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What is a finiteness theorem?

By a finiteness theorem of Diophantine geometry I generally mean
a theorem to the effect that some given system of algebraic
equations has only finitely many solutions or at least that the
solution set takes a particularly simple form when we insist that the
solutions come from some specified arithmetically meaningful set.
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What is a finiteness theorem?

By a finiteness theorem of Diophantine geometry I generally mean
a theorem to the effect that some given system of algebraic
equations has only finitely many solutions or at least that the
solution set takes a particularly simple form when we insist that the
solutions come from some specified arithmetically meaningful set.

This theorem scheme requires some explanation as to the
meanings of most of the highlighted terms.
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Example: Mordell’s conjecture

Theorem (Faltings)

Let F (X ,Y ) ∈ Q[X ,Y ] be an irreducible polynomial in two
variables with rational coëfficients of total degree at least four.
Then there are at most finitely many pairs of rational number
(a, b) ∈ Q2 for which F (a, b) = 0.
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Example: Unit equation

Theorem (Lang)

Let K be a number field and UK := O×
K the group of units in the

ring of integers of K (the set of elements a ∈ K for which both a
and a−1 are zeroes of a monic polynomial with integer
coëfficients). If α and β are two elements of K, then there are only
finitely many solutions to αx + βy = 1 with x , y ∈ UK .

Thomas Scanlon University of California, Berkeley

A logical approach to uniformity in Diophantine geometry



Finiteness theorems Uniformity via compactness Definability of types Uniformity from stability

Example: Unit equation

Theorem (Lang)

Let K be a number field and UK := O×
K the group of units in the

ring of integers of K (the set of elements a ∈ K for which both a
and a−1 are zeroes of a monic polynomial with integer
coëfficients). If α and β are two elements of K, then there are only
finitely many solutions to αx + βy = 1 with x , y ∈ UK .

In this case “finite” really means finite. There are no exceptional
systems of equations.
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Example: Unit equation, generalized

As before, take K to be a number field and UK to be the group of
units in its ring of integers but consider an arbitrary system of
equations in several variables.

f1(x1, . . . , xn) = · · · = f`(x1, . . . , xn) = 0 (†)

where each fi is a polynomial over K .
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Example: Unit equation, generalized

As before, take K to be a number field and UK to be the group of
units in its ring of integers but consider an arbitrary system of
equations in several variables.

f1(x1, . . . , xn) = · · · = f`(x1, . . . , xn) = 0 (†)

where each fi is a polynomial over K .

The system (†) is special if the set of solutions to (†) with
(x1, . . . , xn) a tuple of nonzero complex numbers is a coset of a
group under coördinatewise multiplication.
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Example: Unit equation, generalized

As before, take K to be a number field and UK to be the group of
units in its ring of integers but consider an arbitrary system of
equations in several variables.

f1(x1, . . . , xn) = · · · = f`(x1, . . . , xn) = 0 (†)

where each fi is a polynomial over K .

The system (†) is special if the set of solutions to (†) with
(x1, . . . , xn) a tuple of nonzero complex numbers is a coset of a
group under coördinatewise multiplication.

Theorem (Lang)

The solutions to (†) with (x1, . . . , xn) ∈ Un
K lie in a finite union of

solution sets to special systems of equations.
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Example: André-Oort

Conjecture

If F (X ,Y ) ∈ C[X ,Y ] is an irreducible polynomial over the
complex numbers and F (a, b) = 0 for infinitely many pairs (a, b)
where each coördinate is the j-invariant of an elliptic curve with
complex multiplication, then F is a modular polynomial.

Thomas Scanlon University of California, Berkeley

A logical approach to uniformity in Diophantine geometry



Finiteness theorems Uniformity via compactness Definability of types Uniformity from stability

Example: André-Oort

Conjecture

If F (X ,Y ) ∈ C[X ,Y ] is an irreducible polynomial over the
complex numbers and F (a, b) = 0 for infinitely many pairs (a, b)
where each coördinate is the j-invariant of an elliptic curve with
complex multiplication, then F is a modular polynomial.

This conjecture is a special case of the André-Oort conjecture.
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Example: André-Oort

Conjecture

If F (X ,Y ) ∈ C[X ,Y ] is an irreducible polynomial over the
complex numbers and F (a, b) = 0 for infinitely many pairs (a, b)
where each coördinate is the j-invariant of an elliptic curve with
complex multiplication, then F is a modular polynomial.

This conjecture is a special case of the André-Oort conjecture.

The above conjecture is equivalent to a finiteness theorem in our
sense of the form for any nonzero polynomial G in two variables
over the complex numbers, there are finitely many modular
polynomials F1, . . . ,F` dividing G so that the set of solutions to
G (x , y) = 0 with (x , y) a pair of CM j-invariants differs from that
to F1 · · ·F`(x , y) = 0 by a finite set.
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What is uniform finiteness?

In the case of a finiteness theorem for which we expect an outright
finite number of solutions, for the uniform version we would ask
that the finite number of solutions in question to be bounded by a
function of the degrees of the polynomials in the system of
equations.
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What is uniform finiteness?

In the case of a finiteness theorem for which we expect an outright
finite number of solutions, for the uniform version we would ask
that the finite number of solutions in question to be bounded by a
function of the degrees of the polynomials in the system of
equations.

When we allow special systems of equations in the conclusion of
the theorem, then in the uniform version we ask that the degrees
of the relevant special equations also be bounded as a function of
the degrees of the initial system.
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Nonstandard methods

Question

Can one derive a uniform version of Faltings’ Theorem (Mordell’s
Conjecture) by considering nonstandard models of Th(Q,+,×)?

If the uniform version were false, then by the compactness
theorem we could find an elementary extension ∗Q � Q and
an irreducible polynomial F (X ,Y ) ∈ ∗Q[X ,Y ] of degree at
least four having infinitely many zeroes in ∗Q.
As ∗Q ≡ Q, Faltings’ Theorem interpreted in ∗Q says that
there are boundedly many solutions to F (x , y) = 0.
At this point, one might hope to use something about
nonstandard models of arithmetic.
It bears noting, that A. Robinson, in his final paper published
posthumously, considered a similar strategy towards a proof of
Mordell’s Conjecture.
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Why does the compactness argument fail?

The main problem is that finite is not a first-order property.
That the number of solutions is pseudofinite (or internally
finite) may be meaningful, but it is not obvious what this
meaning is.

On the face of it, the finiteness theorems in question only give
information about the standard model, but if the compactness
argument is to help we need to know something about the
nonstandard models as well.
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Stability

Definition

Let M be an L -structure for some first-order language L ,
A ⊆ M = |M| some subset of the universe of M, and n ∈ Z+ a
positive integer. An n-type over A is a maximal consistent theory
in LA(x1, . . . , xn) extending the LA-theory of M. The set of
n-types over A is denoted Sn(A).
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Stability

Definition

Let M be an L -structure for some first-order language L ,
A ⊆ M = |M| some subset of the universe of M, and n ∈ Z+ a
positive integer. An n-type over A is a maximal consistent theory
in LA(x1, . . . , xn) extending the LA-theory of M. The set of
n-types over A is denoted Sn(A).

Definition

An L -theory T is stable if for arbitrarily large cardinals λ if
M |= T has a universe M of cardinality λ, then |S1(M)| = λ.
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Stability

Definition

Let M be an L -structure for some first-order language L ,
A ⊆ M = |M| some subset of the universe of M, and n ∈ Z+ a
positive integer. An n-type over A is a maximal consistent theory
in LA(x1, . . . , xn) extending the LA-theory of M. The set of
n-types over A is denoted Sn(A).

Definition

An L -theory T is stable if for arbitrarily large cardinals λ if
M |= T has a universe M of cardinality λ, then |S1(M)| = λ.

It follows from Morley’s work on  Loś’s Conjecture that every
ℵ1-categorical theory is stable. In particular, algebraically closed
fields are stable.
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Definability of types

Definition

Let L be a first-order language, M an L -structure, A ⊆ M a
subset of the universe of M, and p ∈ S(A) a type over A. We say
that p is definable over A if for each formula ϕ(x; y) there are
another formula ψ(y; z) and parameters b from A so that for any
tuple a from A one has ϕ(x; a) ∈ p if and only if M |= ψ(a; b).
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Definability of types

Definition

Let L be a first-order language, M an L -structure, A ⊆ M a
subset of the universe of M, and p ∈ S(A) a type over A. We say
that p is definable over A if for each formula ϕ(x; y) there are
another formula ψ(y; z) and parameters b from A so that for any
tuple a from A one has ϕ(x; a) ∈ p if and only if M |= ψ(a; b).

Theorem (Shelah)

A theory is stable if and only if every finitary type over every
subset of every model of the theory is definable.
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Stable embedability

Proposition

If T is a stable L -theory, M |= T, A ⊆ M is a subset of the
universe of M, and X ⊆ M is a an LM -definable set, then there is
an LA-definable set Y for which X ∩ A = Y ∩ A.

Write X = {x ∈ M | M |= ϕ(m, x)} for an appropriate
formula ϕ and tuple of parameters m.

As p := tp(m/A) is definable, there is a formula ψ(x) ∈ LA

for which ϕ(y, a) ∈ p if and only if M |= ψ(a) for a ∈ A.

Set Y := {x ∈ M | M |= ψ(x)}
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Uniform stable embeddability

Theorem (Shelah)

If T is a stable theory, M |= T, A ⊆ M is a subset of the universe
of M, and ϕ(x , y) is any formula; then there is a formula ψ(x , z)
so that for any parameter m from M there is a parameter b from
A for which ϕ(x ; m) and ψ(x ; b) define the same subsets of A.
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Uniform stable embeddability

Theorem (Shelah)

If T is a stable theory, M |= T, A ⊆ M is a subset of the universe
of M, and ϕ(x , y) is any formula; then there is a formula ψ(x , z)
so that for any parameter m from M there is a parameter b from
A for which ϕ(x ; m) and ψ(x ; b) define the same subsets of A.

Proof.

If the theorem were to fail, then by applying the compactness
theorem to the structure M augmented by a predicate for A, we
obtain a new model ∗M with a subset ∗M and a parameter m
from ∗M for which {x ∈ A | ∗M |= ϕ(x ,m)} is not the trace of an
A-definable set.
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A little algebraic geometry

Definition

A complex algebraic variety is a set of the form
V = {x ∈ Cn |

∧
fi (x) = 0} where f1, . . . , f` is a sequence of

polynomials in n variables with complex coëfficients.

The algebraic varieties form the closed sets of the Zariski
topology.

A constructible set is a finite Boolean combination of
varieties. By quantifier elimination for (C,+,×), the
constructible sets are exactly the definable sets.
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Special varieties

Definition

Let Γ ⊆ Cm be a set. We say that the algebraic variety X ⊆ Cmn is
special if Γn ∩ X is dense in X with respect to the Zariski topology.
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Special varieties

Definition

Let Γ ⊆ Cm be a set. We say that the algebraic variety X ⊆ Cmn is
special if Γn ∩ X is dense in X with respect to the Zariski topology.

Example

For example, if Γ is the set of roots of unity, then the special
varieties are all finite unions of multiplicative translates of
subgroups of (C×)n.
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Automatic uniformity

Theorem

Let Γ ⊆ Cm be any set. If the class of special varieties for Γ is
closed under finite intersections, then Γ satisfies uniform finiteness
in the sense that there is a function f : N → N so that if X ⊆ Cm

is a variety defined by equations of degree at most d, then the
closure of X ∩ Γ is defined by equations of degree at most f (d). In
particular, if X ∩ Γ is finite, then it consists of at most f (d) points.
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Automatic uniformity

Theorem

Let Γ ⊆ Cm be any set. If the class of special varieties for Γ is
closed under finite intersections, then Γ satisfies uniform finiteness
in the sense that there is a function f : N → N so that if X ⊆ Cm

is a variety defined by equations of degree at most d, then the
closure of X ∩ Γ is defined by equations of degree at most f (d). In
particular, if X ∩ Γ is finite, then it consists of at most f (d) points.

Proof.

Uniform stable embeddness.
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Automatic uniformity

Theorem

Let Γ ⊆ Cm be any set. If the class of special varieties for Γ is
closed under finite intersections, then Γ satisfies uniform finiteness
in the sense that there is a function f : N → N so that if X ⊆ Cm

is a variety defined by equations of degree at most d, then the
closure of X ∩ Γ is defined by equations of degree at most f (d). In
particular, if X ∩ Γ is finite, then it consists of at most f (d) points.

Proof.

Uniform stable embeddness.

The hypotheses can be relaxed slightly to asserting only that if X
and Y are special and Z is a component of X ∩Y which meets Γn,
then Z is special. In this form, automatic uniformity applies to all
known examples of finiteness theorems in Diophantine geometry.

Thomas Scanlon University of California, Berkeley

A logical approach to uniformity in Diophantine geometry



Finiteness theorems Uniformity via compactness Definability of types Uniformity from stability

A few details in a special case

We take Γ := {ζ ∈ C | (∃n ∈ Z+)ζn = 1} to be the set of roots of
unity.
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unity. In this case, the special varieties are finite unions of cosets
of multiplicative groups.
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A few details in a special case

We take Γ := {ζ ∈ C | (∃n ∈ Z+)ζn = 1} to be the set of roots of
unity. In this case, the special varieties are finite unions of cosets
of multiplicative groups.
Fix

f (x , y ; t) =
∑

0≤α,β≤d

tα,βxαyβ

a polynomial in 2 + (d + 1)2 variables.
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A few details in a special case

We take Γ := {ζ ∈ C | (∃n ∈ Z+)ζn = 1} to be the set of roots of
unity. In this case, the special varieties are finite unions of cosets
of multiplicative groups.
Fix

f (x , y ; t) =
∑

0≤α,β≤d

tα,βxαyβ

a polynomial in 2 + (d + 1)2 variables.
We wish to uniformly describe the sets

{(ζ, ξ) ∈ Γ2 | f (ζ, ξ; b) = 0}

as the parameter b varies.
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A few more details

By uniform definability of types, there is a formula ψ(x , y ; z) so
that for any b there is some tuple a from Γ for which for any pair
(ζ, ξ) ∈ Γ2

C |= ψ(ζ, ξ; a) ⇐⇒ f (ζ, ξ; b) = 0
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A few more details

By uniform definability of types, there is a formula ψ(x , y ; z) so
that for any b there is some tuple a from Γ for which for any pair
(ζ, ξ) ∈ Γ2

C |= ψ(ζ, ξ; a) ⇐⇒ f (ζ, ξ; b) = 0

Using quantifier elimination and some easy point-set topology, one
sees that ψ may be assumed to define a special variety, namely in
this case, a finite union of cosets of multiplicative groups.
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that for any b there is some tuple a from Γ for which for any pair
(ζ, ξ) ∈ Γ2

C |= ψ(ζ, ξ; a) ⇐⇒ f (ζ, ξ; b) = 0

Using quantifier elimination and some easy point-set topology, one
sees that ψ may be assumed to define a special variety, namely in
this case, a finite union of cosets of multiplicative groups.
The solution set to ψ(x , y ; a)to is the projection onto the first two
coördinates of the intersection of the formula ψ with the coset
(C×)2 × {a}. As such it is easy to read off bounds on the shape of
the intersection in terms of the presentation of ψ.
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Some final remarks

In practice, often, but not always, the proofs of the finiteness
theorems yield effective uniformities.

If one can formalize the problems in an appropriate first-order
theory, then stronger automatic uniformities may follow.

D. Roessler has applied this automatic uniformity theorem to
give easy proofs of finiteness theorems for abelian varieties.
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