
Formalizing Type Operations
Using the “Image” Type Constructor

Aleksey Nogin and Alexei Kopylov

California Institute of Technology

WoLLIC, 2006

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 1

Introduction

Set theory constructors

Subset constructor: {x : A|P [x]}

Image constructor: {f(x)|x ∈ A}

We do have the subset type constructor in the Constructive Type Theory (e.g., in
NuPRL, MetaPRL)

Can we define the image type constructor?

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 2

Easy...

Let A and B be types.

Let f be a function of the type A → B.

Define

Img(A; B; f) = {y : B|∃x : A . y = f(x) ∈ B}

Here “t = s ∈ T ” stands for “t and s are two elements of type T that are equal
according to T ”

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 3

But...

It is not what we are looking for.

This type depends on B:

Img(A; B; f) = {y : B|∃x : A . y = f(x) ∈ B}

B is the image of f , which we were trying to define in the first place!

We can’t take the largest type instead of B.
In CTT there is the largest type called Top.
Top contains all elements, and all elements are equal in Top.

Thus, Img(A; Top; f) is always empty or Top.

In CTT even if B ⊆ B′ and f ∈ A → B, then Img(A, B, f) is not necessarily
equal to Img(A, B, f)!

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 4

Conclusion

We want to define Img(A; f) type.

We can’t define it using existing type constructors.

We can extend our type theory with the image type.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 5

Overview

Constructive Type Theory Overview.

Why the definition of the image type is not trivial.

The definition and semantics of the image type.

Examples of usage of the image type.

Main example: Definition of Higher Order Abstract Syntax.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 6

Constructive Type Theory

The Constructive Type Theory (variants of CTT are used in NuPRL and MetaPRL
theorem provers) is an extension of Martin-Löf type theory.

CTT includes:

Equality a = b ∈ A

Example: the equality on functional types is extensional.

λx.|x| = λx.x ∈ N → N

Martin-Löf type constructors, e.g A + B, A × B, A → B

Other type constructors: e.g., Top, A
S

B, {x : A|P [x]}

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 7

PER semantics

The standard semantics for CTT is the PER semantics.

Each type is interpreted as a partial equivalence relation on closed terms.

This partial equivalence relation provides equality on elements of this type
(a = b ∈ A).

a ∈ A
∆
= a = a ∈ A

Example 1. Product type: A × B.

p = p
′ ∈ A × B iff p ≡ (a, b), p

′ ≡ (a′

, b
′), a = a

′ ∈ A, b = b
′ ∈ B

where t ≡ s is a computational equality.

Example 2. Set type: {x : A|P [x]}.

a = a
′ ∈ {x : A|P [x]} iff a = a

′ ∈ A, P [a]

Example 3. Top type: a = b ∈ Top.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 8

Image type is tricky

Example. Singleton type:

{a} = Img(Unit;λx.a)

What are the rules for the singleton type?

Well-formedness:

Γ ` {a}Type

Introduction:

Γ ` a ∈ {a}

Elimination:
Γ;∆ ` C[a]

Γ; y : {a};∆ ` C[y]

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 9

But these rules lead to
contradiction!

According to the above rules, we can prove that

x : Top ` {x}Type

In CTT the above implies that {x} respects the equalities of the Top, namely

x : Top; y : Top; x = y ∈ Top ` {x} = {y}

But all elements are equal in Top, therefore

` {1} = {2}

That leads to 1 = 2.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 10

Solution

Singleton type {a} is not always a well-formed type.
We say that {a} is well-formed only when a is a constant (i.e. a closed
expression).

MetaPRL uses the sequent schema for the inference rules.
Sequent schema notation

Γ ` f 〈〉

prohibits f from containing free occurrences of variables declared in Γ.

The right well formed-rule for singleton:

Γ ` {a 〈〉}Type

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 11

Rules for singleton

Rules for singleton

Well-formedness:

Γ ` {a〈〉}Type

Introduction:

Γ ` a〈〉 ∈ {a〈〉}

Elimination:
Γ;∆ ` C[a〈〉]

Γ; y : {a〈〉}; ∆ ` C[y]

Remark. Although, a priory {a}Type is only true for constants, we can still derive
{a}Type for some non-constant expressions a.

Examples:

x : B ` {x}Type is provable by splitting into two cases: {t}Type and {f}Type.

x : Top ` {x}Type is not provable.
WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 12

Constructivism

We are working in the Constructive Type Theory.

If we know that y ∈ Img(A; f) then we do not necessarily know how to
construct an x ∈ A, s.t. y = f(x).

Therefore the following elimination rule is wrong in the Constructive Type
Theory:

Γ; x : A; ∆ ` C[f(x)]

Γ; y : Img(A; f); ∆ ` C[y]

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 13

Squash-stable statement

Definition. A statement A is squash-stable iff we can find a witness of A just knowing that
there is one.

Example. In CTT, membership is squash-stable: x ∈ T always has trivial witness it.

The elimination rule for the image type

Γ; x : A; ∆ ` C[f(x)]

Γ; y : Img(A; f); ∆ ` C[y]

is true if C[y] is squash-stable.

It is sufficient to axiomatize this rule only for membership statements.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 14

Inference Rules for The Image
Type Constructor

New rules:

Well-formedness:

Γ ` A Type

Γ ` Img(A; f 〈〉) Type

Introduction:

Γ ` a ∈ A

Γ ` f [a] ∈ Img(A; f 〈〉)

Elimination:

Γ; x : A ` t ∈ T [f(x)]

Γ; y : Img(A; f 〈〉) ` t ∈ T [y]

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 15

PER Semantics for Image Type

We define the semantics of the Img constructor as follows:

The closed term Img(A; f) is a well-formed type if and only if A is a type.

Img(A1; f1) = Img(A2; f2) iff A1 = A2 and f1 ≡ f2.

The equality relation on Img(A; f) is the smallest PER s.t.

it respects the ≡ relation (e.g. t = s ∈ Img(A; f) if t ≡ s);

f(a) = f(b) ∈ Img(A; f) whenever a = b ∈ A.

In particular, this means that t ∈ Img(A; f) iff t ≡ f(a) for some a ∈ A.

Theorem. The rules from the previous slide are valid under this semantics.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 16

Example

A Img(A; f)

a f(a)

f |||

b = c −→ f(b) = f(c)

|||

d f(d)

In this case f(a) = f(d) ∈ Img(A; f) although a 6= d ∈ A.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 17

Example: Deriving Union Type
Constructor

The union type
S

x:A

B[x] is the least common supertype of B[x]’s for x ∈ A.

Now we can define the union type:

[

x:A

B[x]
∆
= Img(x : A × B[x]; π2)

Note that the equivalence relation of the
S

x:A

B[x] is the transitive closure of the

union of the equivalence relations of types B[x].

Surprisingly in CTT, Z4 ∪ Z6 = Z2.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 18

Example: Deriving Set Type
Constructor

Using the image type constructor, we can define the set type operator as

{x : A|P [x]}
∆
= Img(x : A × P [x]; π1)

From this definition we are able to derive all the rules that are traditionally
postulated with this type constructor.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 19

Example: Deriving Squash Type
Constructor

The squash type [A] “forgets” the witnesses of A.

For any type A, the type [A] is empty if and only if A is empty and
contains a single canonical element it when A is inhabited.

Now we can define it as

[A] ∆
= Img(A; λx.it)

We can derive all the rules about the squash type that used to be postulated.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 20

High Order Abstract Syntax

We want to be able to define languages with bindings in CTT.

We want to preserve bindings.

We need two basic constructors:
bx.t[x] (the binding constructor)

mktermop(t1; . . . ; tn) (the constructor of terms with an n-ary operator op)

Example. λx.(x + x) is represented as

mktermλ(bx.mkterm+([x; x]))

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 21

HOAS: The Definition of Syntax

It is easy to define the syntax constructors:

bx.t[x]
∆
= inl λx.t

mktermop(t1; . . . ; tn)
∆
= inr (op, [t1; . . . ; tn])

But how do we define the type of terms?

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 22

HOAS: Exotic Terms

Q: Can we define the type of terms Term inductively s.t.,

bind ∈ (Term → Term) → Term

mkterm ∈ Operator × (Term List) → Term

A: No.

This requires to find the fix point of non-monotone operation.

The induction principle is unclear.

There are exotic terms, e.g.,

bx.if x = 0 then 1 else 2.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 23

HOAS: The Type of Terms

We need to define the type Term to be the minimum type, s.t.

Term contains variables:

bx1, . . . , xn.xi ∈ Term

Term is closed under the mktermop constructor, i.e.,

op ∈ Operator ti ∈ Term

mktermop(t1; . . . ; tn) ∈ Term

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 24

HOAS: The Definition of Type

We can define this type using image type.

var(n, i) = bx1, . . . , xn.xi (cf. deBruijn’s notations)

V ar = Img(N × N; x.var(π1x, π2x))

TermStep(T) = Img(Operator × T List; x.mktermπ1x(π2x))

Term = µT.(V ar ∪ TermStep(T))

This is a natural recursive definition of the type of terms.
It does have the intended induction principle.

Our approach allows us to combine the power of HOAS with the simplicity of the
deBruijn’s definition:

We do preserve bindings.

We have the induction principle and do not have exotic terms.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 25

Summary

Our contributions:

We add a new primitive constructor for the image type

We define some old primitive constructors using this new one
Thus we simplify the theory.

We use the definition of HOAS in our big project Reflection.

This work is implemented in the MetaPRL theorem prover.

WoLLIC’06 Aleksey Nogin, Alexei Kopylov Image Type – p. 26

	Introduction
	Easy...
	But...
	Conclusion
	Overview
	Constructive Type Theory
	PER semantics
	Image type is tricky
	But these rules lead to contradiction!
	Solution
	Rules for singleton
	Constructivism
	Squash-stable statement
	Inference Rules for The Image Type Constructor
	PER Semantics for Image Type
	Example
	Example: Deriving Union Type Constructor
	Example: Deriving Set Type Constructor
	Example: Deriving Squash Type Constructor
	High Order Abstract Syntax
	HOAS: The Definition of Syntax
	HOAS: Exotic Terms
	HOAS: The Type of Terms
	HOAS: The Definition of Type
	Summary

