltd. Proofpower, 1989. At http://www.lemma-
one.com/ProofPower/index/index.html. Last accessed in 19/06/2007.

[LW94] B. H. Liskov and J. M. Wing. A Behavioural Notion of Subtyping. ACM Trans. on Programming

Languages and Systems, 16(6):1811–1841, 1994.

[MD98] B. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: An introduction to TCOZ. In
Proceedings of the 20th International Conference on Software Engineering (ICSE’98), pages 95–
104, Kyoto, Japan, April 1998. IEEE Computer Society Press.

[MD00] Brendan P. Mahony and Jin Song Dong. Timed Communicating Object Z. IEEE Transactions

on Software Engineering, 26(2):150–177, 2000.

[Mey92] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice-Hall International, second edition
edition, 1997.

140 References

[Mic07a] Microsoft Corporation. The C# Language, 2007. At http://msdn2.microsoft.com/en-
us/vcsharp/aa336809.aspx. Last accessed in 16/01/2007.

[Mic07b] Microsoft Corporation. Visual Studio - Developer Center, 2007. At
http://msdn2.microsoft.com/en-us/vstudio/default.aspx. Last accessed in 06/03/2007.

[Mor94] C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.

[MPH97] P. Müller and A. Poetzsch-Heffter. Formal specification techniques for object-oriented programs.
In M. Jarke, K. Pasedach, and K. Pohl, editors, Informatik 97: Informatik als Innovationsmotor,
Informatik Aktuell, pages 602–611. Springer-Verlag, 1997.

[MS76] R. Milne and C. Strachey. A theory of programming language semantics. Chapman and Hall,
1976.

[MS97] Anna Mikhajlova and Emil Sekerinski. Class Refinement and Interface Refinement in Object-
Oriented Programs. In John Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, FME’97: Indus-

trial Applications and Strengthened Foundations of Formal Methods (Proc. 4th Intl. Symposium of

Formal Methods Europe, Graz, Austria, September 1997), volume 1313, pages 82–101. Springer-
Verlag, 1997.

[Nau95] David A. Naumann. Predicate transformers and higher-order programs. Theor. Comput. Sci.,
150(1):111–159, 1995.

[NE02] Jeremy W. Nimmer and Michael D. Ernst. Automatic generation of program specifications. In
ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing

and analysis, pages 229–239, New York, NY, USA, 2002. ACM Press.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant

for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[NvO98] Tobias Nipkow and David von Oheimb. Javaℓight is type-safe — definitely. In Proc. 25th ACM

Symp. Principles of Programming Languages. ACM Press, New York, 1998.

[OCW06] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Unifying Theories in ProofPower-
Z. In S. Dunne and B. Stoddart, editors, UTP2006: the first international symposium of unifying

theories of programming, volume 4010 of Lecture Notes in Computer Science, pages 123–140.
Springer-Verlag, 2006. Springer-Verlag.

[Oli05] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD thesis,
Department of Computer Science - University of York, UK, 2005. YCST-2006-02.

[OMG97] OMG. Unified Modeling Language, 1997. Object Management Group. Available at:
http://www.omg.org/uml.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois
at Urbana-Champaign, 1992.

References 141

[ORS92] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system. In Deepak
Kapur, editor, 11th International Conference on Automated Deduction (CADE), volume 607 of
Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994. LNCS 828.

[PdB03] Cees Pierik and Frank S. de Boer. A Syntax-Directed Hoare Logic for Object-Oriented Program-
ming Concepts. In Elie Najm, Uwe Nestmann, and Perdita Stevens, editors, FMOODS, volume
2884 of Lecture Notes in Computer Science, pages 64–78. Springer, 2003.

[PHM98] Arnd Poetzsch-Heffter and Peter Müller. Logical foundations for typed object-oriented languages.
In David Gries and Willem P. de Roever, editors, PROCOMET, volume 125 of IFIP Conference

Proceedings, pages 404–423. Chapman & Hall, 1998.

[PHM99] Arnd Poetzsch-Heffter and Peter Müller. A programming logic for sequential java. In S. Doaitse
Swierstra, editor, ESOP, volume 1576 of Lecture Notes in Computer Science, pages 162–176.
Springer, 1999.

[Plo81] Gordon Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Aarhus University, September, 1981.

[PMP01] Zsigmond Pap, István Majzik, and András Pataricza. Checking general safety criteria on uml
statecharts. In Udo Voges, editor, SAFECOMP, volume 2187 of Lecture Notes in Computer

Science, pages 46–55. Springer, 2001.

[PO04] Richard F. Paige and Jonathan S. Ostroff. ERC – An object-oriented refinement calculus for
Eiffel. Form. Asp. Comput., 16(1):51–79, 2004.

[QDC03] S. C. Qin, J. S. Dong, and W. N. Chin. A Semantic Foundation of TCOZ in Unifying Theory
of Programming. In FM’03, Lecture Notes in Computer Science, pages 321–340, Pisa, Italy,
September 2003. Springer-Verlag.

[Qia99] Zhenyu Qian. A Formal Specification of Java Virtual Machine Instructions for Objects, Methods
and Subrountines. In Formal Syntax and Semantics of Java, pages 271–312, 1999.

[Ral00] Ralph-Johan Back and Anna Mikhajlova and Joakim von Wright. Class Refinement as Semantics
of Correct Object Substitutability. Formal Asp. Comput., 12(1):18–40, 2000.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, pages
55–74. IEEE Computer Society, 2002.

[RG98] Mark Richters and Martin Gogolla. On formalizing the UML Object Constraint Language OCL.
In Tok Wang Ling, Sudha Ram, and Mong-Li Lee, editors, ER, volume 1507 of Lecture Notes in

Computer Science, pages 449–464. Springer, 1998.

[RG02] M. Richters and M. Gogolla. OCL: Syntax, semantics, and tools. In Tony Clark and Jos Warmer,
editors, Object Modeling with the OCL: The Rationale behind the Object Constraint Language,
pages 42–68. Springer, 2002.

142 References

[Rob99] Donald B. Roberts. Practical Analysis for Refactoring. PhD thesis, University of Illinois at
Urbana-Champaign, 1999.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in Computer
Science. Prentice-Hall, 1998.

[Sch86] D. A. Schmdit. Denotational Semantics. A Methodology for Language Development. Allyn and
Bacon,Inc, 1986.

[SCS06] Thiago Santos, Ana Cavalcanti, and Augusto Sampaio. Object-Orientation in the UTP. In
S. Dunne and B. Stoddart, editors, UTP 2006: First International Symposium on Unifying The-

ories of Programming, volume 4010 of LNCS, pages 20–38. Springer-Verlag, 2006.

[SH02] Adnan Sherif and Jifeng He. Towards a Time Model for Circus . In Chris George and Huaikou Miao,
editors, ICFEM, volume 2495 of Lecture Notes in Computer Science, pages 613–624. Springer,
2002.

[Smi00] Graeme Smith. The Object-Z Specification Language. Advances in Formal Methods Series. Kluwer
Academic Publishers, 2000.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition, 1992.

[Str85] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1985.

[Sym99] Don Syme. Proving Java Type Soundness. In Formal Syntax and Semantics of Java, pages 83–118,
1999.

[TB01] Lance Tokuda and Don S. Batory. Evolving object-oriented designs with refactorings. Autom.

Softw. Eng., 8(1):89–120, 2001.

[The07] The Eclipse Foundation. Eclipse.org home, 2007. At http://www.eclipse.org/. Last accessed in
06/03/2007.

[Utt92] Mark Utting. An Object-Oriented Refinement Calculus with Modular Reasoning. PhD thesis,
Kensington, Australia, 1992.

[vdBJ01] Joachim van den Berg and Bart Jacobs. The LOOP Compiler for Java and JML. In Tiziana
Margaria and Wang Yi, editors, TACAS, volume 2031 of Lecture Notes in Computer Science,
pages 299–312. Springer, 2001.

[vO00] David von Oheimb. Axiomatic semantics for Javaℓight in Isabelle/HOL. In S. Drossopoulou,
S. Eisenbach, B. Jacobs, G. T. Leavens, P. Müller, and A. Poetzsch-Heffter, editors, Formal Tech-

niques for Java Programs. Technical Report 269, 5/2000, Fernuniversität Hagen, Fernuniversität
Hagen, 2000.

[vON99] David von Oheimb and Tobias Nipkow. Machine-Checking the Java Specification: Proving Type-
Safety. In Formal Syntax and Semantics of Java, pages 119–156, 1999.

[WC02] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus . In D. Bert, J. P. Bowen,
M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specification and Development in Z

and B, volume 2272 of Lecture Notes in Computer Science, pages 184–203. Springer-Verlag, 2002.

References 143

[WC04] J. C. P. Woodcock and A. L. C. Cavalcanti. A Tutorial Introduction to Designs in Unifying
Theories of Programming. In E. A. Boiten, J. Derrick, and G. Smith, editors, IFM 2004: Integrated

Formal Methods, volume 2999 of Lecture Notes in Computer Science, pages 40–66. Springer-Verlag,
2004. Invited tutorial.

[WD96] J. C. P. Woodcock and J. Davies. Using Z-Specification, Refinement, and Proof. Prentice-Hall,
1996.

	Introduction
	Overview
	Related Work
	Unifying Theories of Programming

	Objectives
	A Brief Example

	Outline

	Object-Orientation Formalisation
	Approaches to Semantics
	Laws and Refactorings
	Mechanization
	Conclusions

	Introduction to the Unifying Theories of Programming
	Introduction
	Laws
	Refinement
	Terminating Programs
	Healthiness Conditions
	Higher Order Programming
	Theories Integration
	Closedness
	Conclusions

	Object-Orientation in the UTP
	Introduction
	Assumptions

	Observational Variables
	Healthiness Conditions
	Declarations
	Classes
	Attributes
	Methods

	Variables
	Expressions
	Well-definedness
	Object Creation
	Type Test
	Type Cast
	Attribute Access

	Commands
	Well-definedness
	Assignments
	Conditional
	Recursion
	Method Call

	Conclusions
	Verification

	Pointers in the UTP
	Overview
	Pointers Theory
	Observational Variables
	Healthiness Conditions
	Variables
	Commands
	Records

	Integration
	Observational Variables and HCs
	Restricting HP3
	Variables
	What is a Value?
	Expressions
	Commands

	Conclusions

	Laws for Object-Orientation
	Introduction
	Laws
	Conclusions

	Conclusions
	Resume and Results
	Next Steps
	Schedule
	Future Works
	Features Set Extension
	Refactorings
	Mechanization

	Theory of Object-Orientation
	Observational Variables
	Healthiness Conditions
	Declarations
	Abstractions
	Variables
	Expressions
	Commands

	Healthiness Condition Laws
	Closedness of OO HCs
	Commutativity of OO HCs
	Other HCs Laws

	Theory of Pointers
	Observational Variables
	Healthiness Conditions
	Variables
	Commands

	Integrated Theory
	Observational Variables
	Healthiness Conditions
	Declarations
	Abstractions
	Variables
	Expressions
	Commands

