
Cardinality Restrictions within Description Logic

Connection Calculi

Fred Freitas1 and Ivan Varzinczak2

1 1Informatics Center, Federal University of Pernambuco (CIn - UFPE), Brazil
2 CRIL, University of Artois & CNRS, France

fred@cin.ufpe.br, varzinczak@cril.fr

Abstract. Recently, we have proposed the 𝜃-connection method for the descrip-

tion logic (DL) ALC, the ALC 𝜃-CM. It replaces the usage of Skolem terms and

unification by additional annotation and introduces blocking through a new rule

in the connection calculus, to ensure termination in the case of cyclic ontologies.

In this work, we enhance this calculus and its representation to take on ALCHQ=,

an extended fragment that includes role Hierarchies, Qualified number re-

strictions and (in)equalities. The main novelty of the calculus lies in the introduc-

tion of equality, as well as in the redefinition of connection to accommodate num-

ber restrictions, either explicitly or expressed through equality. The new calculus

uses the Eq system, thus introducing substitutivity axioms for each concept or

role name. The application of Bibel’s equality connections appears here as a first

solution to deal with equality.

Keywords: description logic, connection method, inference system, cardinality

restrictions, role hierarchies, reasoning.

1 Introduction

Particularly after the appearance of the Semantic Web, Description Logic (DL) [1] has

attracted growing attention in the Informatics’ mainstream, with applications in many

areas. The possibility of supplying Web users with query answers obtained by complex,

albeit decidable reasoning may constitute the main reason for such interest.

 At least in the last two decades, the field of DL reasoning has been taken over by

tableaux calculi and reasoners. The DL family of languages has spread to include very

expressive fragments such as SROIQ [15]; cutting-edge reasoning performance was ac-

cordingly achieved, with the development of DL-specific optimization techniques.

 On the one hand, a clear advantage for tableaux calculi against the growing array of

DL constructs - which demand particular treatment during reasoning - may lie in its

easy adaptability. Dealing with a new construct may only require conceiving a new

tableaux rule, maybe along with some optimization companion.

 On the other hand, promising methods may have been neglected in such a scenario,

in which the tough competition is often focused on gains through optimizations. There-

fore, perhaps there is still room available for “basic research” on DL reasoning, in the

sense that other efficient calculi need to be adapted to DL, tuned and tested.

mailto:fred@cin.ufpe.br

2

 Recently, we have embarked in such an endeavor. Departing from the successful

first-order logic (FOL) Connection Method (CM) - whose matrix representation pro-

vides a parsimonious usage of memory compared to other methods -, we designed, a

first connection calculus for DL, the ALC 𝜃-CM [6]. It incorporates several features of

most DL calculi: blocking (implemented by a new rule in connection calculi), lack of

variables, unification and Skolem functions.

 Moreover, RACCOON [7], the reasoner which embodied this calculus, displayed

surprisingly promising performance for an engine which has no DL optimizations. In

most of our benchmarking for AL, ALE and ALC, it was only clearly surpassed by Kon-

clude [15] (even against FacT++ [16] and Hermit [8] – see Section 5), even takint into

account that these reasoners were designed to face more complex DL fragments than

ALC, a disadvantage for them. Nonetheless, this fact corroborates connection calculi as

fair, competitive choices for DL ontology querying and reasoning.

 In an attempt to extend the expressivity of the ontologies it can cope with, in this

work we enhance this calculus and its representation to take on ALCHQ=, an extended

fragment that includes role Hierarchies, Qualified number restrictions and (in)equali-

ties. The main novelty lies in the introduction of (in)equalities, as well as the redefini-

tion of connection to accommodate number restrictions, either explicitly or expressed

through equalities. The application of Bibel’s eq-connections (equality connections) [4]

appears here as a first solution to deal with (in)equalities, although cardinality re-

strictions do not need equality connections, once, in this case, an equality connects only

to an inequality, given a proper 𝜃-substitution for the pair is available. Surely, there are

other more efficient solutions to dealing with equality, such as paramodulation [13] and

RUE (Resolution and Unifications with Equality) [5], not to speak on the many ad-

vanced techniques already applied in the DL setting. The aim of the new ALCHQ,= 𝜃-

connection calculus is providing a first solution and roadmap on how to deal with equal-

ity and number restrictions, based on its semantics.

 The text is organized as follows. Section 2 provides an explanation of the FOL CM.

Section 3 introduces ALCHQ=; its normalization is shown in Section 4. Section 5 ex-

plains our formal connection calculus for ALCHQ=. Section 6 discusses related work on

equality handling in FOL and DL. Section 7 concludes the article. The calculus’ termi-

nation, soundness and completeness are proven in the appendix.

2 The Connection Method

The connection method has a long tradition in automated deduction. Conceived by W.

Bibel in the early 80’s, it is a validity procedure (opposed to refutation procedures like

tableaux and resolution), i.e., it tries to prove whether a formula, theorem or query is

valid. It consists of a matrix-based deduction procedure designed to be economical in

the use of memory, as it is not generative as tableaux and resolution, in the sense that

it does not create intermediary clauses or sentences during proof search. We explain

how it works below, preceded by necessary definitions.

A (first-order) literal, denoted by 𝐿, is either an atomic formula or its negation. The

complement ¬𝐿 of a literal 𝐿 is 𝑃 if 𝐿 is of the form ¬𝑃, and ¬𝐿 otherwise. A formula

in disjunctive normal form (DNF) is a disjunction of conjunctions (like 𝐶1 ∨ … ∨ 𝐶𝑛),

3

where each clause 𝐶𝑖 has the form 𝐿1 ∧ … ∧ 𝐿𝑚 and each 𝐿𝑖 is a literal. The matrix of a

formula in DNF is its representation as a set {𝐶1, … , 𝐶𝑛}, where each 𝐶𝑖 has the form

{𝐿1, … , 𝐿𝑚} with literals 𝐿𝑖. In the graphical matrix representation, clauses are repre-

sented as columns.

2.1 Method Representation

Suppose we wish to entail whether 𝐾𝐵 ⊨ 𝛼 is valid using a direct method, like the

Connection Method (CM). By the Deduction Theorem [3], we must then prove directly
𝐾𝐵 → 𝛼, or, in other words, if ¬𝐾𝐵 ∨ {𝛼} is valid. This opposes to classical refutation

methods, like tableaux and resolution, which builds a proof by testing whether 𝐾𝐵 ∪
{𝛼} ⊨ ⊥. Hence, in the CM, the whole knowledge base 𝐾𝐵 should be negated, including

instantiated predicates, like 𝐴(𝑎), where 𝑎 is a constant or individual. Given 𝐾𝐵 =
{𝛼1, 𝛼2, … , 𝛼𝑛}, 𝛼𝑖 being FOL formulae, in this work we define query as a matrix
¬𝐾𝐵 ∨ {𝛼} (i.e., ¬𝛼1 ∨ ¬𝛼2 ∨ … ∨ ¬𝛼𝑛 ∨ 𝛼) to be proven valid, where 𝛼 is the query

consequent. A query represented in this way is said to be in positive DNF.

 Besides, the effects for a negated 𝐾𝐵 in a DNF representation are: (i) axioms of the

form 𝐸 → 𝐷 (in DL, 𝐸 ⊑ 𝐷) translate into 𝐸 ∧ ¬𝐷; (ii) in a matrix, variables are exis-

tentially quantified; (iii) FOL Skolemization works over universally quantified varia-

bles, instead of existentially ones; and (iv) the consequent 𝛼 is not negated.

Example 1 (Query, positive DNF, clause, matrix). The query

{∀𝑤 𝐴𝑛𝑖𝑚𝑎𝑙 (𝑤) ∧ ∃𝑧 (ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑤, 𝑧) ∧ 𝐵𝑜𝑛𝑒(𝑧)) → 𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒(𝑤), ∀𝑥 𝐵𝑖𝑟𝑑(𝑥) →

𝐴𝑛𝑖𝑚𝑎𝑙(𝑥) ∧ ∃𝑦 (ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑥, 𝑦) ∧ 𝐵𝑜𝑛𝑒(𝑦)) ∧ ∃𝑣 (ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑥, 𝑣) ∧ 𝐹𝑒𝑎𝑡ℎ𝑒𝑟(𝑣)) }

⊨ ∀𝑡 𝐵𝑖𝑟𝑑(𝑡) → 𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒(𝑡)

is represented by the following positive DNF matrix and graphical matrix, where vari-

ables 𝑦, 𝑣 and 𝑡 were skolemized by functions 𝑓(𝑥), 𝑔(𝑥) and constant 𝑐:

{{𝐴𝑛𝑖𝑚𝑎𝑙(𝑤), ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑤, 𝑧), 𝐵𝑜𝑛𝑒(𝑧), ¬𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒(𝑤)}, {𝐵𝑖𝑟𝑑(𝑥) , ¬𝐴𝑛𝑖𝑚𝑎𝑙(𝑥)}, {𝐵𝑖𝑟𝑑(𝑥),

¬ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑥, 𝑓(𝑥))}, {𝐵𝑖𝑟𝑑(𝑥) , ¬𝐵𝑜𝑛𝑒(𝑓(𝑥))}, {𝐵𝑖𝑟𝑑(𝑥), ¬ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑥, 𝑔(𝑥))}, {𝐵𝑖𝑟𝑑(𝑥) ,

¬𝐹𝑒𝑎𝑡ℎ𝑒𝑟(𝑔(𝑥))}, {¬𝐵𝑖𝑟𝑑(𝑐)}, {𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒(𝑐)}} .

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧)

¬𝑉(𝑤)]

Fig. 1. A FOL query in disjunctive clausal form represented as a matrix and graphical matrix

(with literals abridged, e.g. 𝐴(𝑤) stands for 𝐴𝑛𝑖𝑚𝑎𝑙(𝑤), etc)

2.2 Method Intuition and Functioning

We have represented a FOL query in DNF with clauses as columns, i.e., we are dealing

with the matrix vertically. If we change our perspective, transversing the matrix hori-

zontally in all possible ways (or paths), with each column supplying only one literal in

a path, and group these paths conjunctively, we are indeed converting the query to the

4

conjunctive normal formal (in the most inefficient way). For instance, in the matrix

above, two of the paths are (randomly) listed below:

{𝐴(𝑤), 𝐵(𝑥), 𝐵(𝑥), ¬𝐵𝑜(𝑓(𝑥)),¬ℎ(𝑥, 𝑔(𝑥)), 𝐵(𝑥), ¬𝐵(𝑐), 𝑉(𝑐)}

{ℎ(𝑤, 𝑧), ¬𝐴(𝑥), 𝐵(𝑥), ¬𝐵𝑜(𝑓(𝑥)),¬ℎ(𝑥, 𝑔(𝑥)), ¬𝐹(𝑔(𝑥)), ¬𝐵(𝑐), 𝑉(𝑐)}.

The conjunctive formula would look like (with all variables quantified):

…∧ (𝐴(𝑤) ∨ 𝐵(𝑥) ∨ 𝐵(𝑥) ∨ ¬𝐵𝑜(𝑓(𝑥)) ∨ ¬ℎ(𝑥, 𝑔(𝑥)) ∨ 𝐵(𝑥) ∨ ¬𝐵(𝑐) ∨ 𝑉(𝑐)) ∧ …∧

(ℎ(𝑤, 𝑧) ∨ ¬𝐴(𝑥) ∨ 𝐵(𝑥) ∨ ¬𝐵𝑜(𝑓(𝑥)) ∨ ¬ℎ(𝑥, 𝑔(𝑥)) ∨ ¬𝐹(𝑔(𝑥)) ∨ ¬𝐵(𝑐) ∨ 𝑉(𝑐)) ∧ …

 It is now easy to see that such a formula (or matrix) is valid iff every path has a

connection, i.e., a 𝜎-complimentary pair of literals, where 𝜎 is the (most general) unifier

between them. For instance, the first path above is true, once it contains the valid sub-

formula 𝐵(𝑥) ∨ ¬𝐵(𝑐), with 𝜎 = {𝑥/𝑐}; the second is true because it has the sub-formula

ℎ(𝑤, 𝑧) ∨ ¬ℎ(𝑥, 𝑔(𝑥)), with 𝜎 = {𝑥/𝑐, 𝑤/𝑐, 𝑧/𝑔(𝑐)}, and so on.

The method then must check all paths for connections in a systematic way. Note that

a connection prunes many paths in a single pass, due to the matricial arrangement of

clauses, a relevant source of reasoning efficiency.

Example 2 (Connection Method). Figure 2 shows the step-by-step query solution. The

reader may note, e.g., that the first connection (step 1.) solves 16 paths.

Each connection can create up to two sets of literals still to be solved, one in each

clause (column) involved in the connection. The first of these literals in each clause is

marked in each step of the Figure with an arrow.

1.

[

𝐴(𝑤) 𝐵(𝑥) ⇐ 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ⇐ ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧)

¬𝑉(𝑤)]

 𝜎 = {𝑤/𝑥}

2.

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ⇐ ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧)

¬𝑉(𝑤)]

 𝜎 = {𝑤/𝑐, 𝑥/𝑐}

3.

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) ⇐ 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧) ⇐

¬𝑉(𝑤)]

 𝜎 = {𝑤/𝑐, 𝑥/𝑐}

4.

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧) ⇐

¬𝑉(𝑤)]

 𝜎 = {𝑤/𝑐, 𝑥/𝑐, 𝑧/𝑓(𝑐)}

5 − 7.

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧)

¬𝑉(𝑤)]

 𝑠𝑎𝑚𝑒 𝜎

Fig. 2. The query solution, with literals abridged. Arrows stand for pending sets of literals

Otten [11] proposed a “sequent-style” calculus formalization, alternatively to the

graphical matricial one. Our calculus is based on his; it is explained in Section 5.

5

3 The Description Logic ALCHQ=

An ontology in ALCHQ= is a set of axioms over a signature Σ = (𝑁𝐶 , 𝑁𝑅, 𝑁𝑂), where 𝑁𝐶 is

the set of concept names (unary predicate symbols), 𝑁𝑅 is the set of role or property

names (binary predicate symbols), and 𝑁𝑂 is the set of individual names (constants) [1].

The sets are mutually disjoint. The set of ALCHQ= concept expressions (C) is recur-

sively defined as follows (with 𝑛 ∈ ℕ∗, and 𝐶 is a concept expression, i.e., 𝐶 ∈ C):

𝐶 ∷= 𝑁𝐶| 𝐶 ⊓ 𝐶|𝐶 ⊔ 𝐶|¬𝐶|∃𝑟. 𝐶|∀𝑟. 𝐶| ≥ 𝑛 𝑟| ≥ 𝑛 𝑟. 𝐶|≤ 𝑛 𝑟| ≤ 𝑛 𝑟. 𝐶

 ALCHQ= allows for a set of basic axioms (TBox, RBox), and a set of axioms of a

particular situation (ABox). In the definitions below a,b ∈ 𝑁𝑂, 𝑟, 𝑠 ∈ 𝑁𝑅 , 𝐷, 𝐸 ∈ C
and 𝑖, 𝑛 ≥ 1. A TBox axiom is a subsumption like D ⊑ E; an RBox one is like 𝑟 ⊆ 𝑠;

and an ABox A w.r.t. a TBox T, an RBox R is a finite set of assertions (or instances)

of three types: (i) concept assertions like C(a); (ii) role assertions r(a,b); (iii) (in)equal-

ity assertions 𝑎 = 𝑏 (or 𝑎 ≠ 𝑏). An ontology O is an ordered tuple (T,R,A).

 An interpretation I has a domain Δ𝐼 and an interpretation function .𝐼 that maps to

every A ∈ 𝑁𝐶 a set A𝐼 ⊆ Δ𝐼; to every r ∈ 𝑁𝑅 a relation 𝑟𝐼 ⊆ Δ𝐼 × Δ𝐼; and to every a ∈ 𝑁𝑂 an

element 𝑎𝐼 ∈ Δ𝐼. The function .𝐼 extends to concepts as shown in Table 1.

Table 1. Syntax and semantics of ALCHQ= constructors.

Construct Syntax Semantics

atomic negation ¬𝐶 𝛥𝐼 / 𝐶𝐼

conjunction 𝐶 ⊓ 𝐷 𝐶𝐼 ∩ 𝐷𝐼

disjunction 𝐶 ⊔ 𝐷 𝐶𝐼 ∪ 𝐷𝐼

exist. restriction ∃𝑟. 𝐶 {𝑥 ∈ 𝛥𝐼 | 〈𝑥, 𝑦〉 ∈ 𝑟𝐼 ∧ 𝑦 ∈ 𝐶𝐼}

value restriction ∀𝑟. 𝐶 {𝑥 ∈ 𝛥𝐼 | 〈𝑥, 𝑦〉 ∈ 𝑟𝐼 → 𝑦 ∈ 𝐶𝐼}

(in)equality 𝑎 = 𝑏\≠ 𝑎𝐼 = 𝑏𝐼 \ 𝑎𝐼 ≠ 𝑏𝐼

qualified

number

restriction1

(for simple number

restrictions, drop ∧

𝑦𝑖 ∈ 𝐶𝐼 from the se-

mantics)

≤ 𝑛 𝑟. 𝐶

{𝑥 ∈ 𝛥𝐼 |⋀〈𝑥, 𝑦𝑖〉 ∈ 𝑟𝐼 ∧ 𝑦𝑖 ∈ 𝐶𝐼 ⋀ 𝑦𝑖 ≠

𝑛

𝑖,𝑗=1,𝑖≠𝑗

𝑛+1

𝑖=1

𝑦𝑗

⋀𝑦𝑖 ≠ 𝑦𝑛+1 → 𝑦𝑛 = 𝑦𝑛+1

𝑛−1

𝑖=1

}

≥ 𝑛 𝑟. 𝐶

{𝑥 ∈ 𝛥𝐼 |⋀〈𝑥, 𝑦𝑖〉 ∈ 𝑟𝐼 ∧ 𝑦𝑖 ∈ 𝐶𝐼 ⋀ 𝑦𝑖 ≠

𝑛+1

𝑖,𝑗=1,𝑖≠𝑗

𝑛+1

𝑖=1

𝑦𝑗}

 An interpretation I satisfies an axiom 𝛼 (𝐼 ⊨ 𝛼) iff all I axioms and 𝛼 are satisfied,

i.e., I satisfies C ⊑ D iff 𝐶𝐼⊆ 𝐷𝐼 , C(a) iff 𝑎𝐼 ∈ 𝐶𝐼, r(a,b) iff 〈𝑎, 𝑏〉 ∈ 𝑟𝐼 , 𝑟 ⊆ 𝑠 iff 𝑟𝐼 ⊆ 𝑠𝐼. 𝑂

entails 𝛼 (𝑂 ⊨ 𝛼) iff every model of 𝑂 is also a model of α. In this paper, variables are

denoted by x,y,z, possibly with subscripts. Terms are variables or individuals.

1 Note that we have relied on an unusual semantics for number restrictions, instead of

{𝑥 ∈ 𝛥𝐼 | #〈𝑥, 𝑦𝑖〉 ∈ 𝑟𝐼 ∧ 𝑦𝑖 ∈ 𝐶𝐼 ≤ | ≥ 𝑛}. The semantics presented here indeed constitutes the ba-

sis for the number restrictions rule in tableaux calculi.

6

4 Normal Form and Matrix Representation for ALCHQ=

Matrices with (qualified) number restrictions can be represented in two ways: the

abridged form, i.e., with the number restrictions explicit, and the expanded form, with

number restrictions substituted by axioms containing concepts, roles and (in)equalities

that correspond to the semantic definitions. Besides, to take on (in)equalities, substitu-

tivity axioms (e.g., ∀𝑥∀𝑦 (𝑥 = 𝑦) → (𝐸(𝑥) → 𝐸(𝑦)) for concept names, and

∀𝑥∀𝑦∀𝑧∀𝑘 (𝑥 = 𝑧) ∧ (𝑦 = 𝑘) → (𝑟(𝑥, 𝑦) → 𝑟(𝑧, 𝑘)) for role names) are represented as

clauses for every concept and role name in the query.
Next, the matrix is converted to a specific DNF, introduced here. This DNF, with

definitions concerning representation as matrices for the calculus, is presented below.

Definition 1 (ALCHQ= literal, formula, clause, matrix, ALCHQ= Literals are atomic

concepts or roles, possibly negated and/or instantiated, or (in)equalities. Literals in-

volved in universal or existential restrictions are underlined. In case a restriction in-

volves more than one clause, literals are indexed (in the top of the literal) with a same

new column index number. An ALCHQ= formula in DNF is a disjunction of conjunc-

tions (like 𝐶1 ∨ … ∨ 𝐶𝑛), where each 𝐶𝑖 has the form 𝐿1 ∧ … ∧ 𝐿𝑚, with each 𝐿𝑖 being

a literal. The matrix of an ALCHQ= formula in DNF is a set {𝐶1, … , 𝐶𝑛}, where each

clause 𝐶𝑖 has the form {𝐿1, … , 𝐿𝑚} with literals 𝐿𝑖.

Definition 2 (Substitutivity clauses, graphical matrix). ALCHQ= matrices represent-

ing number restrictions also contain substitutivity clauses for every concept and role

name, in the forms {𝑥 ≠ 𝑦, 𝐸(𝑥), ¬𝐸(𝑦)} and {𝑥 ≠ 𝑧, 𝑦 ≠ 𝑘, 𝑟(𝑥, 𝑦), ¬𝑟(𝑧, 𝑘)} with 𝐸 ∈

𝑁𝐶 , 𝑟 ∈ 𝑁𝑅.

 In the graphical matrix representation, clauses are represented as columns, and re-

strictions as lines; restrictions with indexes are horizontal; without are vertical (see Ex-

ample 3 – substitutivity axioms are not presented). Literals participating in a universal

restriction in an axiom’s left-hand side (LHS) or in an existential restriction in the right-

hand side (RHS) are underlined; otherwise, they are sidelined.

Example 3 (Query, clause, ALCHQ= matrix, abridged and expanded forms). The

matrix below represents, in the abridged form, the query 𝑂 = {> 1 hasPart.Wheel ⊑

Vehicle, Car ⊑ ≥ 3 hasPart.Wheel}, 𝛼 = Car ⊑ Vehicle. The column index marks the

clauses involved in the same restriction).

{{> 1hasPart, Wheel, ¬Vehicle}, {Car, < 3 ¬hasPart1}, {Car, ¬Wheel1}, {Vehicle(a)},

{¬Car(a)}}

[
> 1 hasPart Car Car ¬Car(a) Vehicle(a)

Wheel < 3 hasPart ¬Wheel
¬Vehicle

]

Fig. 3. The query from Example 1 represented as an ALCHQ= matrix, abridged form

 The number restriction expanded form, according to the semantics defined in Table

1, replaces > 1hasPart, Wheel by hasPart(x, y1) ⊓ Wheel(y1) ⊓ hasPart (x, y2) ⊓

Wheel(y2) ∧ y1 ≠ y2 and < 3 ¬hasPart1 by ⋀ hasPart(x, vi) ⊓ Wheel(vi)
3
i=1 ⊓ v1 ≠ v2 ⊓

7

v1 ≠ v3 → v2 = v3 before creating the matrix. The resulting matrix is depicted in Fig. 4.

For the sake of space, substitutivity axioms are not shown.

{{hasPart,Wheel(y1), hasPart,Wheel(y2) , y1 ≠ y2,¬Vehicle}, {Car, ¬hasPart1}, {Car,

 ¬Wheel(v1)
1}, {Car, ¬ hasPart2}, {Car, ¬Wheel(v2)

2}, {Car, ¬hasPart3}, {Car,

 ¬Wheel(v3)
3}, {Car, v1 = v2}, {Car, v1 = v3}, {Car, v2 = v3}, {Vehicle(a)}, { ¬Car(a)}}

[

h C C C C C C C C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h
W(y2)

y1 ≠ y2

¬V]

Fig. 4. Same example in expanded form, showing the (in)equalities. Again, literals are abridged,

i.e., C means Car, h means hasPart, etc

Definition 3 (Impurity, pure conjunction/disjunction). Impurity in an ALCHQ= for-

mula is a disjunction in a conjunction, or a conjunction in a disjunction. A pure con-

junction (PC) or disjunction (PD) does not contain impurities (see def. in [6]).

Example 4 (Impurity, pure conjunction / disjunction). (a) ∃𝑟. 𝐴 and ⋀ 𝐴𝑖
𝑛
𝑖=1 are PCs

if A and each 𝐴𝑖 are also PCs. (b) (∀𝑟. (𝐷0 ⊔ … ⊔ 𝐷𝑛 ⊔ (𝐸0 ⊓ … ⊓ 𝐸𝑚) ⊔
(𝐴0 ⊓ … ⊓ 𝐴𝑝)) is not a PD as it contains two impurities: (𝐸0 ⊓ … ⊓ 𝐸𝑚) and

(𝐴0 ⊓ … ⊓ 𝐴𝑝).

Definition 4 (Two-lined disjunctive normal form). An ALCHQ= axiom is in two-lined

DNF iff it is in DNF and in one of the following normal forms (NFs): (i) 𝐸̂ ⊑ 𝐷̌;
(ii) 𝐸 ⊑ 𝐸̂; (iii) 𝐷̌ ⊑ 𝐸, where E is a concept name2, 𝐸 ̂is a PC, and 𝐷̌ is a PD.

Example 5 (Two-lined disjunctive normal form). The axioms (i) 𝐸̂ ⊑ 𝐷̌ (1NF);

(ii) 𝐸 ⊑ ∃𝑟. 𝐸̂ (2NF) and (iii) ∀𝑟. 𝐷̌ ⊑ 𝐸 (3NF), where 𝐸 ̂ = ⋀ 𝐸𝑖
𝑛
𝑖=1 and 𝐷̌ = ⋁ 𝐷𝑗

𝑚
𝑗=1 .

𝑖) 1𝑁𝐹:

[

𝐸1

⋮
𝐸𝑛

¬𝐷1

⋮
¬𝐷𝑚]

 𝑖𝑖) 2𝑁𝐹: [
𝐸 ⋯ ⋯ 𝐸
¬𝑟 ¬𝐷1 ⋯ ¬𝐷𝑛

] 𝑖𝑖𝑖) 3𝑁𝐹: [
¬𝑟 𝐷1 ⋯ 𝐷𝑚

¬𝐸 ⋯ ⋯ ¬𝐸
]

Fig. 5. Examples of the three two-lined normal forms’ representations in ALCHQ=

Definition 5 (Cycle, cyclic / acyclic ontologies and matrices). If A and B are atomic

concepts in an ontology O, A directly uses B, if B appears in the right-hand side of a

subsumption axiom whose left-hand side is A. Let the relation uses be the transitive

closure of directly uses. A cyclic ontology or matrix has a cycle when an atomic concept

uses itself; otherwise it is acyclic [1]; e.g., O = {A ⊑ ∃r.B, B ⊑ ∃s.A} is cyclic.

2 The symbols E and 𝐸̂ were chosen here to designate a concept name and a pure conjunction

rather than the usual C and 𝐶̂, to avoid confusion with clauses, that are also denoted by C.

8

5 The ALCHQ= 𝜽-Connection Calculus (ALCHQ= 𝜽-CM)

The ALCHQ= 𝜃-Connection Method (henceforth ALCHQ= 𝜃-CM) differs from the FOL

Connection Method (CM) by replacing Skolem functions and unification by 𝜃-substi-

tutions, and, just as typical DL systems, employs blocking to assure termination.

Besides, equality connections, proposed by Bibel [4], are needed here as a first at-

tempt to address (in)equalities, and thus (qualified) cardinality restrictions. The idea is

to include substitutivity axioms for each concept and role name, e.g., for concept P: 𝑥 =

𝑦 → (𝑃(𝑥) → 𝑃(𝑦)), represented as a single column {𝑥 = 𝑦, 𝑃(𝑥), ¬𝑃(𝑦)}.

Moreover, w.r.t. ALC 𝜃-CM, ALCHQ= 𝜃-CM expands the notion of connection to

include equality, which is used to express number restrictions. An ontology represented

as a matrix with the equalities is said to be in the expanded form and is explained in the

next section. The abridged form, with number restrictions without equalities, is tackled

in sub-section 4.2.

5.1 Expanded Form - Representation and Reasoning

Definition 6 (Path, connection, 𝜃-substitution, 𝜃-complementary connection). A

path through a matrix M contains exactly one literal from each clause/column in M. A
connection is a pair of literals in three forms: (i) {𝐸, ¬𝐸} with the same concept/role

name, instantiated with the same instance(s) or not; (ii) {𝑥 = 𝑦, 𝑥 ≠ 𝑦}, with 𝑥 and 𝑦
instantiated with the same instance or not. A 𝜃-substitution assigns each (possibly omit-

ted) variable an individual or another variable, in an ALCHQ= literal. A 𝜃-complemen-

tary connection is a pair of ALCHQ= literals {𝐸(𝑥), ¬𝐸(𝑦)} or {𝑝(𝑥, 𝑣), ¬𝑝(𝑦, 𝑢)}, with

𝜃(𝑥) = 𝜃(𝑦), 𝜃(𝑣) = 𝜃(𝑢). The complement 𝐿̅ of a literal 𝐿 is 𝐸 if = ¬𝐸, and it is ¬𝐸

if 𝐿 = 𝐸.

Remark 1 (𝜃-substitution). Simple term unification without Skolem functions is used

to calculate 𝜃-substitutions. The application of a 𝜃-substitution to a literal is an appli-

cation to its variables, i.e. 𝜃(𝐸) = 𝐸(𝜃(𝑥)), 𝑥 fresh, and 𝜃(𝑟) = 𝑟(𝜃(𝑥), 𝜃(𝑦)), where 𝐸 is

an atomic concept and 𝑟 is a role. For notation, 𝑥𝜃 = 𝜃(𝑥).

Definition 7 (Set of concepts). The set of concepts 𝜏(𝑥) of a term 𝑥 contains all concept

names instantiated by 𝑥 so far, defined as 𝜏(𝑥) ≝ {𝐸 ∈ 𝑁𝐶|𝐸(𝑥) ∈ 𝑃𝑎𝑡ℎ}.

Definition 8 (Skolem condition). The Skolem condition ensures that at most one con-

cept name is underlined for each term in the graphical matrix form. If i is a column

index, this condition is defined as ∀𝑎 | {𝐸𝑖 ∈ 𝑁𝐶 |𝐸
𝑖(𝑎) ∈ 𝑃𝑎𝑡ℎ } | ≤ 1.

Definition 9 (ALCHQ= connection calculus). Figure 6 brings the formal ALCHQ= con-

nection calculus (ALCHQ= 𝜃-CM), adapted from the FOL CM [11]. The rules of the

calculus are applied in an analytic, bottom-up way. The basic structure is the tuple <C,
M, Path>, where clause C is the open sub-goal, M the matrix corresponding to the query

O ⊨𝛼 (O is an ALCHQ= ontology) and Path is the active path, i.e. the (sub-) path being

currently checked. The index 𝜇 ∈ ℕ of a clause 𝐶𝜇 denotes that 𝐶𝜇 is the 𝜇-th copy of

clause C, increased when Cop is applied for that clause (the variable x in 𝐶𝜇 is

9

denoted 𝑥𝜇) – see example of copied clauses in Figure 13𝑎. When Cop is applied, it is

followed by the application of Ext or Red, to avoid non-determinism in the rules’ ap-

plication. The Blocking Condition states that, when a cycle finishes, the last new indi-

vidual 𝑥𝜇
𝜃 (if it is new, then 𝑥𝜇

𝜃 ∉ 𝑁𝑂, as in the condition) has a set of concepts 𝜏(𝑥𝜇
𝜃)

which is not a subset of the set of concepts of the previous copied individual, i.e.,

𝜏(𝑥𝜇
𝜃) ⊈ 𝜏(𝑥𝜇−1

𝜃) [14]. If this condition is not satisfied, blocking occurs.

𝐴𝑥𝑖𝑜𝑚 (𝐴𝑥)
{},𝑀, 𝑃𝑎𝑡ℎ

𝑆𝑡𝑎𝑟𝑡 𝑅𝑢𝑙𝑒 (𝑆𝑡)
𝐶1, 𝑀, {}

𝜀,𝑀, 𝜀
 𝑤𝑖𝑡ℎ 𝐶1 ∈ 𝛼

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝑅𝑒𝑑)
𝐶,𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝑤𝑖𝑡ℎ 𝜃(𝐿1) = 𝜃(𝐿2
̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑆𝑘𝑜𝑙𝑒𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝐸𝑥𝑡)
𝐶1\{𝐿2},𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿1} 𝐶,𝑀, 𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ

𝑤𝑖𝑡ℎ 𝐶1 ∈ 𝑀, 𝐿2 ∈ 𝐶1, 𝜃(𝐿1) = 𝜃(𝐿2
̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑆𝑘𝑜𝑙𝑒𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠

𝐶𝑜𝑝𝑦 𝑅𝑢𝑙𝑒 (𝐶𝑜𝑝)
𝐶 ∪ {𝐿1},𝑀 ∪ {𝐶2

𝜇
}, 𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ

𝑤𝑖𝑡ℎ 𝐶2
𝜇
 𝑖𝑠 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝐶1, 𝐿2 ∈ 𝐶2

𝜇
, 𝜃(𝐿1) = 𝜃(𝐿2

̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠

Fig. 6. The connection calculus ALCHQ= 𝜃-CM

Lemma 1 (Matrix characterization). A matrix M is valid iff there exist an index 𝜇, a

set of 𝜃-substitutions 〈𝜃𝑖〉 and a set of connections 𝑆, s.t. every path through 𝑀𝜇, the

matrix with copied clauses, contains a 𝜃-complementary connection {𝐿1
𝜃 , 𝐿2

𝜃} ∈ 𝑆 , i.e.

a connection with 𝜃(𝐿1) = 𝜃(𝐿2). The tuple 〈 𝜇, 〈𝜃𝑖〉, S 〉 is called a matrix proof.

Clause copying and its multiplicity 𝜇 already existed in the original CM, but neither

a copy rule nor blocking were necessary, as FOL is semi-decidable. To regain termi-

nation, the new Copy rule implements blocking [1], when no alternative connection is

available and cyclic ontologies are being processed. The rule regulates the creation of

new individuals, blocking when infinite cycles are detected. The Skolem condition

solves the FOL cases where the combination of Skolemization and unification correctly

prevents connections (see Soundness Theorem in the appendix).

In the Ext and Red rules, 𝜃-substitutions replace implicit variables by terms in the

current path. A restriction avoids the situation in FOL matrices, where unification is

tried with distinct Skolem functions: any individual 𝑥 can have in its set of concepts

𝜏(𝑥) at most a single concept name with a column index in the matrix

(i.e., ∀𝑎 |{𝐸𝑖 ∈ 𝑁𝐶| 𝐸𝑖(𝑎) ∈ 𝑃𝑎𝑡ℎ}| ≤ 1).

Example 6 (ALCHQ= connection calculus). Figures 7 and 8 show the proof of the

query from Example 1 using the matrix representation and the calculus, respectively.

10

1.

[

h C C C C C C C C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h
W(y2)

y1 ≠ y2 ⇐

¬V]

2.

[

h C C C C C C C ⇐ C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h
W(y2) ⇐

y1 ≠ y2

¬V]

3&4.

[

h C C C C ⇐ C C C C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h ⇐
W(y2)

y1 ≠ y2

¬V]

5 − 11.

[

h C C C C C C C C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h
W(y2)

y1 ≠ y2

¬V]

Fig. 7. The query’s proof under the graphical matrix representation. Arcs are connections whose

labels are the names of the involved individual(s)/variable(s). Arrows indicate pending literals’

lists

Fig. 8. The proof of the query using the calculus, where M is an abbreviation for

{{h,W(y1), h,W(y2) , y1 ≠ y2, ¬V}, {C, ¬h1}, {C, ¬W(v1)
1}, {C, ¬h2}, {C, ¬W(v2)

2}, {C, ¬h3},

{C, ¬W(v3)
3}, {C, v1 = v2}, {C, v1 = v3}, {C, v2 = v3}, {V(a)}, { ¬C(a)}}. The double-ended arrow

just copies the proof part to save text space

Furthermore, when equality between pairs of individuals are being dealt, equality

connections [4] with substitutivity axioms, in explicit or implicit form, can be relied

upon. One can solve, e.g., {𝑃(𝑎), 𝑎 = 𝑏} ⊨ 𝑃(𝑏), as portrayed in Figure 9. Figure 9(i)

displays the equality connections performed in the usual way, with the introduction of

the substitutivity axiom P: 𝑥 = 𝑦 → (𝑃(𝑥) → 𝑃(𝑦)) (represented as the column

{𝑥 = 𝑦, 𝑃(𝑥), ¬𝑃(𝑦)}), while Figure 9(ii) presents the same connection in an abridged

a

(v1, v2)

a

a

(v1, v2)

a

v 2

a a a a a

(a, v1)

a

v1 (a, v2) v2

(v1, v2)

a

a

a

11

way. This subject then leads to the presentation of number restrictions connections in

the abridged form, presented in the next subsection.

𝑖) [

𝑥 = 𝑦

𝑃(𝑥) ¬𝑃(𝑎) 𝑎 ≠ 𝑏 𝑃(𝑏)

¬𝑃(𝑦)

] 𝑖𝑖)[¬𝑃(𝑎) 𝑎 ≠ 𝑏 𝑃(𝑏)]

Fig. 9. 𝑖) A connection using the substitutivity axiom; 𝑖𝑖) an equality connection [4]

5.2 Abridged Form - Representation and Reasoning

(Qualified) number restrictions can be in abridged form (≥ | ≤ 𝑛 𝑟(. 𝐶) with 𝑛 ∈ ℕ∗). In

this case, one should note that ¬(≥ 𝑛 𝑟) = ≤ (𝑛 − 1) 𝑟 and ¬(≤ 𝑛 𝑟) = ≥ (𝑛 + 1) 𝑟.

Definition 10 (Number restriction literal). Number restriction literals are literals rep-

resenting (qualified) number restrictions. They can be negated and/or instantiated,

and/or under- or sidelined or with no line. In case a restriction involves more than one

clause, literals are top indexed with a same new column index number.

Definition 11 (Number restriction valid interval). Two number restrictions form a

valid interval iff their numerical restrictions share an intersection, e.g. > 5 𝑟, < 8 𝑟.

Definition 12 (Number restriction 𝜃-substitution, 𝜃-complementary number re-

striction connection). Let A and B be two number restriction literals, ≤ | ≥ 𝑛 𝑟 and ≥

| ≤ 𝑚 𝑟, instantiated or not, representing role instance sets 〈𝑟(𝑥, 𝑦1), … , 𝑟(𝑥, 𝑦𝑛)〉 and

〈𝑟(𝑧, 𝑤1),… , 𝑟(𝑧, 𝑤𝑚)〉, with a valid interval between them (𝑣𝑖). A number restriction 𝜃-

substitution for the pair is a mapping 𝜃, s.t. 𝜃(𝑥) = 𝜃(𝑦), 𝜃(𝑦𝑖) = θ(𝑤𝑖), with 𝑖 = 1 to

min(𝑣𝑖). A 𝜃-complementary number restriction connection is a pair of number re-

striction literals over a same role in the form { ≤ | ≥ 𝑛 𝑟, ≥ | ≤ 𝑚 𝑟}, that, under a num-

ber restriction 𝜃-substitution, share a valid interval 𝑣𝑖.

 A connection represents a tautology, e.g. 𝐸 ⊔ ¬𝐸. For number restrictions, this

means a valid interval, as, for example, any individual possessing any number of role

instances (including 0) with r satisfies the restriction > 5 𝑟 ⊔ < 8 𝑟. If there is a “hole”,

for instance, > 8 𝑟 ⊔ < 5 𝑟, then individuals with 5 to 8 role instances of r would not

satisfy the restriction, and the latter cannot be a tautology.

Example 6 (ALCHQ= connection calculus, abridged form). Figures 10 and 11 display

the proof from Example 2 in the abridged form, using the graphical matrix representa-

tion and the formal calculus. Note that min(> 1 hasPart, < 3 hasPart) = 2.

The abridged form can accommodate number restrictions with role hierarchies.

Example 7 (Number restrictions, role hierarchies). Let 𝑂 = {> 2 hasPart.Wheel ⊑

Car, hasComponent ⊆ hasPart , Truck ⊑ ≥ 6 hasPart.Wheel} , 𝛼 = Truck ⊑ Car.

 This query is represented by M = { { > 2 hasPart, Wheel, ¬Car }, { hasComponent ,
¬hasPart }, { Truck, < 5 ¬hasComponent1 }, { Truck, ¬Wheel1 }, { ¬Truck(a)}, {Car(a)} }.

(a,b)
(a,b)

b

a

12

Figure 12 brings the proof for M, with min(> 2 hasPart,< 5 hasPart) = 3. The con-

nection {hasComponent〈(a, vi)〉,< 5 hasComponent 〈(𝑎, vi)〉}, with i = 1…3 is possible

because the literal < 5 hasComponent expands to a series of negated roles.

[
> 1 hasPart Car Car ¬Car(a) Vehicle(a)

Wheel < 3 hasPart ¬Wheel
¬Vehicle

]

Fig. 10. Proof of Example 2 in the abridged form. 〈(𝑎, vi)〉, i = 1,2 is a set of two role instances

and 〈vi〉, i = 1,2 is a set of two instances (of concept Wheel)

{}, M, P3 = P2 ∪ {¬W〈vi〉1} , i = 1,2
A

{},M, P′3 = P2 ∪ {¬C(a)}
A

{C}, M, P2
R

{W〈vi〉}, M, P2 = P1 ∪ {¬h〈(a, vi)〉
1} , i = 1,2

E
{}, M, {¬C(a)}

A
{}, M, {}

A

{C}, M, {¬V(a)}
E

{> 1 h,W},M, P1 = {¬V(a)}
E

{},M, {}
A

{V(a)},M, {}

ε, M, ε
S

Fig. 11. The proof of Example 2 using the calculus, with M = {{>1hasPart, Wheel, ¬Vehicle}, {Car,

< 3 ¬hasPart1}, {Car, ¬Wheel1}, {Vehicle(a)}, {¬Car(a)} (literals are abbreviated)

[

> 2 hasPart hasComponent Truck Truck ¬Truck(a) Car(a)

Wheel ¬hasPart < 5 hasComponent ¬Wheel

¬Car

]

Fig. 12. Proof with number restrictions and a role hierarchy axiom

6 Discussion

Matricial inference methods, such as the CM, presents a few advantages over other

methods, as well as some drawbacks. We will discuss our method, at first in the light

of memory handling and existent solutions to solve equality equations in the context of

FOL. Next, we briefly comment some recent comparative performance of our ALC rea-

soner, RACCOON (ReAsoner based on the Connection Calculus Over ONtologies)

against well-known DL reasoners [7], and existent solutions for number restrictions

within the DL scenario, followed by a small discussion on next steps.

As for memory usage, in the CM, matrices require only a copy of the matrix and data

structures to store the current path, the pending clauses and literals, the unifier and lit-

eral’s indices. It does not generate any intermediary results; this constitutes an interest-

ing benefit in terms of memory usage over generative methods such as resolution or

tableaux, which create intermediary clauses and sub-formulae.

Indeed, dealing efficiently with memory with cyclic ontologies is crucial for a DL

reasoner, since a number of fragments (including ALCN-Aboxes) have been proven

PSPACE-complete [1]. Our calculus processes cycles (thanks to the Copy rule), saving

memory due to keeping only one copy of the matrix in memory [3,4]. The other copies

are virtual, i.e., only the index 𝜇 is created or incremented and stored, together with the

𝜃-substitution and the current path. The next example portraits this case.

〈(𝑎, vi)〉, i = 1…3 〈(𝑎, vi)〉, i = 1…3

〈vi〉, i = 1…3 a

a a

〈vi〉, i = 1,2 a

〈(𝑎, vi)〉, i = 1,2 a a

13

Example 8 (Cycles). 𝑂 = {∃hasSon. (Dr ⊔ DrAncestor) ⊑ DrAncestor, hasSon(ZePadre,

Moises), hasSon (Moises, Luiz), hasSon (Luiz, Fred), Dr (Fred)}, 𝛼 = DrAncestor(ZePadre).

This cyclic query has its proof represented by both Figures 13𝑎 and 13𝑏.
Figure 13𝑎 brings an explicit copy of the second clause, needed for the proof. On

the other hand, Figure 13𝑏 incorporate indices to denote how the only copy was used

with different individuals and instantiations. At least in theory, such idea exists in the

CM, called implicit amplification [3]; we adopted it in RACCOON with the same no-

tation, and gain memory with its procedure.

𝑎)

[

¬DrA ¬DrA ¬DrA

hasS hasS hasS ¬hasS(ZP,Mo) ¬hasS(Mo, L) ¬hasS(L, F) ¬Dr(F) DrA(ZP)

Dr DrA DrA]

𝑏)

[

¬DrA ¬DrA

hasS hasS ¬hasS(ZP,Mo) ¬hasS(Mo, L) ¬hasS(L, F) ¬Dr(F) DrA(ZP)

Dr DrA]

Fig. 13. Proof representations of a cyclic query, with (𝑎) explicit and (𝑏) implicit copies

Clausal inference methods require normal forms, in which transformations apply

over formulae to produce clauses over which the method works. On the one hand,

clause manipulation accelerates reasoning in reasonably expressive logics, e.g., FOL.

On the other hand, the drawbacks are at least two-fold.

First, literals’ redundancy among clauses often constitutes an overhead in large

knowledge bases. In the CM, matrix representation minors the problem during reason-

ing, as the method is non-generative; anyway, it remains if, in an initial query represen-

tation in DNF, clauses share too many literals. For the ALCHQ= 𝜃-CM, the two-lined

normal form reduces this type of redundancy at the expense of introducing a small

number of new symbols. To sum up, the best solution consists in applying a non-clausal

connection method [12], where matrices can be nested.

Another problem for clausal calculi resides on adapting to an increasing set of con-

structs in DL: each new construct to be inserted into the calculi requires careful analy-

sis, and frequently changes in the existing rules. This problem also plagues equality

approaches in clausal systems. Consolidated solutions from saturation-based reasoning,

such as paramodulation [13], are hard to be integrated, and the former is not complete

for the connection method [11]. Nevertheless, an equality approach based on RUE

(Resolution with Unification and Equality) [5] seems plausible for connection calculi

but has not been tried yet. Our aim on formalizing our calculus with the Eq system is

paving the way for such more efficient solutions.

ZP

L Mo

(ZP,Mo)

(Mo,L) (L,F)

F

ZP

L 2 Mo

(ZP,Mo)

(Mo,L) (L,F)

F

1

14

Although the Eq system is not yet coded in RACCOON, the goal-oriented search

embodied by the connection calculus, together with its economical approach to

memory, made the reasoner display unexpected fair results for ALC consistency, com-

pared to Hermit, FacT++ and Konclude. A summary of the benchmarking conducted

over the ORE 2014 and 2015 baselines is deployed in Figure 14 [7].

Fig. 14. Comparison of RACCOON and ORE competitors for consistency on the ORE 2014 and

2015 baselines

In the baselines, ontologies were ranked by size and expressivity. RACCOON ex-

hibited the fastest results (side by side with Konclude) in smaller and less complex

ontologies; however, against the larger and more complex set (the last ones), results

start to decay (in a graceful fashion), probably due to the lack of DL optimizations.

Furthermore, in the first experiment, RACCOON’s performance fell short in ontologies

in the presence of a certain structure where cycles occur inside other cycles massively.

Apart from that, the results seem promising, given the possibility of implementing re-

ductions built in other competitors.

When faced with number restrictions and their equalities, the idea is applying the

abridged form first, which demand less steps and memory; only in the cases it does not

suffice, the expanded form must be used (comparing two number restrictions has a

quadratic complexity in the simpler cases, not to talk about checking the ABox). Be-

sides, with the expanded form, hundreds of substitutivity axioms might need to be

added to the matrix. Thus, ALCHQ= 𝜃-CM can only be competitive in this DL fragment,

when, e.g., solutions based on rewriting [2,10] can be devised and integrated, i.e., a way

to subsititute equal individuals by their canonical representative is envisaged. Bibel al-

ready suggested term rewriting as a possible technique to solve equality in the CM [4].

Integrating it with the ALCHQ= 𝜃-CM represents a challenge for our calculus to remain

competitive as more expressive fragments are to be addressed.

7 Conclusions and Future Work

In the current work, ALCHQ= 𝜃-CM is presented, a connection method that enhances

the ALC 𝜃-CM, by, mainly, introducing (in)equalities and, as a respective solution to

handle them, equality connections with equality predicate substitutivity axioms explicit

15

or implicit, as defined by Bibel. Two new forms of representing number restrictions are

also shown: the abridged and the expanded form. In the former, cardinality restrictions

are a new type of literals themselves, and this new notion of literal together with its

respective new connection type had to be defined. In the latter, number restrictions are

replaced by literals and (in)equalities that correspond to the number restriction´s se-

mantic definition.

 As for theoretical future work, we aim to create more sophisticated blocking

schemes for dynamic and double blocking for DL constructs like inverses, union, inter-

section and complement of roles [9], transitivity, role chains and value maps, complex

role axioms and dealing with nominals. As for practical future work, we intend to en-

hance the fragment currently dealt by RACCOON to include ALCHQ=, as well as the

future new solutions mentioned as theoretical future work.

Appendix - Termination, Soundness and Completeness

We will exploit two strategies to prove the three theorems. First, we will depart from the

many results already proven in the ALC 𝜃–CM’s proofs [6]; they will work as shortcuts

for ALCHQ= 𝜃–CM’s proofs. Some of them will be stated here again, for a better reada-

bility, but not their proofs. The second strategy consists in following the same path that

led to the ALC 𝜃–CM’s proofs: keeping the correspondence with classical FOL – in our

case, with equality -, to take advantage of the completeness result already obtained by

Bibel [4]. Because of that, our proofs will be built over the expanded form, which regards

a close resemblance to FOL with equality.

Definition 13 (Functional equivalence between decidable inference systems w.r.t.

a set of formulae). An inference system A is functionally equivalent to a system B

w.r.t. a set of formulae Σ when, for any formula 𝛼 in the same logic of Σ, Σ ⊢𝐴 𝛼 ↔
Σ ⊢𝐵 𝛼 and Σ ⊬𝐴 𝛼 ⟷ Σ ⊬𝐵 𝛼.

Lemma 2 (Functional equivalence between CM and ALCHQ= 𝜃-CM for acyclic

ALCHQ= formulae). ALCHQ= 𝜃-CM is functionally equivalent to CM with equality

w.r.t. acyclic ALCHQ= formulae.

Proof. The Eq system for dealing with equality with classical logic is complete. For this

reason, any complete FOL inference system equipped with the Eq system’s axiom is

also complete, and, therefore, CM with Eq (henceforth CM=) is sound and complete

for the decidable FOL fragment with equality that represents acyclic ALCHQ= formulae.

Given that:

i. 𝜃-unification with blocking in the ALC 𝜃–CM for acyclic ALC formulae works

just as unification for the FOL CM for the same set of formulae [4], Lemma 2;

ii. In the expanded form, only (in)equalities and role subsumption axioms are the

only new constructs not already present in ALC matrices;

iii. ALC 𝜃–CM with the Eq system is complete for acyclic ALCQ=, once ALC 𝜃–CM

is complete and the Eq system is also complete; and

iv. Role subsumption axioms in ALCHQ= 𝜃–CM behave exactly as FOL CM and do

not generate cycles - see Figure 15 for all cases);

16

v. If a matrix M in FOL ALCHQ= with equality substitutivity axioms is mapped onto

a matrix M’ in the 2-lined normal form, then if M’ is valid, M is valid too (see

remark 3 above);

vi. Without cycles, FOL CM= in the 2-lined normal form with equality substitutivity

axioms in FOL uses the same rules in the same sequence as ALCHQ= 𝜃–CM; and

vii. FOL CM is complete for ALCHQ=;

𝑖) [
⋯ ¬𝑟(𝑥, 𝑓(𝑥)) 𝑟(𝑧, 𝑘) 𝑠(𝑦, 𝑔(𝑦)) ⋯
⋯ 𝐶(𝑥) ¬𝑠(𝑧, 𝑘) 𝐷(𝑥) ⋯

] 𝑖𝑖) [
⋯ ¬𝑟 𝑟 𝑠 ⋯

⋯ 𝐶 ¬𝑠 𝐷 ⋯
]

𝑖𝑖𝑖) [
⋯ ¬𝑟(𝑥, 𝑓(𝑥)) 𝑟(𝑧, 𝑘) 𝑠(𝑦, 𝑡) ⋯

⋯ 𝐶 ¬𝑠(𝑧, 𝑘) ⋯
] 𝑖𝑣) [

⋯ ¬𝑟 𝑟 𝑠 ⋯

⋯ 𝐶 ¬𝑠 𝐷 ⋯
]

𝑣) [
⋯ ¬𝑟(𝑎, 𝑏) 𝑟(𝑧, 𝑘) 𝑠(𝑐, 𝑑) ⋯

⋯ ¬𝑠(𝑧, 𝑘) ⋯
] 𝑣𝑖) [

⋯ ¬𝑟(𝑎, 𝑏) 𝑟 𝑠(𝑐, 𝑑) ⋯

⋯ ¬𝑠 ⋯
]

𝑣𝑖𝑖) [
¬𝑟(𝑎, 𝑏) 𝑟(𝑧, 𝑘) 𝑠(𝑐, 𝑑) 𝑎 ≠ 𝑐 𝑏 ≠ 𝑑

¬𝑠(𝑧, 𝑘)
] 𝑣𝑖𝑖𝑖) [

⋯ ¬𝑟(𝑎, 𝑏) 𝑟 𝑠(𝑐, 𝑑) 𝑎 ≠ 𝑐 𝑏 ≠ 𝑑

⋯ ¬𝑠 ⋯
]

Fig. 15. Role subsumption axioms in ALCHQ= 𝜃–CM behave exactly as FOL CM=. The odd

cases depict FOL CM=, while the even show ALCHQ= 𝜃–CM. Dotted lines stand for impossible

connections. In case 𝑖𝑖), the Skolem was violated; in case 𝑣𝑖) no 𝜃-substitution is possible. Cases

𝑣𝑖𝑖) and 𝑣𝑖𝑖𝑖) are solved by eq-connections.

Then ALCHQ= 𝜃-CM is functionally equivalent to CM=, i.e., sound and complete,

w.r.t. acyclic ALCHQ= formulae, q.e.d. ∎

Lemma 3 (ALCHQ= 𝜃-CM validity preserving, cyclic case). Let M be the cyclic ma-

trix corresponding to the arbitrary query for 𝑂 ⊨ 𝛼 in ALCHQ=, represented in the 2-

lined normal form with equality substitutivity axioms in FOL, and M’ be the matrix

representing the same query in the 2-lined normal form with equality substitutivity ax-

ioms in ALCHQ=. Then, 𝑂 ⊢𝐶𝑀= 𝛼 implies in 𝑂 ⊢𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 𝛼.

Proof. The lemma already holds for cyclic ALC, once FOL CM and ALC 𝜃-CM are

sound and complete for the fragment (see Completeness proof for ALC 𝜃-CM [4]).

Given that, even for cyclic ALCHQ=:

i. The Eq system (i.e., the substitutivity axioms) assure also that the 𝑂 ⊢𝐶𝑀= 𝛼 im-

plies in 𝑂 ⊢𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 𝛼 for ALC=;

ii. ALCQ= is represented in the expanded form is represented as ALC=, i.e., the qual-

ified number restrictions are converted into universal and existential restrictions

which are represented in ALC=;

iii. 𝑂 ⊢𝐶𝑀= 𝛼 for ALCHQ=, with role subsumptiom axioms; and

iv. Role subsumption axioms in ALCHQ= 𝜃–CM translate directly to FOL CM=;

Then 𝑂 ⊢𝐶𝑀 𝛼 implies in 𝑂 ⊢𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 𝛼, q.e.d. ∎

Theorem 1 (Completeness) There is a connection proof for “𝜀,𝑀, 𝜀”, i.e.. there exists

a derivation in which all leaves are axioms, if the ALCHQ= query 𝑂 ⊨ 𝛼 that corre-

sponds to the matrix M is valid.

Proof. This is a direct result from the Lemmas 2 and 3 presented above. If 𝑂 ⊨ 𝛼 and

CM= is complete then 𝑂 ⊢𝐶𝑀= 𝛼. By Lemma 2 if 𝑂 ⊢𝐶𝑀= 𝛼 then 𝑂 ⊢𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 𝛼

17

for acyclic matrices. Lemma 3 states that the same holds even to cyclic matrices. There-

fore, if 𝑂 ⊨ 𝛼 then 𝑂 ⊢𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 𝛼 and ALCHQ= 𝜃–CM is complete, q.e.d. ∎

 The soundness proof is analogous to that of ALC 𝜃-CM, with different cases. At first

glance, ALCHQ= formulae are basically ALC formulae added with equality and role

subsumption axioms which are not harmless to termination. However, similarly to ALC

𝜃-CM, there are cases with number restrictions requiring careful investigation.

Theorem 2 (Soundness) An ALCHQ= query in the 2-lined DNF with substitutivity ax-

ioms M is valid if there is a connection proof for “𝜀,𝑀, 𝜀” in the ALCHQ= 𝜃-CM, i.e.

there exists a derivation in which all leaves are axioms.

Proof. FOL CM= is a decision procedure for ALCHQ=, since the latter corresponds to

the decidable FOL fragment 𝐿2 with counting [7]. Thus, 𝑂 ⊢𝐶𝑀= 𝛼 implies in 𝑂 ⊨ 𝛼.

Hence, it suffices to prove that 𝑂 ⊢𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 𝛼 implies in 𝑂 ⊢𝐶𝑀= 𝛼. Besides, for

all ALC formulae, ALCHQ= 𝜃-CM is sound, by the Soundness Theorem from [4], and

indeed for all ALCH= formulae, as the Eq-system is sound and ALCHQ= 𝜃-CM repeats

the behaviour of CM= as shown in Lemma 2, v.
The remaining cases are the cyclic cases not provable from number restrictions,

when M, if represented with FOL with equality, would originally contain (Skolem)

functions. Number restrictions convert to ALC formulae with equality in the 2NF and

3NF, respectively 𝐸 ⊑ ∃𝑟. 𝐸 ̂(or 𝐸 ⊑ 𝐸̂); and ∀𝑟. 𝐷̌ ⊑ 𝐸 (or 𝐷̌ ⊑ 𝐸), E being an atomic

concept, 𝐸̂ a pure conjunction and 𝐷̌ a pure disjunction. Such cases are proven by the

contrapositive: 𝑂 ⊬𝐶𝑀= 𝛼 must imply in 𝑂 ⊬𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 𝛼.

Again and similarly to ALC 𝜃-CM, the contrapositive proof for ALCHQ= 𝜃-CM is

obtained by structural induction on finite sequences of individual names 𝑥1, … , 𝑥𝑖−1 that

generates the next individuals of the cycles with 𝑥𝑖. As expected, ALCHQ= matrices

reduce to ALCH=. There is only a single sub-case in the base case, where a blocking

takes place.

Base case 1) 𝐸 ⊑ ≤ | ≥ 𝑛 𝑟. 𝐸. Both sub-cases cannot form a cycle for the reasoning.

This axiom maps to a single column, which provokes no reasoning cycle:

{𝐸, 𝑟, 𝐸(𝑣1),…, 𝑟, 𝐸(𝑣𝑛+1), 𝑣1 ≠ 𝑣2, … , 𝑣1 ≠ 𝑣𝑛+1, 𝑣2 ≠ 𝑣𝑛+1, … , 𝑣𝑛 ≠ 𝑣𝑛+1} for

𝐸 ⊑ ≤ 𝑟. 𝐸 (the same column appears for 𝐸 ⊑ ≥ 𝑟. 𝐸, with the first literal negated).

Suppose a query {𝐸 ⊑ ≤ 𝑛 𝑟. 𝐸} ⊭ ¬𝐸(𝑎) (respect. {𝐸 ⊑ ≤ 𝑛 𝑟. 𝐸} ⊭ 𝐸(𝑎)). Note

that, for 𝐸(𝑎), no connection is available. Then the column {¬𝐸(𝑎)} is solved either

by the connection {𝐸(𝑎), ¬𝐸(𝑎)}, with the first literal coming from the first E (𝜃(𝐸) =

𝐸(𝑎)), or by the connection {𝐸(𝑎), ¬𝐸(𝑎)}, with the literal coming from any 𝐸(𝑣𝑖)

(𝜃 (𝐸(𝑣𝑖)) = 𝐸(𝑎)) (this case also occurs with {𝐸 ⊑ ≤ 𝑛 𝑟. 𝐸} ⊭ ¬𝐸(𝑎)). Next, there

is no complementary literal for r, and therefore {𝐸 ⊑ ≤ 𝑛 𝑟. 𝐸} ⊬𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 ¬𝐸(𝑎).

Hence, {𝐸 ⊑ ≤ 𝑛 𝑟. 𝐸} ⊭ ¬𝐸(𝑎) implies in {𝐸 ⊑ ≤ 𝑛 𝑟. 𝐸} ⊬𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 ¬𝐸(𝑎) (re-

spectively {𝐸 ⊑ ≥ 𝑛 𝑟. 𝐸} ⊭ ¬𝐸(𝑎)/𝐸(𝑎) implies {≥ 𝑛 𝑟. 𝐸 ⊑
𝐸} ⊬𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 ¬𝐸(𝑎)/𝐸(𝑎), and this case is checked.

Base case 2) ≤ | ≥ 𝑛 𝑟. 𝐸 ⊑ 𝐸. Only ≥ 𝑛 𝑟. 𝐸 ⊑ 𝐸 can form cycles (sub-case b)).

18

a) Suppose the query {≤ 𝑛 𝑟. 𝐸 ⊑ 𝐸 } ⊭ 𝐸(𝑎). {≤ 𝑟. 𝐸 ⊑ 𝐸 } is transformed into a matrix

with two sets of columns, being the first {¬𝐸,¬𝑟1}, {¬𝐸,¬𝐸(𝑣𝑖)
1}, and the second

{¬𝐸, 𝑣𝑖 = 𝑣𝑗 }, with 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,… , 𝑛 (note that, for 𝛼 = ¬𝐸(𝑎), no connection is

available). Next, both the possible connections {𝐸(𝑎), ¬𝐸(𝑎)} and {𝐸(𝑎),¬𝐸(𝑎)1}

lead ALCHQ= 𝜃-CM to a halt as no further connection is possible. So, since

{≤ 𝑛 𝑟. 𝐸 ⊑ 𝐸 } ⊭ 𝐸(𝑎) implies in {≤ 𝑛 𝑟. 𝐸 ⊑ 𝐸} ⊬𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 𝐸(𝑎), and this sub-

case is solved.

b) Suppose the query {≥ 𝑛 𝑟. 𝐸 ⊑ 𝐸 } ⊭ ¬𝐸(𝑎) (or even 𝐸(𝑎)). {≤ 𝑛 𝑟. 𝐸 ⊑ 𝐸 } is trans-

formed into a matrix with two sets of two columns: {{𝐸, ¬𝑟𝑖}, {𝐸, ¬𝐸(𝑣𝑖)
𝑖}} and

{𝐸, 𝑣𝑖 = 𝑣𝑗 }, with 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,… , 𝑛. Finally, there is a (long) cycle with 𝛼 = ¬𝐸(𝑎)

(or 𝐸(𝑎)), as portrayed in Figure 14. Until the active 𝑃𝑎𝑡ℎ reaches {¬𝐸(𝑎), ¬𝐸(𝑣1)
1,

¬𝐸(𝑣2)
2, … , ¬𝐸(𝑣𝑛+1)

𝑛+1}, the Copy rule was not applied yet. At that point, a copy

of, e.g. clause {𝐸, ¬𝐸(𝑣𝑖)
1} is needed and copied, and 𝜇 = 1. When the cycle

{¬𝐸(𝑣1
𝜇
)
𝜇+1

, ¬𝐸(𝑣2
𝜇
)
𝜇+2

, … ,¬𝐸(𝑣𝑛+1
𝜇

)
𝜇+𝑛+1

} is repeated once more and, before the

third copy, the test if the set of concepts of the two previous copies is a subset one

another is confirmed (𝜏(𝑣1
2) ⊆ 𝜏(𝑣1

1)), blocking takes place. Therefore,{≥ 𝑛 𝑟. 𝐸 ⊑

𝐸 } ⊭ ¬𝐸(𝑎) implies {≥ 𝑛 𝑟. 𝐸 ⊑ 𝐸} ⊬𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 ¬𝐸(𝑎).

[
𝐸 𝐸 … 𝐸 … 𝐸 𝐸 … 𝐸 ¬𝐸(𝑎)

¬𝑟 ¬𝐸(𝑣1) … ¬𝐸(𝑣2) … ¬𝐸(𝑣𝑛+1) 𝑣1 = 𝑣2 … 𝑣𝑛 = 𝑣𝑛+1
] ⊢

[
𝐸 𝐸 … 𝐸 … 𝐸 𝐸 𝐸 … 𝐸 ¬𝐸(𝑎)

¬𝑟 ¬𝐸(𝑣1) … ¬𝐸(𝑣2) … ¬𝐸(𝑣𝑛+1) ¬𝐸(𝑣1
1) 𝑣1 = 𝑣2 … 𝑣𝑛 = 𝑣𝑛+1

] ⊢

… ⊢ [
𝐸 𝐸 … 𝐸 … 𝐸 … 𝐸 … 𝐸 ¬𝐸(𝑎)

¬𝑟 ¬𝐸(𝑣1) … ¬𝐸(𝑣𝑛+1) … ¬𝐸(𝑣𝑛+1
1) … ¬𝐸(𝑣𝑛+1

2) … 𝑣𝑛 = 𝑣𝑛+1
]

Fig. 15. Blocking in the query {≥ 𝑛 𝑟. 𝐸 ⊑ 𝐸 } ⊬𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 ¬𝐸(𝑎), after the cycle {¬𝐸(𝑣1
𝜇)𝜇+1,

¬𝐸(𝑣2
𝜇)𝜇+2, … ,¬𝐸(𝑣𝑛+1

𝜇
)
𝜇+𝑛+1

} is repeated twice, with two copies of {𝐸, ¬𝐸(𝑣𝑖)
1}. The test 𝜏(𝑣1

2) ⊆

𝜏(𝑣1
1)) confirmed the need for a blocking ().

Inductive case: As seen in the base case, the characterization of the matrices for the

inductive case requires that a cycle can only appear in axioms like ≥ 𝑛 𝑟. 𝐸 ⊑ 𝐶𝑐, where

Cc is a complex concept. Then, during the inference, between each two connections

{𝐸(𝑣𝑖), ¬𝐸(𝑣𝑖)
𝑖}, there are further connections, e.g., {𝐸(𝑎), ¬𝐸(𝑎)}, {𝑟(𝑎, 𝑣𝑖),

¬𝑟(𝑎, 𝑣𝑖)} … {𝐸(𝑣𝑖), ¬𝐸(𝑣𝑖)
𝑖}, including with number connections with different polari-

ties (e.g., ≥ and ≤). But only one new cycle at a time can be formed inside a cycle, as

there is only one possible case of cycles in number expressions. Because of that, this

case is similar to the case portrayed in [4], Figure 7, and is analogous to base case 2)b)

above, but with a longer cycle, or even with cycles nested, one at each time. The open

cycles are detected by the Copy rule and blocked, and the proof fails due to open sub-

goals. Hence, ALCHQ= 𝜃-CM is sound for that case, and the theorem is proved. ∎

 a

 𝑣1 𝑣2 𝑣𝑛+1

 a

 𝑣1 𝑣2 𝑣𝑛+1

 a

 𝑣1 𝑣𝑛+1 𝑣𝑛+1
1 𝑣𝑛+1

2

19

Theorem 1 (Termination). Given M, the matrix representing the arbitrary query

𝑂 ⊢𝐴𝐿𝐶𝐻𝑄= 𝜃−𝐶𝑀 𝛼, and a chosen initial clause C, any rule sequence in the ALCHQ= 𝜃-

CM applied over the tuple “𝜀,𝑀, 𝜀” terminates.

Proof. This proof is almost completely analogous to that of ALC 𝜃-CM [4]. The only

source of non-termination are the cycles, which, in ALCHQ= 𝜃-CM, has only two cases

that are not in ALC: the one portrayed in the Soundness Theorem above, subcase 2)b)

and in the inductive case. But according to the Soundness Theorem, both finish with

blocking. Since there is no uncovered case, all cases terminate in ALCHQ= 𝜃-CM, and

the theorem is proven. ∎

Acknowledgements. This work was partially supported by the project Reconciling

Description Logics and Non-Monotonic Reasoning in the Legal Domain (PRC CNRS–

FACEPE France–Brazil) and the anonymous reviewers. Fred Freitas also thanks Jens

Otten, Evandro and Patty Travassos, for the personal support.

References

1. Baader, F., Calvanese, D. McGuinness, D, Nardi, D., Patel-Schneider, P. (Eds.): The De-

scription Logic Handbook. Cambridge University Press, 2003.

2. Bate, A., Motik, B., Cuenca Grau, B., Simanc'ik, F., Horrocks, I.: Extending Consequence-

Based Reasoning to SHIQ. Workshop on Description Logics (DL), CEUR : 34–46, 2015.

3. Bibel, W.: Matings in Matrices. Communications of the ACM 26:844-852, 1983.

4. Bibel, W.: Deduction – Automated Logic. Academic Press, London, 1993.

5. Digricoli, V., Harrison, M.: Equality-based Binary Resolution,J.ACM,33(2):253-289,1986.
6. Freitas, F.: A Connection Calculus over the Description Logic ALC. Canadian Conf. on Ar-

tificial Intelligence (AI), Victoria, Canada, 2016.

7. Freitas, F. Melo, D., Otten, J.: RACCOON: A Connection Reasoner for ALC. Proc. of Int.

Conf.on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), 2017.

8. Glimm, B., Horrocks, I., Motik, B., Stoilos, G.,Wang, Z.: HermiT: An OWL 2 Rea-

soner. Journal of Automated Reasoning 53(3): 245-269. 2014.

9. Horrocks, I., Sattler, U.: A Description Logic with Transitive and Inverse Roles and Role

Hierarchies. Journal of Logic and Computation 9(3):385–410, 1999.

10. Motik, B., Nenov, Y., Piro, R., Horrocks, I.:Combining Rewriting and Incremental Materi-

alisation Maintenance for Datalog Programs with Equality. IJCAI : 3127-3133, 2015.

11. Otten, J.:Restricting backtracking in connection calculi.AI Comm.,23(2-3):159-182, 2010.

12. Otten,J.: nanoCoP: Natural Non-clausal Theorem Proving. Proc. IJCAI: 4924-4928, 2017.

13. Robinson, G., Wos, L.: Paramodulation and Theorem Proving in First-Order Theories with

Equality, Machine Intelligence 4:135-150, 1969.

14. Schmidt, R., Tishkovsky, D.: Analysis of Blocking Mechanisms for Description Logics. In

Proceedings of the Workshop on Automated Reasoning, 2007.

15. Steigmiller, A. Liebig, T., Glimm, B.: Konclude: System Description. Journal of Web Se-

mantics: Science, Services and Agents on the World Wide Web, 27(1):78-85, 2014.

16. Tsarkov, D., Horrocks, I.: FacT++ Description Logic Reasoner: System Description. Proc.

of the Int. Joint Conference on Automated Reasoning (IJCAR), LNAI 4130:292-297,2006.

http://www.cs.ox.ac.uk/people/andrew.bate/
http://www.cs.ox.ac.uk/boris.motik/
http://www.cs.ox.ac.uk/people/bernardo.cuencagrau/
http://www.cs.ox.ac.uk/ian.horrocks/
http://dblp.uni-trier.de/pers/hd/g/Glimm:Birte
http://dblp.uni-trier.de/pers/hd/h/Horrocks:Ian
http://dblp.uni-trier.de/pers/hd/s/Stoilos:Giorgos
http://dblp.uni-trier.de/db/journals/jar/jar53.html#GlimmHMSW14
https://dblp.org/pers/hd/m/Motik:Boris
https://dblp.org/pers/hd/n/Nenov:Yavor
https://dblp.org/pers/hd/h/Horrocks:Ian
https://dblp.org/db/conf/ijcai/ijcai2015.html#MotikNPH15

