Propositional Games with Explicit Strategies

Bryan Renne

CUNY Graduate Center
Computer Science

13th Workshop on Logic, Language, Information, and Computation

Overview

(1) LP: Artemov's Logic of Proofs

Overview

(1) LP: Artemov's Logic of Proofs
(2) Two games: Nim and Verification

Overview

(1) LP: Artemov's Logic of Proofs
(2) Two games: Nim and Verification
(3) About strategies

- LP: A logic of explicit strategies
- Application: LP Strategies for Nim

Overview

(1) LP: Artemov's Logic of Proofs
(2) Two games: Nim and Verification
(3) About strategies

- LP: A logic of explicit strategies
- Application: LP Strategies for Nim

LP: Artemov's Logic of Proofs
Basic ideas

Extend propositional logic with formula-labeling terms.

LP: Artemov's Logic of Proofs

Basic ideas

Extend propositional logic with formula-labeling terms.

- New formulas $t: F$.

LP: Artemov's Logic of Proofs
Basic ideas

Extend propositional logic with formula-labeling terms.

- New formulas $t: F$.

LP: Artemov's Logic of Proofs
Basic ideas

Extend propositional logic with formula-labeling terms.

- New formulas $t: F$.

Term nesting.

F may also contain terms.

LP: Artemov's Logic of Proofs Basic ideas

Extend propositional logic with formula-labeling terms.

- New formulas $t: F$.

Term nesting.
F may also contain terms.

- Term structure mimics deduction.

LP: Artemov's Logic of Proofs
Basic ideas

Extend propositional logic with formula-labeling terms.

- New formulas $t: F$.

Term nesting.
F may also contain terms.

- Term structure mimics deduction.

Internalization.

Each theorem F has a term t such that $t: F$ is a theorem.

LP: Artemov's Logic of Proofs
The language

Extend the language of propositional logic, CL.

LP: Artemov's Logic of Proofs

The language

Extend the language of propositional logic, CL.

- Functions: $+{ }^{(2)}$, . ${ }^{(2)}$, ! ${ }^{(1)}$
- Variables: $x_{1}, x_{2}, x_{3}, \ldots$
- Constants: $c_{1}, c_{2}, c_{3}, \ldots$

LP: Artemov's Logic of Proofs

The language

Extend the language of propositional logic, CL.

- Functions: $+{ }^{(2)}$, . ${ }^{(2)}$, ! ${ }^{(1)}$
- Variables: $x_{1}, x_{2}, x_{3}, \ldots$
- Constants: $c_{1}, c_{2}, c_{3}, \ldots$
- Terms built up from constants and variables using functions.
- Formulas are those of CL in addition to $t: F$.

LP: Artemov's Logic of Proofs

Axioms and rules

- Classical propositional logic, CL
C. Finite collection of axiom schemas

RC. Modus ponens: infer B from $A \supset B$ and A

- Evidence management

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
LP4. $u: A \supset A$
RLP. Constant necessitation: infer $c: A$ from constant c and axiom A

LP: Artemov's Logic of Proofs

Axioms and rules

- Classical propositional logic, CL
C. Finite collection of axiom schemas

RC. Modus ponens: infer B from $A \supset B$ and A

- Evidence management

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
LP4. $u: A \supset A$
RLP. Constant necessitation: infer $c: A$ from constant c and axiom A

Internalization Theorem.

If F is an LP theorem, there is a variable-free term t such that $t: F$ is also an LP theorem.

Overview

(1) LP: Artemov's Logic of Proofs
(2) Two games: Nim and Verification
(3) About strategies

- LP: A logic of explicit strategies
- Application: LP Strategies for Nim

The game of Nim
 A basic version of Nim

- Given three piles of sticks: (a, b, c).

The game of Nim
 A basic version of Nim

- Given three piles of sticks: (a, b, c).
- Two players take alternating turns:
- Choose one pile.
- Remove some nonzero number of sticks from the chosen pile.
- Discard removed sticks, which are then no longer in play.

The game of Nim

A basic version of Nim

- Given three piles of sticks: (a, b, c).
- Two players take alternating turns:
- Choose one pile.
- Remove some nonzero number of sticks from the chosen pile.
- Discard removed sticks, which are then no longer in play.
- Winner: person to pick up the last stick (so that none remain in any pile).

The game of Verification

 (the Ehrenfeucht-Fraïssé-Hintikka subformula-choosing game)- A is a (propositional) formula written using \neg and \vee.

The game of Verification

 (the Ehrenfeucht-Fraïssé-Hintikka subformula-choosing game)- A is a (propositional) formula written using \neg and \vee.
- M is a model interpreting atoms.

The game of Verification

(the Ehrenfeucht-Fraïssé-Hintikka subformula-choosing game)

- A is a (propositional) formula written using \neg and \vee.
- M is a model interpreting atoms.
- The Verification game is played by players True and False. True moves first.

The game of Verification

 (the Ehrenfeucht-Fraïssé-Hintikka subformula-choosing game)- A is a (propositional) formula written using \neg and \vee.
- M is a model interpreting atoms.
- The Verification game is played by players True and False. True moves first.
- Case: A is the atom p. True wins iff player-to-move's name matches the truth of p in M.

The game of Verification

 (the Ehrenfeucht-Fraïssé-Hintikka subformula-choosing game)- A is a (propositional) formula written using \neg and \vee.
- M is a model interpreting atoms.
- The Verification game is played by players True and False. True moves first.
- Case: A is the atom p. True wins iff player-to-move's name matches the truth of p in M.
- Case: A is $B \vee C$. Player-to-move either chooses B or else chooses C; game continues on chosen subformula with same player-to-move.

The game of Verification

 (the Ehrenfeucht-Fraïssé-Hintikka subformula-choosing game)- A is a (propositional) formula written using \neg and \vee.
- M is a model interpreting atoms.
- The Verification game is played by players True and False. True moves first.
- Case: A is the atom p. True wins iff player-to-move's name matches the truth of p in M.
- Case: A is $B \vee C$. Player-to-move either chooses B or else chooses C; game continues on chosen subformula with same player-to-move.
- Case A is $\neg B$.

Player-to-move changes to other player; game continues on B with this new player to move.

The game of Verification Truth and validity

Definition

A is true in M : True has a winning strategy in Verification on A with model M.

The game of Verification

 Truth and validity
Definition

A is true in M : True has a winning strategy in Verification on A with model M.

Winning strategy.

A way of choosing moves so as to guarantee a win, no matter the moves of the other player.

The game of Verification

 Truth and validity
Definition

A is true in M : True has a winning strategy in Verification on A with model M.

Winning strategy.

A way of choosing moves so as to guarantee a win, no matter the moves of the other player.

Definition

A is valid: True has a winning strategy in Verification on A no matter the model M.

The game of Verification

 Truth and validity
Definition

A is true in M : True has a winning strategy in Verification on A with model M.

Winning strategy.

A way of choosing moves so as to guarantee a win, no matter the moves of the other player.

Definition

A is valid: True has a winning strategy in Verification on A no matter the model M.

Theorem
Tarskian validity agrees with Verification validity.

Embedding Nim into Verification

Associate a propositional formula to each Nim instance.
(Idea: Copy the game tree of the Nim instance.)

Embedding Nim into Verification

- Nim game $(a, b, c) \mapsto$ formulas $(a, b, c)^{T}$ and $(a, b, c)^{F}$.

Embedding Nim into Verification

- Nim game $(a, b, c) \mapsto$ formulas $(a, b, c)^{T}$ and $(a, b, c)^{F}$.
- $(a, b, c)^{T}$ is the Nim game (a, b, c) with the 1st player to move.

Embedding Nim into Verification

- Nim game $(a, b, c) \mapsto$ formulas $(a, b, c)^{T}$ and $(a, b, c)^{F}$.
- $(a, b, c)^{T}$ is the Nim game (a, b, c) with the 1st player to move.
- $(a, b, c)^{F}$ is the Nim game (a, b, c) with the 2nd player to move.

Embedding Nim into Verification

- Nim game $(a, b, c) \mapsto$ formulas $(a, b, c)^{T}$ and $(a, b, c)^{F}$.
- $(a, b, c) \xrightarrow{1}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is the one-move relation.

Embedding Nim into Verification

- Nim game $(a, b, c) \mapsto$ formulas $(a, b, c)^{T}$ and $(a, b, c)^{F}$.
- $(a, b, c) \xrightarrow{1}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is the one-move relation.
- Example: $(4,5,1) \xrightarrow{1}(2,5,1)$

Embedding Nim into Verification

- Nim game $(a, b, c) \mapsto$ formulas $(a, b, c)^{T}$ and $(a, b, c)^{F}$.
- $(a, b, c) \xrightarrow{1}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is the one-move relation.
- $(0,0,0)^{T}:=(0,0,0)^{F}:=\perp$, false propositional constant.

Embedding Nim into Verification

- Nim game $(a, b, c) \mapsto$ formulas $(a, b, c)^{T}$ and $(a, b, c)^{F}$.
- $(a, b, c) \xrightarrow{1}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is the one-move relation.
- $(0,0,0)^{T}:=(0,0,0)^{F}:=\perp$, false propositional constant.
- For a, b, c not all zero,

$$
(a, b, c)^{T}:=\bigvee_{(a, b, c) \xrightarrow{1}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)} \neg\left(a^{\prime}, b^{\prime}, c^{\prime}\right)^{F}
$$

and similarly for $(a, b, c)^{F}$, though with T superscripts on RHS.

Embedding Nim into Verification

- Nim game $(a, b, c) \mapsto$ formulas $(a, b, c)^{T}$ and $(a, b, c)^{F}$.
- $(a, b, c) \xrightarrow{1}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is the one-move relation.
- $(0,0,0)^{T}:=(0,0,0)^{F}:=\perp$, false propositional constant.
- For a, b, c not all zero,

$$
(a, b, c)^{T}:=\bigvee_{(a, b, c) \xrightarrow{1}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)} \neg\left(a^{\prime}, b^{\prime}, c^{\prime}\right)^{F}
$$

and similarly for $(a, b, c)^{F}$, though with T superscripts on RHS.

True has a winning strategy in Verification on $(a, b, c)^{T}$ iff 1st player has a winning strategy in Nim on (a, b, c).

Embedding Nim into Verification

 An exampleExample. Nim game (1, 1, 1).

Embedding Nim into Verification

An example

Nim
Verification
1st on (1, 1, 1).

True on $(1,1,1)^{T}$.

Embedding Nim into Verification

An example

Nim
Verification

1st on $(1,1,1)$.	True on $(1,1,1)^{T}$.
$[$ Pick $(0,1,1),(1,0,1)$, or $(1,1,0)]$.	$\left[\neg(0,1,1)^{F} \vee \neg(1,0,1)^{F} \vee \neg(1,1,0)^{F}\right]$

Embedding Nim into Verification

An example
Nim
Verification

1st on (1, 1, 1). [Pick (0, 1, 1), (1,0, $)$, or $(1,1,0)]$.	True on $(1,1,1)^{T}$. $\left[\neg(0,1,1)^{F} \vee \neg(1,0,1)^{F} \vee \neg(1,1,0)^{F}\right]$	
(1st waits.)	True on $\neg(0,1,1)^{F}$.	

Embedding Nim into Verification

An example
Nim

Verification

1st on (1, 1, 1). [Pick (0, 1, 1), (1,0, 1), or (1, 1,0).]	True on $(1,1,1)^{T}$. $\left[\neg(0,1,1)^{F} \vee \neg(1,0,1)^{F} \vee \neg(1,1,0)^{F}\right]$
(1st waits.)	True on $\neg(0,1,1)^{F}$.
2nd on (0, 1, 1).	False on $(0,1,1)^{F}$.

Embedding Nim into Verification

An example
Nim

Verification

1st on (1, 1, 1). [Pick $(0,1,1),(1,0,1)$, or $(1,1,0)]$.	True on $(1,1,1)^{T}$. $\left[\neg(0,1,1)^{F} \vee \neg(1,0,1)^{F} \vee \neg(1,1,0)^{F}\right]$
(1st waits.)	True on $\neg(0,1,1)^{F}$.
2nd on $(0,1,1)$. [Pick $(0,0,1)$ or $(0,1,0) \cdot]$	False on $(0,1,1)^{F}$. $\left[\neg(0,0,1)^{T} \vee \neg(0,1,0)^{T}\right]$

Embedding Nim into Verification

An example
Nim

Verification

Embedding Nim into Verification

An example

Nim
1st on $(1,1,1)$.
(1st waits.)
2 nd on ($0,1,1$).
[Pick $(0,0,1)$ or $(0,1,0)$.]

(2nd waits.)	
1st on $(0,0,1)$.	

Verification

True on $(1,1,1)^{T}$.
$\left[\neg(0,1,1)^{F} \vee \neg(1,0,1)^{F} \vee \neg(1,1,0)^{F}\right]$
True on $\neg(0,1,1)^{F}$.
False on $(0,1,1)^{F}$.
$\left[\neg(0,0,1)^{T} \vee \neg(0,1,0)^{T}\right]$
False on $\neg(0,0,1)^{T}$.
True on $(0,0,1)^{T}$.

Embedding Nim into Verification

An example

Nim
1st on $(1,1,1)$.
[Pick $(0,1,1),(1,0,1)$, or $(1,1,0)$.]
(1st waits.)
2 nd on $(0,1,1)$.
[Pick $(0,0,1)$ or $(0,1,0)$.]

(2nd waits.)	
1st on $(0,0,1)$. [Pick $(0,0,0)]$.	

Verification

True on $(1,1,1)^{T}$.
$\left[\neg(0,1,1)^{F} \vee \neg(1,0,1)^{F} \vee \neg(1,1,0)^{F}\right]$
True on $\neg(0,1,1)^{F}$.
False on $(0,1,1)^{F}$.
$\left[\neg(0,0,1)^{T} \vee \neg(0,1,0)^{T}\right]$
False on $\neg(0,0,1)^{T}$.
True on $(0,0,1)^{T}$.
$\left[\neg(0,0,0)^{F}\right]$

Embedding Nim into Verification

An example

Nim

1st on $(1,1,1)$. [Pick $(0,1,1),(1,0,1)$, or $(1,1,0)]$.	True on $(1,1,1)^{T}$. $\left[\neg(0,1,1)^{F} \vee \neg(1,0,1)^{F} \vee \neg(1,1,0)^{F}\right]$
(1st waits.)	True on $\neg(0,1,1)^{F}$.
2nd on $(0,1,1)$. [Pick $(0,0,1)$ or $(0,1,0)]$.	False on $(0,1,1)^{F}$. $\left[\neg(0,0,1)^{T} \vee \neg(0,1,0)^{T}\right]$
(2nd waits.)	False on $\neg(0,0,1)^{T}$.
1st on $(0,0,1)$. $[$ Pick $(0,0,0)]$.	True on $(0,0,1)^{T}$. $\left[\neg(0,0,0)^{F}\right]$
True on $\neg(0,0,0)^{F}$.	

Embedding Nim into Verification

An example
Nim

Embedding Nim into Verification

An example
Nim

Embedding Nim into Verification

An example
Nim

Embedding Nim into Verification

An example
Nim

1st on $(1,1,1)$. [Pick $(0,1,1),(1,0,1)$, or $(1,1,0)]$.	True on $(1,1,1)^{T}$. $\left[\neg(0,1,1)^{F} \vee \neg(1,0,1)^{F} \vee \neg(1,1,0)^{F}\right]$
(1st waits.)	True on $\neg(0,1,1)^{F}$.

Embedding Nim into Verification

An example
Nim

| 1st on $(1,1,1)$.
 [Pick $(0,1,1),(1,0,1)$, or $(1,1,0)]$. | True on $(1,1,1)^{T}$.
 $\left[\neg(0,1,1)^{F} \vee \neg(1,0,1)^{F} \vee \neg(1,1,0)^{F}\right]$ |
| :--- | :--- | :--- |
| (1st waits.) | True on $\neg(0,1,1)^{F}$. |

Overview

(1) LP: Artemov's Logic of Proofs
(2) Two games: Nim and Verification
(3) About strategies

- LP: A logic of explicit strategies
- Application: LP Strategies for Nim

About strategies

 What are they?So Nim may be considered as a special case of Verification. (And winning strategies carry over.)

About strategies

 What are they?So Nim may be considered as a special case of Verification. (And winning strategies carry over.)

But what is a strategy in Verification?

About strategies

What are they?

So Nim may be considered as a special case of Verification. (And winning strategies carry over.)

But what is a strategy in Verification?

Strategies.

A strategy in the Verification game on A is a function on the parse tree of A taking each non-leaf to a child.

About strategies

What are they?

So Nim may be considered as a special case of Verification. (And winning strategies carry over.)

But what is a strategy in Verification?

Strategies.

A strategy in the Verification game on A is a function on the parse tree of A taking each non-leaf to a child.

Winning strategies.

A winning strategy is a strategy that guarantees a player a win no matter the moves of the other player.

About strategies

Some slogans

- Avoid the opponent's winning positions.

About strategies

Some slogans

- Avoid the opponent's winning positions. In (1,2,0), 1st player ought to avoid (1, 0, 0).

About strategies

Some slogans

- Avoid the opponent's winning positions.
- Surrender if all is lost, otherwise fight.

About strategies

Some slogans

- Avoid the opponent's winning positions.
- Surrender if all is lost, otherwise fight. In ($1,1,0$), 1st player might as well surrender.

About strategies

Some slogans

- Avoid the opponent's winning positions.
- Surrender if all is lost, otherwise fight. In $(1,1,0)$, 1 st player might as well surrender.

Surrender. A game extension. On a turn, players may:

- Surrender or
- Make a legal move.

About strategies

Some slogans

- Avoid the opponent's winning positions.
- Surrender if all is lost, otherwise fight.

Strategies (again).

A strategy in Verification on A is a function on the parse tree of A taking each non-leaf either to a child or to a unique surrender value.

About strategies

Some slogans

- Avoid the opponent's winning positions.
- Surrender if all is lost, otherwise fight.

Note: Verification on $\neg A$.
Player-to-play may

- Continue to play, waiting for the other player's response on A, or
- Surrender.

About strategies

Some slogans

- Avoid the opponent's winning positions.
- Surrender if all is lost, otherwise fight.
- Choose the best plan.

About strategies

Some slogans

- Avoid the opponent's winning positions.
- Surrender if all is lost, otherwise fight.
- Choose the best plan.

In $(1,2,0)$, the 1st player ought to choose his first move wisely.

About strategies

Making semi-formal sense of the slogans

Let $t: A$ mean " t is a strategy on A."

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.
- Suppose $u:(\neg A \vee B), v: A$, and both u and v are winning strategies...

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.
- Suppose $u:(\neg A \vee B), v: A$, and both u and v are winning strategies...
- Then $u: B$ and u is winning on B.

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.
- Suppose $u:(\neg A \vee B), v: A$, and both u and v are winning strategies...
- Then $u: B$ and u is winning on B.

Strategy $u \cdot v$: "if $u:(\neg A \vee B)$ and $v: A$, then follow u on B. ."

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.

Strategy $u \cdot v$: "if $u:(\neg A \vee B)$ and $v: A$, then follow u on $B . "$

- Surrender if all is lost, otherwise fight.

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.

Strategy $u \cdot v:$ "if $u:(\neg A \vee B)$ and $v: A$, then follow u on $B . "$

- Surrender if all is lost, otherwise fight.
- If $u: A$ and u is a winning strategy, then one ought to follow u on A. Otherwise, if there's no other choice, one ought to give up.

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.

Strategy $u \cdot v$: "if $u:(\neg A \vee B)$ and $v: A$, then follow u on B."

- Surrender if all is lost, otherwise fight.
- If $u: A$ and u is a winning strategy, then one ought to follow u on A. Otherwise, if there's no other choice, one ought to give up.

Strategy ! u : "give up if u does not win on A, otherwise continue by following u on A."

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.

Strategy $u \cdot v:$ "if $u:(\neg A \vee B)$ and $v: A$, then follow u on B.'

- Surrender if all is lost, otherwise fight.

- Choose the best plan.

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.

Strategy $u \cdot v:$ "if $u:(\neg A \vee B)$ and $v: A$, then follow u on $B . "$

- Surrender if all is lost, otherwise fight.

- Choose the best plan.
- If $u: A$ and $v: A$, then one ought to choose the best of u and v when playing A.

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.

- Surrender if all is lost, otherwise fight.

- Choose the best plan.
- If $u: A$ and $v: A$, then one ought to choose the best of u and v when playing A.

Strategy $u+v$: "choose the better of u and $v . "$

About strategies

Making semi-formal sense of the slogans

- Avoid the opponent's winning positions.

Strategy $u \cdot v$: "if $u:(\neg A \vee B)$ and $v: A$, then follow u on B."

- Surrender if all is lost, otherwise fight.

Strategy ! u : "give up if u does not win on A, otherwise continue by following u on A."

- Choose the best plan.

Strategy $u+v$: "choose the better of u and $v . "$

LP: A logic of explicit strategies Preliminary notes

- In LP Verification: background model assigns strategies to terms.

LP: A logic of explicit strategies Preliminary notes

- In LP Verification: background model assigns strategies to terms.
- Assignment respects meaning of term operations.

LP: A logic of explicit strategies Preliminary notes

- In LP Verification: background model assigns strategies to terms.
- Assignment respects meaning of term operations.
- Notation: $A \supset B$ abbreviates $\neg A \vee B$.

LP: A logic of explicit strategies Preliminary notes

- In LP Verification: background model assigns strategies to terms.
- Assignment respects meaning of term operations.
- Notation: $A \supset B$ abbreviates $\neg A \vee B$.

Derived Verification move on $A \supset B$.
 Player-to-move chooses one:

LP: A logic of explicit strategies Preliminary notes

- In LP Verification: background model assigns strategies to terms.
- Assignment respects meaning of term operations.
- Notation: $A \supset B$ abbreviates $\neg A \vee B$.

Derived Verification move on $A \supset B$.
Player-to-move chooses one:

- Subformula A.

Player-to-move then either chooses surrender or waits for other player's response on A.

LP: A logic of explicit strategies Preliminary notes

- In LP Verification: background model assigns strategies to terms.
- Assignment respects meaning of term operations.
- Notation: $A \supset B$ abbreviates $\neg A \vee B$.

Derived Verification move on $A \supset B$.
Player-to-move chooses one:

- Subformula A.

Player-to-move then either chooses surrender or waits for other player's response on A.

- Subformula B.

Player-to-move retains turn on B.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
If u is not winning, there is a counter-strategy s.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
If u is not winning, there is a counter-strategy s.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
If u is not winning, there is a counter-strategy s. True wins.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
If v is not winning, there is a counter-strategy s.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
If v is not winning, there is a counter-strategy s.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
If v is not winning, there is a counter-strategy s.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
If v is not winning, there is a counter-strategy s. True wins.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
Both u and v are winning...

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
Both u and v are winning...

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

$$
\begin{aligned}
\text { LP1. } u:(A \supset B) \supset & (v: A \supset(u \cdot v): B) \\
& \text { Both } u \text { and } v \text { are winning. .. }
\end{aligned}
$$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
Both u and v are winning...

Strategy $u \cdot v$: "if $u:(\neg A \vee B)$ and $v: A$, then follow u on $B . "$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
Both u and v are winning... True wins.

Strategy $u \cdot v$: "if $u:(\neg A \vee B)$ and $v: A$, then follow u on $B . "$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
If u is not winning, there is a counter-strategy s.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
If u is not winning, there is a counter-strategy s.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
If u is not winning, there is a counter-strategy s. True wins.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
If u is winning. .

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
If u is winning. .

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
If u is winning. .

Strategy ! u: "give up if u does not win on A, otherwise continue by following u on A."

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
If u is winning. .

Strategy ! u: "give up if u does not win on A, otherwise continue by following u on A."

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
If u is winning. .

Strategy ! u: "give up if u does not win on A, otherwise continue by following u on A."

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
If u is winning. . . True wins.

Strategy ! u : "give up if u does not win on A, otherwise continue by following u on A."

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
If neither u nor v is winning, each has a counter-strategy.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
If neither u nor v is winning, each has a counter-strategy.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
If neither u nor v is winning, each has a counter-strategy.
True wins.

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
If u or v is winning. .

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

$$
\begin{aligned}
& \text { LP1. } u:(A \supset B) \supset(v: A \supset(u \cdot v): B) \sqrt{ } \\
& \text { LP2. } u: A \supset!u:(u: A) \sqrt{ } \\
& \text { LP3. } u: A \vee v: A \supset(u+v): A \\
& \text { If } u \text { or } v \text { is winning. . }
\end{aligned}
$$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

$$
\begin{aligned}
& \text { LP1. } u:(A \supset B) \supset(v: A \supset(u \cdot v): B) \sqrt{ } \\
& \text { LP2. } u: A \supset!u:(u: A) \sqrt{ } \\
& \text { LP3. } u: A \vee v: A \supset(u+v): A \\
& \text { If } u \text { or } v \text { is winning. . }
\end{aligned}
$$

Strategy $u+v$: "choose the better of u and $v . "$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

```
LP1. \(u:(A \supset B) \supset(v: A \supset(u \cdot v): B)\)
LP2. \(u: A \supset!u:(u: A)\)
LP3. \(u: A \vee v: A \supset(u+v): A\)
If \(u\) or \(v\) is winning... True wins.
```

Strategy $u+v$: "choose the better of u and $v . "$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
LP4. $u: A \supset A$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
LP4. $u: A \supset A$

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
LP4. $u: A \supset A$
RLP. Constant necessitation: infer $c: A$ from constant c and axiom A

A logic of explicit strategies

Extending Verification to LP

LP Verification: Rule on $u: A$.
Player-to-move continues on A according to strategy u.

LP1. $u:(A \supset B) \supset(v: A \supset(u \cdot v): B)$
LP2. $u: A \supset!u:(u: A)$
LP3. $u: A \vee v: A \supset(u+v): A$
LP4. $u: A \supset A$
RLP. Constant necessitation: infer $c: A$ from constant c and axiom A

Correctness of LP Verification

Theorem (Soundness)

True has a winning strategy on each LP theorem.

Correctness of LP Verification

Theorem (Soundness)

True has a winning strategy on each LP theorem.

Theorem (Completeness)

True has a winning strategy only on LP theorems.

Application: LP Strategies for Nim

Internalization example

1st has a winning strategy in Nim on $(1,2)[=(1,2,0)]$.

Application: LP Strategies for Nim

Internalization example

1st has a winning strategy in Nim on $(1,2)[=(1,2,0)]$.

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

Application: LP Strategies for Nim

 Internalization example1st has a winning strategy in Nim on $(1,2)[=(1,2,0)]$.

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

1. $\neg \neg \perp \supset \perp$
2. $(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))$
3. $\neg \neg \perp \vee \neg \neg \perp \supset \perp$
4. $(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)$
5. $\neg(\neg \neg \perp \vee \neg \neg \perp)$
6. $\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)$
7. $\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}$
$(1,1)^{F}$

Application: LP Strategies for Nim

 Internalization example$$
\text { 1st has a winning strategy in } \operatorname{Nim} \text { on }(1,2)[=(1,2,0)] .
$$

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

$1^{\prime} . \quad c_{1}:(\neg \neg \perp \supset \perp)$
2. $(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))$
3. $\neg \neg \perp \vee \neg \neg \perp \supset \perp$
4. $(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)$
5. $\neg(\neg \neg \perp \vee \neg \neg \perp)$
6. $\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)$
7. $\quad\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}_{(1,1)^{F}}$

Application: LP Strategies for Nim

Internalization example

$$
\text { 1st has a winning strategy in } \operatorname{Nim} \text { on }(1,2)[=(1,2,0)] .
$$

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

1'. $\quad c_{1}:(\neg \neg \perp \supset \perp)$
$2^{\prime} . \quad c_{2}:\{(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))\}$
3. $\neg \neg \perp \vee \neg \neg \perp \supset \perp$
4. $(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)$
5. $\neg(\neg \neg \perp \vee \neg \neg \perp)$
6. $\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)$
7. $\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}_{(1,1)^{F}}$

Application: LP Strategies for Nim

Internalization example

$$
\text { 1st has a winning strategy in } \operatorname{Nim} \text { on }(1,2)[=(1,2,0)] .
$$

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

1'. $\quad c_{1}:(\neg \neg \perp \supset \perp)$
$2^{\prime} . \quad c_{2}:\{(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))\}$
$3^{\prime} . \quad\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right):\{\neg \neg \perp \vee \neg \neg \perp \supset \perp\}$
4. $(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)$
5. $\neg(\neg \neg \perp \vee \neg \neg \perp)$
6. $\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)$
7. $\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}_{(1,1)^{F}}$

Application: LP Strategies for Nim

Internalization example

$$
\text { 1st has a winning strategy in } \operatorname{Nim} \text { on }(1,2)[=(1,2,0)] .
$$

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

1'. $\quad c_{1}:(\neg \neg \perp \supset \perp)$
$2^{\prime} . \quad c_{2}:\{(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))\}$
$3^{\prime} . \quad\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right):\{\neg \neg \perp \vee \neg \neg \perp \supset \perp\}$
$4^{\prime} . \quad c_{3}:\{(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)\}$
5. $\neg(\neg \neg \perp \vee \neg \neg \perp)$
6. $\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)$
7. $\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}_{(1,1)^{F}}$

Application: LP Strategies for Nim

Internalization example

$$
\text { 1st has a winning strategy in } \operatorname{Nim} \text { on }(1,2)[=(1,2,0)] .
$$

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

1'. $\quad c_{1}:(\neg \neg \perp \supset \perp)$
$2^{\prime} . \quad c_{2}:\{(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))\}$
$3^{\prime} . \quad\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right):\{\neg \neg \perp \vee \neg \neg \perp \supset \perp\}$
$4^{\prime} . \quad c_{3}:\{(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)\}$
$5^{\prime} . \quad\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right): \neg(\neg \neg \perp \vee \neg \neg \perp)$
6. $\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)$
7. $\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}_{(1,1)^{F}}$

Application: LP Strategies for Nim

Internalization example

1st has a winning strategy in Nim on $(1,2)[=(1,2,0)]$.

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

$1^{\prime} . \quad c_{1}:(\neg \neg \perp \supset \perp)$
$2^{\prime} . \quad c_{2}:\{(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))\}$
$3^{\prime} . \quad\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right):\{\neg \neg \perp \vee \neg \neg \perp \supset \perp\}$
$4^{\prime} . \quad c_{3}:\{(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)\}$
$5^{\prime} . \quad\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right): \neg(\neg \neg \perp \vee \neg \neg \perp)$
6'. $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
7. $\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}_{(1,1)^{F}}$

Application: LP Strategies for Nim

Internalization example

1st has a winning strategy in Nim on $(1,2)[=(1,2,0)]$.

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

1'. $\quad c_{1}:(\neg \neg \perp \supset \perp)$
$2^{\prime} . \quad c_{2}:\{(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))\}$
$3^{\prime} . \quad\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right):\{\neg \neg \perp \vee \neg \neg \perp \supset \perp\}$
$4^{\prime} . \quad c_{3}:\{(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)\}$
$5^{\prime} . \quad\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right): \neg(\neg \neg \perp \vee \neg \neg \perp)$
6'. $\quad c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
$7^{\prime} .\left(c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right)\right):\{\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}_{(1,1)^{F}}\}$

Application: LP Strategies for Nim

Internalization example

1st has a winning strategy in Nim on $(1,2)[=(1,2,0)]$.

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

1'. $\quad c_{1}:(\neg \neg \perp \supset \perp)$
$2^{\prime} . \quad c_{2}:\{(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))\}$
$3^{\prime} . \quad\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right):\{\neg \neg \perp \vee \neg \neg \perp \supset \perp\}$
$4^{\prime} . \quad c_{3}:\{(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)\}$
$5^{\prime} . \quad\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right): \neg(\neg \neg \perp \vee \neg \neg \perp)$
6'. $\quad c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
$7^{\prime} .\left(c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right)\right):\{\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}_{(1,1)^{F}}\}$

Application: LP Strategies for Nim

Internalization example

1st has a winning strategy in Nim on $(1,2)[=(1,2,0)]$.

$$
(1,2)^{T}=\neg(0,2)^{F} \vee \neg(1,0)^{F} \vee \neg(1,1)^{F}
$$

1'. $\quad c_{1}:(\neg \neg \perp \supset \perp)$
$2^{\prime} . \quad c_{2}:\{(\neg \neg \perp \supset \perp) \supset((\neg \neg \perp \supset \perp) \supset(\neg \neg \perp \vee \neg \neg \perp \supset \perp))\}$
$3^{\prime} . \quad\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right):\{\neg \neg \perp \vee \neg \neg \perp \supset \perp\}$
$4^{\prime} . \quad c_{3}:\{(\neg \neg \perp \vee \neg \neg \perp \supset \perp) \supset \neg(\neg \neg \perp \vee \neg \neg \perp)\}$
$5^{\prime} . \quad\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right): \neg(\neg \neg \perp \vee \neg \neg \perp)$
6'. $\quad c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
$7^{\prime} .\left(c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right)\right):\{\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg \underbrace{(\neg \neg \perp \vee \neg \neg \perp)}_{(1,1)^{F}}\}$

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"
... Win!

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"
- Want the strategy $c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right)$.

Strategy $u \cdot v:$ "if $u:(A \supset B)$ and $v: A$, then follow u on $B . "$

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"
- Want the strategy $c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right)$.

Strategy $u \cdot v:$ "if $u:(A \supset B)$ and $v: A$, then follow u on $B . "$

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"
- Want the strategy $c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right)$.

Strategy $u \cdot v:$ "if $u:(A \supset B)$ and $v: A$, then follow u on $B . "$

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"
- Want the strategy $c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right)$.

Strategy $u \cdot v:$ "if $u:(A \supset B)$ and $v: A$, then follow u on $B . "$

Application: LP Strategies for Nim

Computing the explicit strategy

- $c_{4}:\left\{\neg(\neg \neg \perp \vee \neg \neg \perp) \supset\left(\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(\neg \neg \perp \vee \neg \neg \perp)\right)\right\}$
c_{4} : "right, right, continue, continue"
- Want the strategy $c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right)$.

Strategy $u \cdot v:$ "if $u:(A \supset B)$ and $v: A$, then follow u on $B . "$
$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ "right, continue, continue"

Application: LP Strategies for Nim

 Extracting the Nim strategy$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ "right, continue, continue"
Nim

Verification

1st on $(1,2)$	True on $(1,2)^{T}$
$[$ Pick $((0,2),(1,0))$, or $(1,1)]$.	$\left[\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]$

Application: LP Strategies for Nim

 Extracting the Nim strategy$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ "right, continue, continue"
Nim

Verification

1st on $(1,2)$	True on $(1,2)^{T}$
$[$ Pick $((0,2),(1,0))$, or $(1,1)]$.	$\left[\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]$

Application: LP Strategies for Nim

 Extracting the Nim strategy$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ right, continue, continue"
Nim

Verification

1st on (1, 2)	True on $(1,2)^{T}$
Pick $((0,2),(1,0))$, or $(1,1)]$.	$\left[\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]$
(1st waits.)	True on $\neg(1,1)^{F}$.

Application: LP Strategies for Nim

 Extracting the Nim strategy$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ right, continue, continue"
Nim

Verification

1st on $(1,2)$ [Pick $((0,2),(1,0))$, or $(1,1)]$.	True on $(1,2)^{T}$ $\left[\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]$
(1st waits.)	True on $\neg(1,1)^{F}$.

Application: LP Strategies for Nim

Extracting the Nim strategy

$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ right, continue, continue"
Nim

Verification

\(\left.$$
\begin{array}{l||l}\hline \hline \text { 1st on }(1,2) & \begin{array}{l}\text { True on }(1,2)^{T} \\
{[\text { Pick }((0,2),(1,0)) \text {, or }(1,1) .]}\end{array}
$$

\left.\hline\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]\end{array}\right]\)| True on $\neg(1,1)^{F}$. |
| :--- |
| 1st waits.) |\quad| False on $(1,1)^{F}$. |
| :--- |
| 2nd on $(1,1)$. |
| $[$ Pick $(0,1)$ or $(1,0)]$. |
| $\left.\neg(0,1)^{T} \vee \neg(1,0)^{T}\right]$ |

Application: LP Strategies for Nim

Extracting the Nim strategy

$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ right, continue, continue"
Nim

Verification

\(\left.$$
\begin{array}{l||l}\hline \hline \text { 1st on }(1,2) & \begin{array}{l}\text { True on }(1,2)^{T} \\
{[\text { Pick }((0,2),(1,0)) \text {, or }(1,1) \cdot]}\end{array}
$$

\left.\hline\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]\end{array}\right]\)| True on $\neg(1,1)^{F}$. |
| :--- |
| 1st waits.) |

Application: LP Strategies for Nim

Extracting the Nim strategy

$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ right, continue, continue"
Nim

Verification

1st on $(1,2)$ $[$ Pick $((0,2),(1,0))$, or $(1,1)]$.	True on $(1,2)^{T}$ $\left[\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]$
(1st waits. $)$	True on $\neg(1,1)^{F}$.

Application: LP Strategies for Nim

Extracting the Nim strategy

$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ right, continue, continue"
Nim

Verification

1st on $(1,2)$ [Pick ((0, 2), (1,0)), or (1, 1).]	$\begin{aligned} & \text { True on }(1,2)^{T} \\ & {\left[\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]} \end{aligned}$
(1st waits.)	True on $\neg(1,1)^{F}$.
2 nd on $(1,1)$. [Pick $(0,1)$ or $(1,0)$.]	$\begin{aligned} & \text { False on }(1,1)^{F} \\ & {\left[\neg(0,1)^{T} \vee \neg(1,0)^{T}\right]} \end{aligned}$
(2nd waits.)	False on $\neg(1,0)^{T}$
1 st on $(1,0)$. [Pick $(0,0)$.]	$\begin{aligned} & \text { True on }(1,0)^{T} \text {. } \\ & {[\neg(0,0)=\neg \perp]} \end{aligned}$

Application: LP Strategies for Nim

Extracting the Nim strategy

$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ "right, continue, continue"
Nim

Verification

\(\left.$$
\begin{array}{l||l}\hline \hline \text { 1st on }(1,2) & \begin{array}{l}\text { True on }(1,2)^{T} \\
{[\text { Pick }((0,2),(1,0)), \text { or }(1,1) .]}\end{array} \\
\left.\hline\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right] \\
\hline(\text { 1st waits. }) & \text { True on } \neg(1,1)^{F} . \\
\hline \text { 2nd on }(1,1) . & \begin{array}{l}\text { False on }(1,1)^{F} . \\
{[\text { Pick }(0,1) \text { or }(1,0) .]}\end{array}
$$

\hline\left(2(0,1)^{T} \vee \neg(1,0)^{T}\right]\end{array}\right]\)| False on $\neg(1,0)^{T}$ |
| :--- |
| 1st on $(1,0)$.
 [Pick $(0,0)]$. |

Application: LP Strategies for Nim

Extracting the Nim strategy

$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ right, continue, continue"
Nim

Verification

1st on $(1,2)$ $[$ Pick $((0,2),(1,0))$, or $(1,1)]$.	True on $(1,2)^{T}$ $\left[\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]$
(1st waits. $)$	True on $\neg(1,1)^{F}$.

Application: LP Strategies for Nim

Extracting the Nim strategy

$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ right, continue, continue"
Nim

Verification

1st on $(1,2)$ $[$ Pick $((0,2),(1,0))$, or $(1,1)]$.	True on $(1,2)^{T}$ $\left[\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]$
$($ 1st waits. $)$	True on $\neg(1,1)^{F}$.
2nd on $(1,1)$. $[$ Pick $(0,1)$ or $(1,0)]$.	False on $(1,1)^{F}$. $\left[\neg(0,1)^{T} \vee \neg(1,0)^{T}\right]$
2nd waits. $)$	False on $\neg(1,0)^{T}$
1st on $(1,0)$. $[$ Pick $(0,0) \cdot]$	True on $(1,0)^{T}$. $[\neg(0,0)=\neg \perp]$
2nd on $(0,0) .1$ st wins.	False on \perp. True wins.

Application: LP Strategies for Nim

Extracting the Nim strategy

$c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right):$ right, continue, continue"
Nim

Verification

1st on $(1,2)$ [Pick $((0,2),(1,0))$, or $(1,1)]$.	True on $(1,2)^{T}$ $\left[\left(\neg(0,2)^{F} \vee \neg(1,0)^{F}\right) \vee \neg(1,1)^{F}\right]$
$($ 1st waits. $)$	True on $\neg(1,1)^{F}$.
2nd on $(1,1)$. [Pick $(0,1)$ or $(1,0)]$.	False on $(1,1)^{F}$. $\left[\neg(0,1)^{T} \vee \neg(1,0)^{T}\right]$
$(2$ nd waits. $)$	False on $\neg(1,0)^{T}$
1st on $(1,0)$. [Pick $(0,0)]$.	True on $(1,0)^{T}$. $[\neg(0,0)=\neg \perp]$
2nd on $(0,0)$.	False on \perp.

Application: LP Strategies for Nim

 Extracting the Nim strategy$$
c_{4} \cdot\left(c_{3} \cdot\left(\left(c_{2} \cdot c_{1}\right) \cdot c_{1}\right)\right): \text { "right, continue, continue" }
$$

Nim strategy on (1,2).
"take from right, (wait for response), take remaining stick"

Fin

Thanks!

Bryan Renne
http://bryan.renne.org/

