Abstract Families of Abstract Categorial Languages

Makoto Kanazawa
National Institute of Informatics
Tokyo, Japan

This talk

- Closure properties of the languages generated by abstract categorial grammars (de Groote 2001).

This talk

- Closure properties of the languages generated by abstract categorial grammars (de Groote 2001).
- Each level $G(m, n)$ of de Groote's hierarchy gives rise to a substitution-closed full abstract family of languages.

This talk

- Closure properties of the languages generated by abstract categorial grammars (de Groote 2001).
- Each level $G(m, n)$ of de Groote's hierarchy gives rise to a substitution-closed full abstract family of languages.
- Most of the closure properties hold of the tree languages generated by ACGs, and more generally of the languages of λ-terms generated by ACGs.

This talk

- Closure properties of the languages generated by abstract categorial grammars (de Groote 2001).
- Each level $G(m, n)$ of de Groote's hierarchy gives rise to a substitution-closed full abstract family of languages.
- Most of the closure properties hold of the tree languages generated by ACGs, and more generally of the languages of λ-terms generated by ACGs.
- Focuses on (a generalization of) closure under intersection with regular sets.

Outline

- Abstract categorial grammar: an informal idea
- Abstract categorial grammar: formal definitions and known results
- Closure under intersection with regular sets (generalized)

Abstract categorial grammar (de Groote 2001)

- A grammar formalism for languages of linear λ-terms.

Abstract categorial grammar (de Groote 2001)

- A grammar formalism for languages of linear λ-terms.
- strings

$$
a b a b b \quad \lambda z . a(b(a(b(b z))))
$$

- trees

$$
f(g a b)(h a(g b b))
$$

Abstract categorial grammar (de Groote 2001)

- A grammar formalism for languages of linear λ-terms.
- strings

$$
a b a b b \quad \lambda z . a(b(a(b(b z))))
$$

- trees

$f(g a b)(h a(g b b))$
- and more
* tuples of strings (trees)
* logical formulae

Abstract categorial grammar (de Groote 2001)

- Generalizes
- grammar formalisms with context-free derivation trees

Abstract categorial grammar (de Groote 2001)

- Generalizes
- grammar formalisms with context-free derivation trees
* context-free grammar
* multiple context-free grammar (linear context-free rewriting system)
* tree-adjoining grammar

Abstract categorial grammar (de Groote 2001)

- Generalizes
- grammar formalisms with context-free derivation trees
* context-free grammar
* multiple context-free grammar (linear context-free rewriting system)
* tree-adjoining grammar
- Montague semantics (modulo the linearity restriction)

Tree-adjoining grammar

derivation tree

Tree-adjoining grammar as abstract categorial grammar
derivation tree derived tree

Montague semantics (Heim \& Kratzer-style)

Syntax and semantics with abstract categorial grammar

Syntax and semantics with abstract categorial grammar

$$
M+N=\lambda z \cdot M(N z)
$$

Higher-order signature

$$
\Sigma=\langle A, C, \tau\rangle
$$

- A is a set of atomic types
- C is a set of constants
- $\tau: C \rightarrow \mathscr{T}(A)$ (type assignment to constants)
$\mathscr{T}(A)$ is the set of types built up from A with \rightarrow :

$$
\alpha, \beta \in \mathscr{T}(A) \Longrightarrow \alpha \rightarrow \beta \in \mathscr{T}(A)
$$

Write $\alpha \rightarrow \beta \rightarrow \gamma$ for $\alpha \rightarrow(\beta \rightarrow \gamma)$.

Higher-order signature

$$
\Sigma=\langle A, C, \tau\rangle
$$

- A is a set of atomic types
- C is a set of constants
- $\tau: C \rightarrow \mathscr{T}(A)$ (type assignment to constants)
$\mathscr{T}(A)$ is the set of types built up from A with \rightarrow :

$$
\alpha, \beta \in \mathscr{T}(A) \Longrightarrow \alpha \rightarrow \beta \in \mathscr{T}(A)
$$

Write $\alpha \rightarrow \beta \rightarrow \gamma$ for $\alpha \rightarrow(\beta \rightarrow \gamma)$.
Define the order of a type:

$$
\begin{aligned}
\operatorname{ord}(p) & =1 \quad \text { if } p \text { is atomic } \\
\operatorname{ord}(\alpha \rightarrow \beta) & =\max (\operatorname{ord}(\alpha)+1, \operatorname{ord}(\beta))
\end{aligned}
$$

The order of Σ is $\operatorname{ord}(\Sigma)=\max \{\operatorname{ord}(\tau(c)) \mid c \in C\}$.

λ-terms over Σ

$\Lambda(\Sigma)$ consists of

- $x \in X$ (variable),
- $c \in C$,
- $M N$ for $M, N \in \wedge(\Sigma)$,
- $\lambda x . M$ for $x \in X, M \in \Lambda(\Sigma)$.

λ-terms over Σ

$\Lambda(\Sigma)$ consists of

- $x \in X$ (variable),
- $c \in C$,
- $M N$ for $M, N \in \Lambda(\Sigma)$,
- $\lambda x . M$ for $x \in X, M \in \Lambda(\Sigma)$.

Write

$$
\begin{array}{rll}
M N P & \text { for } & (M N) P \\
\lambda x \cdot M N & \text { for } & \lambda x \cdot(M N), \\
\lambda x_{1} \ldots x_{n} \cdot M & \text { for } & \lambda x_{1} \cdot\left(\lambda x_{2} \ldots\left(\lambda x_{n} \cdot M\right) \ldots\right) .
\end{array}
$$

λ-terms over Σ

$$
\begin{aligned}
F V(x) & =\{x\} \\
F V(c) & =\varnothing \\
F V(M N) & =F V(M) \cup F V(N), \\
F V(\lambda x \cdot M) & =F V(M)-\{x\}
\end{aligned}
$$

λ-terms over Σ

$$
\begin{aligned}
F V(x) & =\{x\}, \\
F V(c) & =\varnothing \\
F V(M N) & =F V(M) \cup F V(N), \\
F V(\lambda x \cdot M) & =F V(M)-\{x\} \\
\overrightarrow{\operatorname{Con}}(x) & =\epsilon \\
\overrightarrow{\operatorname{Con}}(c) & =c \\
\overrightarrow{\operatorname{Con}}(M N) & =\overrightarrow{\operatorname{Con}}(M) \overrightarrow{\operatorname{Con}}(N), \\
\overrightarrow{\operatorname{Con}}(\lambda x \cdot M) & =\overrightarrow{\operatorname{Con}}(M)
\end{aligned}
$$

λ-terms over Σ

$$
\begin{aligned}
F V(x) & =\{x\}, \\
F V(c) & =\varnothing \\
F V(M N) & =F V(M) \cup F V(N), \\
F V(\lambda x . M) & =F V(M)-\{x\} \\
\overrightarrow{\operatorname{Con}}(x) & =\epsilon \\
\overrightarrow{\operatorname{Con}}(c) & =c \\
\overrightarrow{\operatorname{Con}}(M N) & =\overrightarrow{\operatorname{Con}}(M) \overrightarrow{\operatorname{Con}}(N), \\
\overrightarrow{\operatorname{Con}}(\lambda x . M) & =\overrightarrow{\operatorname{Con}}(M)
\end{aligned}
$$

M is

- closed if $F V(M)=\varnothing$
- pure if $\overrightarrow{C o n}(M)=\epsilon$.

β-reduction

$$
\ldots(\lambda x . M) N \cdots \rightarrow_{\beta} \ldots M[x:=N] \ldots
$$

This β-reduction step is

- non-erasing if $x \in F V(M)$,
- non-duplicating if x occurs free in M at most once. Write $|M|_{\beta}$ for the β-normal form M.

Type assignment system $\lambda \rightarrow_{\Sigma}$

$\Gamma=x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n}:$ type environment
$\Gamma \vdash_{\Sigma} M: \alpha$: typing judgment

$$
\begin{aligned}
\vdash_{\Sigma c: \tau(c)} & x: \alpha \vdash_{\Sigma x: \alpha} \\
\frac{\Gamma \vdash_{\Sigma} M: \beta}{\Gamma-\{x: \alpha\} \vdash_{\Sigma} \lambda x \cdot M: \alpha \rightarrow \beta} \rightarrow 1 & \frac{\Gamma \vdash_{\Sigma} M: \alpha \rightarrow \beta \Delta \vdash_{\Sigma} N: \alpha}{\Gamma \cup \Delta \vdash_{\Sigma} M N: \beta} \rightarrow E
\end{aligned}
$$

Write \wedge and \vdash for $\wedge(\Sigma)$ and \vdash_{Σ} when $\Sigma=\langle A, \varnothing, \varnothing\rangle$.

Linear λ-terms

The set $\Lambda_{\text {lin }}(\Sigma)$ of linear λ-terms consists of λ-terms $M \in \Lambda(\Sigma)$ such that
(i) for every subterm $\lambda x . N$ of $M, x \in F V(N)$,
(ii) for every subterm $N P$ of $M, F V(N) \cap F V(P)=\varnothing$.

Linear λ-terms

The set $\Lambda_{\text {lin }}(\Sigma)$ of linear λ-terms consists of λ-terms $M \in \Lambda(\Sigma)$ such that
(i) for every subterm $\lambda x . N$ of $M, x \in F V(N)$,
(ii) for every subterm $N P$ of $M, F V(N) \cap F V(P)=\varnothing$.
M is a $\lambda /$-term if it satisfies (i).

Linear λ-terms

The set $\Lambda_{\text {lin }}(\Sigma)$ of linear λ-terms consists of λ-terms $M \in \Lambda(\Sigma)$ such that
(i) for every subterm $\lambda x . N$ of $M, x \in F V(N)$,
(ii) for every subterm $N P$ of $M, F V(N) \cap F V(P)=\varnothing$.
M is a $\lambda /$-term if it satisfies (i).
Strings and concatenation of strings are represented by linear λ-terms.

$$
\begin{aligned}
/ a_{1} \ldots a_{n} / & =\lambda z \cdot a_{1}\left(\ldots\left(a_{n} z\right) \ldots\right) \\
+ & =\lambda x y z \cdot x(y z)
\end{aligned}
$$

Linear λ-terms

The set $\Lambda_{\text {lin }}(\Sigma)$ of linear λ-terms consists of λ-terms $M \in \Lambda(\Sigma)$ such that
(i) for every subterm $\lambda x . N$ of $M, x \in F V(N)$,
(ii) for every subterm $N P$ of $M, F V(N) \cap F V(P)=\varnothing$.
M is a $\lambda /$-term if it satisfies (i).
Strings and concatenation of strings are represented by linear λ-terms.

$$
\begin{aligned}
/ a_{1} \ldots a_{n} / & =\lambda z \cdot a_{1}\left(\ldots\left(a_{n} z\right) \ldots\right) \\
+ & =\lambda x y z \cdot x(y z)
\end{aligned}
$$

String signature $\Sigma_{V}=\langle\{0\}, V, \tau\rangle$:

$$
\begin{aligned}
& \tau(a)=0 \rightarrow 0=\text { str for every } a \in V \\
& \quad \vdash_{\Sigma_{V}} / w /: \text { str for every } w \in V^{*}
\end{aligned}
$$

Abstract categorial grammar

$$
\mathscr{G}=\left\langle\Sigma, \Sigma^{\prime}, \mathscr{L}, s\right\rangle
$$

- $\Sigma=\langle A, C, \tau\rangle$: higher-order signature (abstract vocabulary)
- $\Sigma^{\prime}=\left\langle A^{\prime}, C^{\prime}, \tau^{\prime}\right\rangle$: higher-order signature (object vocabulary)
- $\mathscr{L}=\langle\sigma, \theta\rangle$: lexicon from Σ to Σ^{\prime} :

$$
\begin{aligned}
& -\sigma: A \rightarrow \mathscr{T}\left(A^{\prime}\right) \\
& -\theta: C \rightarrow \Lambda_{\text {lin }}\left(\Sigma^{\prime}\right), \\
& -\vdash_{\Sigma^{\prime}} \theta(c): \sigma(\tau(c)) \text { for every } c \in C .
\end{aligned}
$$

- s : atomic type of Σ (distinguished type).

Abstract categorial grammar

$$
\mathscr{G}=\left\langle\Sigma, \Sigma^{\prime}, \mathscr{L}, s\right\rangle
$$

- $\Sigma=\langle A, C, \tau\rangle$: higher-order signature (abstract vocabulary)
- $\Sigma^{\prime}=\left\langle A^{\prime}, C^{\prime}, \tau^{\prime}\right\rangle$: higher-order signature (object vocabulary)
- $\mathscr{L}=\langle\sigma, \theta\rangle$: lexicon from Σ to Σ^{\prime} :
$-\sigma: A \rightarrow \mathscr{T}\left(A^{\prime}\right)$,
$-\theta: C \rightarrow \Lambda_{\text {lin }}\left(\Sigma^{\prime}\right)$,
$-\vdash_{\Sigma^{\prime}} \theta(c): \sigma(\tau(c))$ for every $c \in C$.
- s : atomic type of Σ (distinguished type).
θ is naturally extended to a mapping from $\Lambda_{\text {lin }}(\Sigma)$ to $\Lambda_{\text {lin }}\left(\Sigma^{\prime}\right)$.
Write $\mathscr{L}(\alpha)$ and $\mathscr{L}(M)$ for $\sigma(\alpha)$ and $\theta(M)$, respectively.

Abstract categorial grammar

$$
\mathscr{G}=\left\langle\Sigma, \Sigma^{\prime}, \mathscr{L}, s\right\rangle
$$

- $\Sigma=\langle A, C, \tau\rangle$: higher-order signature (abstract vocabulary)
- $\Sigma^{\prime}=\left\langle A^{\prime}, C^{\prime}, \tau^{\prime}\right\rangle$: higher-order signature (object vocabulary)
- $\mathscr{L}=\langle\sigma, \theta\rangle$: lexicon from Σ to Σ^{\prime} :
$-\sigma: A \rightarrow \mathscr{T}\left(A^{\prime}\right)$,
$-\theta: C \rightarrow \Lambda_{\text {lin }}\left(\Sigma^{\prime}\right)$,
$-\vdash_{\Sigma^{\prime}} \theta(c): \sigma(\tau(c))$ for every $c \in C$.
- s : atomic type of Σ (distinguished type).
θ is naturally extended to a mapping from $\Lambda_{\text {lin }}(\Sigma)$ to $\Lambda_{\text {lin }}\left(\Sigma^{\prime}\right)$.
Write $\mathscr{L}(\alpha)$ and $\mathscr{L}(M)$ for $\sigma(\alpha)$ and $\theta(M)$, respectively.
The order of \mathscr{L} is $\operatorname{ord}(\mathscr{L})=\max \{\operatorname{ord}(\mathscr{L}(p)) \mid p \in A\}$.

Abstract categorial grammar

$$
\mathscr{G}=\left\langle\Sigma, \Sigma^{\prime}, \mathscr{L}, s\right\rangle
$$

- $\Sigma=\langle A, C, \tau\rangle$: higher-order signature (abstract vocabulary)
- $\Sigma^{\prime}=\left\langle A^{\prime}, C^{\prime}, \tau^{\prime}\right\rangle$: higher-order signature (object vocabulary)
- $\mathscr{L}=\langle\sigma, \theta\rangle$: lexicon from Σ to Σ^{\prime} :
$-\sigma: A \rightarrow \mathscr{T}\left(A^{\prime}\right)$,
$-\theta: C \rightarrow \Lambda_{\text {lin }}\left(\Sigma^{\prime}\right)$,
$-\vdash_{\Sigma^{\prime}} \theta(c): \sigma(\tau(c))$ for every $c \in C$.
- s : atomic type of Σ (distinguished type).
θ is naturally extended to a mapping from $\Lambda_{\text {lin }}(\Sigma)$ to $\Lambda_{\text {lin }}\left(\Sigma^{\prime}\right)$.
Write $\mathscr{L}(\alpha)$ and $\mathscr{L}(M)$ for $\sigma(\alpha)$ and $\theta(M)$, respectively.
The order of \mathscr{L} is $\operatorname{ord}(\mathscr{L})=\max \{\operatorname{ord}(\mathscr{L}(p)) \mid p \in A\}$.
$\mathscr{G} \in G(m, n)$ if $\operatorname{ord}(\Sigma) \leq m$ and $\operatorname{ord}(\mathscr{L}) \leq n$.

Abstract categorial grammar

$$
\mathscr{G}=\left\langle\Sigma, \Sigma^{\prime}, \mathscr{L}, s\right\rangle
$$

- $\Sigma=\langle A, C, \tau\rangle$: higher-order signature (abstract vocabulary)
- $\Sigma^{\prime}=\left\langle A^{\prime}, C^{\prime}, \tau^{\prime}\right\rangle$: higher-order signature (object vocabulary)
- $\mathscr{L}=\langle\sigma, \theta\rangle$: lexicon from Σ to Σ^{\prime} :
$-\sigma: A \rightarrow \mathscr{T}\left(A^{\prime}\right)$,
$-\theta: C \rightarrow \Lambda_{\text {lin }}\left(\Sigma^{\prime}\right)$,
$-\vdash_{\Sigma^{\prime}} \theta(c): \sigma(\tau(c))$ for every $c \in C$.
- s: atomic type of Σ (distinguished type).
θ is naturally extended to a mapping from $\Lambda_{\text {lin }}(\Sigma)$ to $\Lambda_{\text {lin }}\left(\Sigma^{\prime}\right)$.
Write $\mathscr{L}(\alpha)$ and $\mathscr{L}(M)$ for $\sigma(\alpha)$ and $\theta(M)$, respectively.
The order of \mathscr{L} is $\operatorname{ord}(\mathscr{L})=\max \{\operatorname{ord}(\mathscr{L}(p)) \mid p \in A\}$.
$\mathscr{G} \in G(m, n)$ if $\operatorname{ord}(\Sigma) \leq m$ and $\operatorname{ord}(\mathscr{L}) \leq n$.
\mathscr{G} is m-th order if $\mathscr{G} \in G(m, n)$ for some n.

Languages of ACGs

The abstract language of \mathscr{G} is

$$
\begin{aligned}
\mathcal{A}(\mathscr{G})= & \left\{M \in \Lambda_{\operatorname{lin}}(\Sigma) \mid M \text { is } \beta \text {-normal and } \vdash_{\Sigma} M: s\right\} . \\
& \text { the set of abstract derivations }
\end{aligned}
$$

The object language of \mathscr{G} is

$$
\begin{aligned}
\mathcal{O}(\mathscr{G})= & \left\{|\mathscr{L}(M)|_{\beta} \mid M \in \mathcal{A}(\mathscr{G})\right\} . \\
& \text { the set of concrete forms }
\end{aligned}
$$

Languages of ACGs

The abstract language of \mathscr{G} is

$$
\begin{aligned}
\mathcal{A}(\mathscr{G})= & \left\{M \in \Lambda_{\text {lin }}(\Sigma) \mid M \text { is } \beta \text {-normal and } \vdash_{\Sigma} M: s\right\} . \\
& \text { the set of abstract derivations }
\end{aligned}
$$

The object language of \mathscr{G} is

$$
\begin{aligned}
\mathcal{O}(\mathscr{G})= & \left\{|\mathscr{L}(M)|_{\beta} \mid M \in \mathcal{A}(\mathscr{G})\right\} \\
& \text { the set of concrete forms }
\end{aligned}
$$

We say that \mathscr{G} generates its object language

Example

$c \in C$	$\tau(c)$	$\mathscr{L}(c)$	$\mathscr{L}(\tau(c))$
A	$\left(p_{1} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / a /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
B	$\left(p_{2} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / b /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
C	$\left(p_{3} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / c /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
D	$q \rightarrow s$	$\lambda v \cdot v$	$s t r \rightarrow s t r$
E	$p_{1} \rightarrow p_{2} \rightarrow p_{3} \rightarrow q \rightarrow q$	$\lambda x_{1} x_{2} x_{3} v . x_{1}+x_{2}+x_{3}+v$	$s t r \rightarrow s t r \rightarrow s t r \rightarrow s t r \rightarrow s t r$
F	q	$/ \epsilon /$	$s t r$

Example

$c \in C$	$\tau(c)$	$\mathscr{L}(c)$	$\mathscr{L}(\tau(c))$
A	$\left(p_{1} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / a /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
B	$\left(p_{2} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / b /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
C	$\left(p_{3} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / c /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
D	$q \rightarrow s$	$\lambda v \cdot v$	$s t r \rightarrow s t r$
E	$p_{1} \rightarrow p_{2} \rightarrow p_{3} \rightarrow q \rightarrow q$	$\lambda x_{1} x_{2} x_{3} v . x_{1}+x_{2}+x_{3}+v$	$s t r \rightarrow s t r \rightarrow s t r \rightarrow s t r \rightarrow s t r$
F	q	$/ \epsilon /$	$s t r$

$$
\mathscr{G} \in G(3,2) .
$$

Example

$c \in C$	$\tau(c)$	$\mathscr{L}(c)$	$\mathscr{L}(\tau(c))$
A	$\left(p_{1} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / a /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
B	$\left(p_{2} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / b /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
C	$\left(p_{3} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / c /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
D	$q \rightarrow s$	$\lambda v \cdot v$	$s t r \rightarrow s t r$
E	$p_{1} \rightarrow p_{2} \rightarrow p_{3} \rightarrow q \rightarrow q$	$\lambda x_{1} x_{2} x_{3} v . x_{1}+x_{2}+x_{3}+v$	$s t r \rightarrow s t r \rightarrow s t r \rightarrow s t r \rightarrow s t r$
F	q	$/ \epsilon /$	$s t r$

$$
\mathscr{G} \in G(3,2)
$$

$$
P=\mathrm{A}\left(\lambda x_{1} \cdot \mathrm{~B}\left(\lambda y_{1} \cdot \mathrm{~B}\left(\lambda y_{2} \cdot \mathrm{~A}\left(\lambda x_{2} \cdot \mathrm{C}\left(\lambda z_{1} \cdot \mathrm{C}\left(\lambda z_{2} \cdot \mathrm{D}\left(\mathrm{E} x_{1} y_{1} z_{1}\left(E x_{2} y_{2} z_{2} \mathrm{~F}\right)\right)\right)\right)\right)\right)\right)\right) \in \mathcal{A}(\mathscr{G}),
$$

$$
\mathscr{L}(P) \rightarrow_{\beta} / a b b a c c / \in \mathcal{O}(\mathscr{G}) .
$$

Example

$c \in C$	$\tau(c)$	$\mathscr{L}(c)$	$\mathscr{L}(\tau(c))$
A	$\left(p_{1} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / a /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
B	$\left(p_{2} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / b /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
C	$\left(p_{3} \rightarrow s\right) \rightarrow s$	$\lambda u \cdot / c /+u / \epsilon /$	$(s t r \rightarrow s t r) \rightarrow s t r$
D	$q \rightarrow s$	$\lambda v \cdot v$	$s t r \rightarrow s t r$
E	$p_{1} \rightarrow p_{2} \rightarrow p_{3} \rightarrow q \rightarrow q$	$\lambda x_{1} x_{2} x_{3} v \cdot x_{1}+x_{2}+x_{3}+v$	$s t r \rightarrow s t r \rightarrow s t r \rightarrow s t r \rightarrow s t r$
F	q	$/ \epsilon /$	$s t r$

$$
\mathscr{G} \in G(3,2)
$$

$$
P=\mathrm{A}\left(\lambda x_{1} \cdot \mathrm{~B}\left(\lambda y_{1} \cdot \mathrm{~B}\left(\lambda y_{2} \cdot \mathrm{~A}\left(\lambda x_{2} \cdot \mathrm{C}\left(\lambda z_{1} \cdot \mathrm{C}\left(\lambda z_{2} \cdot \mathrm{D}\left(\mathrm{E} x_{1} y_{1} z_{1}\left(\mathrm{E} x_{2} y_{2} z_{2} \mathrm{~F}\right)\right)\right)\right)\right)\right)\right)\right) \in \mathcal{A}(\mathscr{G}),
$$

$$
\mathscr{L}(P) \rightarrow_{\beta} / a b b a c c / \in \mathcal{O}(\mathscr{G})
$$

$\mathcal{O}(\mathscr{G})=\{/ w / \mid w \in \operatorname{MIX}\}, \quad$ where $\operatorname{MIX}=\left\{w \in\{a, b, c\}^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$.

Complexity

NON-EMPTINESS

- Instance: An ACG \mathscr{G}.
- Question: Is $\mathcal{O}(\mathscr{G})$ (or, equivalently, $\mathcal{A}(\mathscr{G})$) non-empty?

Complexity

NON-EMPTINESS

- Instance: An ACG \mathscr{G}.
- Question: Is $\mathcal{O}(\mathscr{G})$ (or, equivalently, $\mathcal{A}(\mathscr{G})$) non-empty?

UNIVERSAL RECOGNITION

- Instance: An ACG $\mathscr{G}=\left\langle\Sigma, \Sigma^{\prime}, \mathscr{L}, s\right\rangle$ and $M \in \Lambda\left(\Sigma^{\prime}\right)$.
- Question: $M \in \mathcal{O}(\mathscr{L})$?

Complexity

NON-EMPTINESS

- Instance: An ACG \mathscr{G}.
- Question: Is $\mathcal{O}(\mathscr{G})$ (or, equivalently, $\mathcal{A}(\mathscr{G})$) non-empty?

UNIVERSAL RECOGNITION

- Instance: An ACG $\mathscr{G}=\left\langle\Sigma, \Sigma^{\prime}, \mathscr{L}, s\right\rangle$ and $M \in \Lambda\left(\Sigma^{\prime}\right)$.
- Question: $M \in \mathcal{O}(\mathscr{L})$?

NON-EMPTINESS

- is decidalbe if and only if MELL is decidadble;
- is at least EXPSPACE-hard;
- reduces to UNIVERSAL RECOGNITION.

Complexity

NON-EMPTINESS

- Instance: An ACG \mathscr{G}.
- Question: Is $\mathcal{O}(\mathscr{G})$ (or, equivalently, $\mathcal{A}(\mathscr{G})$) non-empty?

UNIVERSAL RECOGNITION

- Instance: An ACG $\mathscr{G}=\left\langle\Sigma, \Sigma^{\prime}, \mathscr{L}, s\right\rangle$ and $M \in \Lambda\left(\Sigma^{\prime}\right)$.
- Question: $M \in \mathcal{O}(\mathscr{L})$?

NON-EMPTINESS

- is decidalbe if and only if MELL is decidadble;
- is at least EXPSPACE-hard;
- reduces to UNIVERSAL RECOGNITION.

Both problems are NP-complete when restricted to lexicalized ACGs (follows from the NP-completeness of MLL(-0)).

Generative capacity

$$
\mathscr{G} \in G(2, n)
$$

n	string languages	tree languages
1		$R E G T$
2	$C F$	CFT $_{\text {sp }}$
3	$\mathrm{yCFT}_{\mathrm{sp}}$	$\supsetneq \mathrm{MREGT}$
≥ 4	$\mathrm{MCF}=\operatorname{STR}(\mathrm{HR})$	$\operatorname{TR}(\mathrm{HR})$

Generative capacity

$$
\mathscr{G} \in G(2, n)
$$

n	string languages	tree languages
1		REGT
2	CF	$\mathrm{CFT}_{\text {sp }}$
3	$\mathrm{yCFT}_{\text {sp }}$	$\supsetneq \mathrm{MREGT}$
≥ 4	$\mathrm{MCF}=\mathrm{STR}(\mathrm{HR})$	$\operatorname{TR}(\mathrm{HR})$

These languages are semilinear and belong to LOGCFL.

Generative capacity

$$
\mathscr{G} \in \boldsymbol{G}(2, n)
$$

n	string languages	tree languages
1		REGT
2	CF	CFT ${ }_{\text {sp }}$
3	$y C F T_{\text {sp }}$	$\supsetneq \mathrm{MREGT}$
≥ 4	$\mathrm{MCF}=\mathrm{STR}(\mathrm{HR})$	TR(HR)

These languages are semilinear and belong to LOGCFL.
Not much is known for higher-order cases:

- $G(3,2)$: non-semilinear string languages.
- $G(3,1)$: NP-complete tree languages.
- No example of an r.e. language has been found that cannot be generated by an ACG.

ACGs and AFLs

The string languages generated by ACGs in $G(m, n)(m, n \geq 2)$ form a substitution-closed full AFL.

ACGs and AFLs

The string languages generated by ACGs in $G(m, n)(m, n \geq 2)$ form a substitution-closed full AFL.

A family of languages is a full abstract family of languages if it is closed under

- union (\cup), concatenation (•), Kleene star (*);
- homomorphism (h);
- inverse homomorphism $\left(h^{-1}\right)$;
- intersection with regular sets $(\cap R)$.

ACGs and AFLs

The string languages generated by ACGs in $G(m, n)(m, n \geq 2)$ form a substitution-closed full AFL.

A family of languages is a full abstract family of languages if it is closed under

- union (\cup), concatenation (•), Kleene star (*);
- homomorphism (h);
- inverse homomorphism $\left(h^{-1}\right)$;
- intersection with regular sets $(\cap R)$.

Why is this interesting?

ACGs and AFLs

The string languages generated by ACGs in $G(m, n)(m, n \geq 2)$ form a substitution-closed full AFL.

A family of languages is a full abstract family of languages if it is closed under

- union (\cup), concatenation (•), Kleene star (*);
- homomorphism (h);
- inverse homomorphism $\left(h^{-1}\right)$;
- intersection with regular sets $(\cap R)$.

Why is this interesting?

- Not entirely obvious ($\cap R$).
- Depends on some techinical results about $\lambda \rightarrow_{\Sigma}$.
- Hopefully useful.
- May lead to an automaton model for ACGs.

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.

Subject Expansion Theorem.

If $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$ by non-erasing non-duplicating β-reduction, then $\Gamma \vdash_{\Sigma} M: \alpha$.

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.

Subject Expansion Theorem.

If $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$ by non-erasing non-duplicating
β-reduction, then $\Gamma \vdash_{\Sigma} M: \alpha$.
(A special case: M linear.)

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.

Subject Expansion Theorem.

If $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$ by non-erasing non-duplicating β-reduction, then $\Gamma \vdash_{\Sigma} M: \alpha$.
(A special case: M linear.)

Uniqueness Theorem.

If M is a $\lambda /$-term and $\Gamma \vdash_{\Sigma} M: \alpha$, then there is a unique $\lambda \rightarrow_{\Sigma}$-deduction of this judgment.

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.

Subject Expansion Theorem.

If $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$ by non-erasing non-duplicating β-reduction, then $\Gamma \vdash_{\Sigma} M: \alpha$.
(A special case: M linear.)

Uniqueness Theorem.

If M is a $\lambda /$-term and $\Gamma \vdash_{\Sigma} M: \alpha$, then there is a unique $\lambda \rightarrow \Sigma$-deduction of this judgment.

Principal Pair Theorem.

If $\Gamma \vdash M: \alpha$ then there is a most general such $\langle\Gamma, \alpha\rangle$ (called a principal pair for M).

Properties of Iexicons

β-reduction commutes with lexicons:

$$
M \rightarrow_{\beta} M^{\prime} \quad \text { implies } \quad \mathscr{L}(M) \rightarrow_{\beta} \mathscr{L}\left(M^{\prime}\right) .
$$

Properties of Iexicons

β-reduction commutes with lexicons:

$$
M \rightarrow_{\beta} M^{\prime} \quad \text { implies } \quad \mathscr{L}(M) \rightarrow_{\beta} \mathscr{L}\left(M^{\prime}\right) .
$$

Typing judgments are preserved under lexicons:

$$
\Gamma \vdash_{\Sigma} M: \alpha \quad \text { implies } \quad \mathscr{L}(\Gamma) \vdash_{\Sigma^{\prime}} \mathscr{L}(M): \mathscr{L}(\alpha) .
$$

Properties of Iexicons

β-reduction commutes with lexicons:

$$
M \rightarrow_{\beta} M^{\prime} \quad \text { implies } \quad \mathscr{L}(M) \rightarrow_{\beta} \mathscr{L}\left(M^{\prime}\right) .
$$

Typing judgments are preserved under lexicons:

$$
\Gamma \vdash_{\Sigma} M: \alpha \quad \text { implies } \quad \mathscr{L}(\Gamma) \vdash_{\Sigma^{\prime}} \mathscr{L}(M): \mathscr{L}(\alpha) .
$$

If $\mathscr{L}_{1}=\left\langle\sigma_{1}, \theta_{1}\right\rangle$ is a lexicon from Σ_{0} to Σ_{1} and $\mathscr{L}_{2}=\left\langle\sigma_{2}, \theta_{2}\right\rangle$ is a lexicon from Σ_{1} to Σ_{2}, then

$$
\mathscr{L}_{2} \circ \mathscr{L}_{1}=\left\langle\sigma_{2} \circ \sigma_{1}, \theta_{2} \circ \theta_{1}\right\rangle
$$

is a lexicon from Σ_{0} to Σ_{2}.

Relabeling

$$
\mathscr{L}: \Sigma \rightarrow \Sigma^{\prime}
$$

- $\mathscr{L}(p) \in A^{\prime}$ for all $p \in A$
- $\mathscr{L}(c) \in C^{\prime}$ for all $c \in C$

Relabeling

$$
\mathscr{L}: \Sigma \rightarrow \Sigma^{\prime}
$$

- $\mathscr{L}(p) \in A^{\prime}$ for all $p \in A$
- $\mathscr{L}(c) \in C^{\prime}$ for all $c \in C$

A nondeterministic finite automaton $M=\left\langle Q, V, \delta, q_{l},\left\{q_{F}\right\}\right\rangle$:

$$
\begin{array}{rlrl}
A & =Q, & \mathscr{L}(p)=0 \quad \text { for all } p \in a, \\
C & =\left\{d^{r \rightarrow q} \mid r \in \delta(q, d)\right\}, & \mathscr{L}\left(d^{r \rightarrow q}\right)=d . \\
\tau\left(d^{r \rightarrow q}\right) & =r \rightarrow q . & \\
w & \in L(M) \Longleftrightarrow / w / \in\left\{\mathscr{L}(N) \mid \vdash_{\Sigma} N: q_{F} \rightarrow q_{l}\right\} .
\end{array}
$$

Relabeling

A nondeterministic bottom-up finite tree automaton $M=\left\langle Q, F,\left\{q_{F}\right\}, \delta\right\rangle$:

$a \rightarrow 1$	$S 52 \rightarrow 5$
$b \rightarrow 2$	$S 52 \rightarrow 6$
$\epsilon \rightarrow 3$	$S 26 \rightarrow 6$
$S 3 \rightarrow 4$	$S 26 \rightarrow 7$
$S 41 \rightarrow 4$	$S 17 \rightarrow 7$
$S 41 \rightarrow 5$	

$$
\begin{aligned}
A & =Q, \\
C & =\left\{d^{q_{1} \rightarrow \cdots \rightarrow q_{n} \rightarrow r} \mid d q_{1} \ldots q_{n} \rightarrow r \in \delta\right\}, \\
\tau\left(d^{q_{1} \rightarrow \cdots \rightarrow q_{n} \rightarrow r}\right) & =q_{1} \rightarrow \cdots \rightarrow q_{n} \rightarrow r, \\
\mathscr{L}(p) & =0 \quad \text { for all } p \in A, \\
\mathscr{L}\left(d^{q_{1} \rightarrow \cdots \rightarrow q_{n} \rightarrow r}\right) & =d . \\
T \in L(M) & \Longleftrightarrow T \in\left\{\mathscr{L}(N) \mid \vdash_{\Sigma} N: q_{F}\right\}
\end{aligned}
$$

Intersection with the image of a relabeling

$$
\begin{gathered}
\text { ACG } \mathscr{G}=\left\langle\Sigma_{0}, \Sigma_{1}, \mathscr{L}, s\right\rangle \quad \text { relabeling } \mathscr{L}_{1}: \Sigma_{1}^{\prime} \rightarrow \Sigma_{1} \\
\text { type } \gamma \in \mathscr{T}\left(A^{\prime}\right)
\end{gathered}
$$

Construct

$$
\mathscr{G}_{\cap}=\left\langle\Sigma_{0}^{\prime}, \Sigma_{1}, \mathscr{L}_{1} \circ \mathscr{L}^{\prime}, s^{\gamma}\right\rangle
$$

such that

$$
\mathcal{O}\left(\mathscr{G}_{\cap}\right)=\mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\}
$$

Intersection with the image of a relabeling

$$
\begin{gathered}
\text { ACG } \mathscr{G}=\left\langle\Sigma_{0}, \Sigma_{1}, \mathscr{L}, s\right\rangle \quad \text { relabeling } \mathscr{L}_{1}: \Sigma_{1}^{\prime} \rightarrow \Sigma_{1} \\
\text { type } \gamma \in \mathscr{T}\left(A^{\prime}\right)
\end{gathered}
$$

Construct

$$
\mathscr{G}_{\cap}=\left\langle\Sigma_{0}^{\prime}, \Sigma_{1}, \mathscr{L}_{1} \circ \mathscr{L}^{\prime}, s^{\gamma}\right\rangle
$$

such that

$$
\mathcal{O}\left(\mathscr{G}_{\cap}\right)=\mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} .
$$

- The construction generalizes standard constructions for well-known grammar formalisms,
- but the proof of correctness is a lot more involved due to its generality.

Construction

$$
\mathscr{G}_{\cap}=\left\langle\Sigma_{0}^{\prime}, \Sigma_{1}, \mathscr{L}_{1} \circ \mathscr{L}^{\prime}, s^{\gamma}\right\rangle
$$

$$
\Sigma_{0}^{\prime}=\left\langle A_{0}^{\prime}, C_{0}^{\prime}, \tau_{0}^{\prime}\right\rangle
$$

$$
\begin{aligned}
& A_{0}^{\prime}=\left\{p^{\beta} \mid p \in A_{0}, \beta \in \mathscr{T}\left(A_{1}^{\prime}\right), \mathscr{L}_{1}(\beta)=\mathscr{L}(p)\right\} \\
& C_{0}^{\prime}=\left\{d_{\langle c, N, \beta\rangle} \mid c \in C_{0}, N \in \Lambda_{\operatorname{lin}}\left(\Sigma_{1}^{\prime}\right), \beta \in \mathscr{T}\left(A_{1}^{\prime}\right),\right. \\
& \mathscr{L}_{1}(N)=\mathscr{L}(c), \mathscr{L}_{1}(\beta)=\mathscr{L}(\tau(c)), \\
&\left.\vdash_{\Sigma_{1}^{\prime}} N: \beta\right\} \\
& \tau_{0}^{\prime}\left(d_{\langle c, N, \beta\rangle}\right)= \operatorname{anti}(\tau(c), \beta),
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{anti}(p, \beta) & =p^{\beta} \\
\operatorname{anti}\left(\alpha_{1} \rightarrow \alpha_{2}, \beta_{1} \rightarrow \beta_{2}\right) & =\operatorname{anti}\left(\alpha_{1}, \beta_{1}\right) \rightarrow \operatorname{anti}\left(\alpha_{2}, \beta_{2}\right)
\end{aligned}
$$

Note that $\tau_{0}^{\prime}\left(d_{\langle c, N, \beta\rangle}\right)$ is always defined and is a most specific common anti-instance of $\tau(c)$ and β.

Construction

$\mathscr{L}^{\prime}=\left\langle\sigma^{\prime}, \theta^{\prime}\right\rangle$ is a lexicon from Σ_{0}^{\prime} to Σ_{1}^{\prime} :

$$
\sigma^{\prime}\left(p^{\beta}\right)=\beta, \quad \theta^{\prime}\left(d_{\langle c, N, \beta\rangle}\right)=N .
$$

Construction

$\mathscr{L}^{\prime}=\left\langle\sigma^{\prime}, \theta^{\prime}\right\rangle$ is a lexicon from Σ_{0}^{\prime} to Σ_{1}^{\prime} :

$$
\sigma^{\prime}\left(p^{\beta}\right)=\beta, \quad \theta^{\prime}\left(d_{\langle c, N, \beta\rangle}\right)=N .
$$

Define another lexicon $\mathscr{L}_{0}=\left\langle\sigma_{0}, \theta_{0}\right\rangle$ from Σ_{0}^{\prime} to Σ_{0} :

$$
\sigma_{0}\left(p^{\beta}\right)=p,
$$

$$
\theta_{0}\left(d_{\langle c, N, \beta\rangle}\right)=c .
$$

Construction

$\mathscr{L}^{\prime}=\left\langle\sigma^{\prime}, \theta^{\prime}\right\rangle$ is a lexicon from Σ_{0}^{\prime} to Σ_{1}^{\prime} :

$$
\sigma^{\prime}\left(p^{\beta}\right)=\beta, \quad \theta^{\prime}\left(d_{\langle c, N, \beta\rangle}\right)=N .
$$

Define another lexicon $\mathscr{L}_{0}=\left\langle\sigma_{0}, \theta_{0}\right\rangle$ from Σ_{0}^{\prime} to Σ_{0} :

$$
\sigma_{0}\left(p^{\beta}\right)=p, \quad \theta_{0}\left(d_{\langle c, N, \beta\rangle}\right)=c .
$$

We have $\mathscr{L} \circ \mathscr{L}_{0}=\mathscr{L}_{1} \circ \mathscr{L}^{\prime}$:

$$
\vdash_{\Sigma_{0}} c: \tau(c) \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \mathscr{L}(c): \mathscr{L}(\tau(c))
$$

$$
\vdash_{\Sigma_{0}^{\prime}} d_{\langle c, N, \beta\rangle}: \operatorname{anti}(\tau(c), \beta) \xrightarrow[\mathscr{L}^{\prime}]{ } \vdash_{\Sigma_{1}^{\prime}} N: \beta
$$

Proof of correctness

$$
\mathcal{O}\left(\mathscr{G}_{\cap}\right) \subseteq \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\}
$$

Proof of correctness

$$
\begin{gathered}
\mathcal{O}\left(\mathscr{G}_{\cap}\right) \subseteq \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \\
\mathscr{G}_{\cap}=\left\langle\Sigma_{0}^{\prime}, \Sigma_{1}, \mathscr{L}_{1} \circ \mathscr{L}^{\prime}, s^{\gamma}\right\rangle \\
\vdash_{\Sigma_{0}} \mathscr{L}_{0}(P): s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}\left(\left|\mathscr{L}^{\prime}(P)\right|_{\beta}\right): \mathscr{L}_{1}(\gamma) \\
\mathscr{L}_{0} \vdash_{\Sigma_{0}^{\prime}} P: s^{\gamma} \xrightarrow[\mathscr{L}^{\prime}]{ } \mathscr{L}_{1} \\
\vdash_{\Sigma_{1}^{\prime}}\left|\mathscr{L}^{\prime}(P)\right|_{\beta}: \gamma
\end{gathered}
$$

Proof of correctness

$$
\begin{gathered}
\mathcal{O}\left(\mathscr{G}_{\cap}\right) \subseteq \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} . \\
\mathscr{G}_{\cap}=\left\langle\Sigma_{0}^{\prime}, \Sigma_{1}, \mathscr{L}_{1} \circ \mathscr{L}^{\prime}, s^{\gamma}\right\rangle \\
\vdash_{\Sigma_{0}} \mathscr{L}_{0}(P): s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}}\left|\mathscr{L}\left(\mathscr{L}_{0}(P)\right)\right|_{\beta}: \mathscr{L}(s) \\
\left.\mathscr{L}_{0}\right|_{\Sigma_{0}^{\prime}} P: s^{\gamma} \xrightarrow[\mathscr{L}^{\prime}]{ } \mathscr{L}_{\Sigma_{1}^{\prime}}\left|\mathscr{L}^{\prime}(P)\right|_{\beta}: \gamma
\end{gathered}
$$

Proof of correctness

$$
\mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right)
$$

Proof of correctness

$$
\mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}(\mathscr{G} \cap)
$$

Lemma. If \mathscr{L} is a relabeling and $M \rightarrow_{\beta} \mathscr{L}(N)$ by non-erasing and non-duplicating β-reduction, then there is a P such that

$$
\begin{aligned}
& M \rightarrow \beta \mathscr{L}(N) \\
& \left.\mathscr{L}\right|_{P \rightarrow \beta} \mathscr{L} \mid
\end{aligned}
$$

Proof of correctness

$$
\begin{aligned}
& \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
& \vdash_{\Sigma_{0}} P: s \quad \stackrel{\mathscr{L}}{\longrightarrow} \vdash_{\Sigma_{1}} \mathscr{L}(P): \mathscr{L}(s) \quad \rightarrow_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
& \uparrow_{\mathscr{L}_{1}} \\
& \vdash_{\Sigma_{1}^{\prime}} M: \gamma
\end{aligned}
$$

Proof of correctness

$$
\begin{aligned}
\mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
\vdash_{\Sigma_{0}} P: s \quad \stackrel{\mathscr{L}}{\longrightarrow} \quad \vdash_{\Sigma_{1}} \mathscr{L}(P): \mathscr{L}(s) \quad \rightarrow_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
\uparrow_{\mathscr{L}_{1}} \\
\vdash_{\Sigma_{1}^{\prime}} M: \gamma
\end{aligned}
$$

$$
\overrightarrow{\operatorname{Con}}(P)=c_{1} \ldots c_{m}
$$

Proof of correctness

$$
\begin{gathered}
\mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
\vdash_{\Sigma_{0}} \hat{P}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow \beta \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
\uparrow \mathscr{L}_{1} \\
\stackrel{\vdash_{\Sigma_{1}^{\prime}} M: \gamma}{ } \\
\overrightarrow{\operatorname{Con}(P)}=c_{1} \ldots c_{m}
\end{gathered}
$$

Proof of correctness

$$
\begin{aligned}
& \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
& \vdash_{\Sigma_{0}} \hat{\rho}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow \beta{ }_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
& \uparrow \mathscr{L}_{1} \\
& \overrightarrow{\operatorname{Con}(P)}(P) \mathscr{L}_{1} \ldots c_{m}
\end{aligned}
$$

Proof of correctness

$$
\begin{gathered}
\mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
\vdash_{\Sigma_{0}} \hat{P}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow{ }_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
\uparrow \mathscr{L}_{1} \\
\hat{P}\left[N_{1}, \ldots, N_{m}\right] \\
\overrightarrow{C o n}(P)=c_{1} \ldots c_{m} \\
\mathscr{L}_{1}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right)
\end{gathered}
$$

Proof of correctness

$$
\begin{aligned}
& \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
& \vdash_{\Sigma_{0}} \hat{P}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow \beta \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
& \uparrow \mathscr{L}_{1} \\
& \vdash_{\Sigma_{1}^{\prime}} \hat{P}\left[N_{1}, \ldots, N_{m}\right]: \gamma \quad \mathscr{L}_{1} \\
& \overrightarrow{C o n}(P)=c_{1} \ldots c_{m} \\
& \mathscr{L}_{1}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right)
\end{aligned}
$$

Proof of correctness

$$
\begin{gathered}
\mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
\vdash_{\Sigma_{0}} \hat{P}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow \rightarrow_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
\uparrow \mathscr{L}_{1} \\
\vdash_{\Sigma_{1}^{\prime}} \hat{P}\left[N_{1}, \ldots, N_{m}\right]: \gamma \quad \overbrace{\beta} \quad \vdash_{\Sigma_{1}^{\prime}} M: \gamma \\
\overrightarrow{\operatorname{Con}(P)}=c_{1} \ldots c_{m} \\
\mathscr{L}_{1}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right) \\
\vdash_{\Sigma_{1}^{\prime}} N_{i}: \beta_{i}
\end{gathered}
$$

Proof of correctness

$$
\begin{aligned}
& \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
& \vdash_{\Sigma_{0}} \hat{P}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow \rightarrow_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
& \uparrow \mathscr{L}_{1} \\
& \vdash_{\Sigma_{1}^{\prime}} \hat{P}\left[N_{1}, \ldots, N_{m}\right]: \gamma \quad \overbrace{\beta} \quad \vdash_{\Sigma_{1}^{\prime}} M: \gamma \\
& \overrightarrow{\operatorname{Con}(P)}=c_{1} \ldots c_{m} \\
& \mathscr{L}_{1}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right) \\
& \vdash_{\Sigma_{1}^{\prime}} N_{i}: \beta_{i} \\
& \mathscr{L}_{1}\left(\beta_{i}\right)=\mathscr{L}\left(\tau_{0}\left(c_{i}\right)\right)
\end{aligned}
$$

Proof of correctness

$$
\begin{aligned}
& \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}(\mathscr{G} \cap) . \\
& \vdash_{\Sigma_{0}} \hat{P}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
& \uparrow \mathscr{L}_{1} \\
& \vdash_{\Sigma_{1}^{\prime}} \hat{P}\left[N_{1}, \ldots, N_{m}\right]: \gamma \quad \rightarrow_{\beta} \quad \vdash_{\Sigma_{1}^{\prime}} M: \gamma \\
& \overrightarrow{C o n}(P)=c_{1} \ldots c_{m} \\
& \mathscr{L}_{1}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right) \\
& \vdash_{\Sigma_{1}^{\prime}} N_{i}: \beta_{i} \\
& \mathscr{L}_{1}\left(\beta_{i}\right)=\mathscr{L}\left(\tau_{0}\left(c_{i}\right)\right) \\
& d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle} \in A_{0}^{\prime} \\
& \tau_{0}^{\prime}\left(d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle}\right)=\operatorname{anti}\left(\tau_{0}\left(c_{i}\right), \beta_{i}\right)
\end{aligned}
$$

Proof of correctness

$$
\begin{aligned}
& \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid\right.\left.\vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathscr{O}\left(\mathscr{G}_{\cap}\right) . \\
& \vdash_{\Sigma_{0}} \hat{P}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
& \uparrow_{1} \\
& \vdash_{\Sigma_{1}^{\prime}} \hat{P}\left[N_{1}, \ldots, N_{m}\right]: \gamma \\
& \overrightarrow{C o n}(P)=c_{1} \ldots c_{m} \\
& \mathscr{L}_{1}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right) \\
& \vdash_{\Sigma_{1}^{\prime}} N_{i}: \beta_{i} \\
& \mathscr{L}_{1}\left(\beta_{i}\right)=\mathscr{L}\left(\tau_{0}\left(c_{i}\right)\right) \\
& d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle} \in A_{0}^{\prime} \\
& \tau_{0}^{\prime}\left(d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle}\right)=\operatorname{anti}\left(\tau_{0}\left(c_{i}\right), \beta_{i}\right) \\
& y_{1}: \tau_{0}\left(c_{1}\right), \ldots, y_{m}: \tau_{0}\left(c_{m}\right) \vdash \hat{P}\left[y_{1}, \ldots, y_{m}\right]: s \\
& y_{1}: \beta_{1}, \ldots, y_{m}: \beta_{m} \vdash \hat{P}\left[y_{1}, \ldots, y_{m}\right]: \gamma
\end{aligned}
$$

Proof of correctness

$$
\begin{aligned}
& \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid\right.\left.\vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
& \vdash_{\Sigma_{0}} \hat{P}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M): \mathscr{L}(s) \\
& \mathscr{L}_{1} \\
& \mathscr{L}_{1} \\
& \vdash_{\Sigma_{1}^{\prime}} \hat{P}\left[N_{1}, \ldots, N_{m}\right]: \gamma \quad \mathscr{L}_{1} \\
& \overrightarrow{C o n}(P)=c_{1} \ldots c_{m} \\
& \mathscr{L}_{1}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right) \\
& \vdash_{\Sigma_{1}^{\prime}} N_{i}: \beta_{i} \\
& \mathscr{L}_{\Sigma_{1}^{\prime}} M: \gamma \\
& \mathscr{L}_{1}\left(\beta_{i}\right)=\mathscr{L}\left(\tau_{0}\left(c_{i}\right)\right) \\
& d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle} \in A_{0}^{\prime} \\
& \tau_{0}^{\prime}\left(d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle}\right)=\operatorname{anti}\left(\tau_{0}\left(c_{i}\right), \beta_{i}\right) \\
& y_{1}: \tau_{0}\left(c_{1}\right), \ldots, y_{m}: \tau_{0}\left(c_{m}\right) \vdash \hat{P}\left[y_{1}, \ldots, y_{m}\right]: s \\
& y_{1}: \beta_{1}, \ldots, y_{m}: \beta_{m} \vdash \hat{P}\left[y_{1}, \ldots, y_{m}\right]: \gamma \\
& y_{1}: \operatorname{anti}\left(\tau_{0}\left(c_{1}\right), \beta_{1}\right), \ldots, y_{m}: \operatorname{anti}\left(\tau_{0}\left(c_{m}\right), \beta_{m}\right) \vdash \hat{P}\left[y_{1}, \ldots, y_{m}\right]: s^{\gamma}
\end{aligned}
$$

Proof of correctness

$$
\begin{aligned}
& \mathcal{O}(\mathscr{G}) \cap\left\{\mathscr{L}_{1}(M) \mid \vdash_{\Sigma_{1}^{\prime}} M: \gamma\right\} \subseteq \mathcal{O}\left(\mathscr{G}_{\cap}\right) . \\
& \vdash_{\Sigma_{0}} \hat{\mathrm{P}}\left[c_{1}, \ldots, c_{m}\right]: s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{\mathrm{P}}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: \mathscr{L}(s) \rightarrow{ }_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}(M): \mathscr{L}(s) \\
& \mathscr{L}_{0} \uparrow \quad \uparrow \mathscr{L}_{1} \\
& \mathscr{L}_{1} \\
& \vdash_{\Sigma_{0}^{\prime}} \hat{P}\left[d_{\left\langle c_{1}, N_{1}, \beta_{1}\right.}, \ldots, d_{\left\langle c_{m}, N_{m}, \beta_{m}\right\rangle}\right]: s^{\gamma} \xrightarrow[\mathscr{L}^{\prime}]{ } \vdash_{\Sigma_{1}^{\prime}} \hat{P}\left[N_{1}, \ldots, N_{m}\right]: \gamma \\
& \overrightarrow{C o n}(P)=c_{1} \ldots c_{m} \\
& \mathscr{L}_{1}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right) \\
& \vdash_{\Sigma_{1}^{\prime}} N_{i}: \beta_{i} \\
& \mathscr{L}_{1}\left(\beta_{i}\right)=\mathscr{L}\left(\tau_{0}\left(c_{i}\right)\right) \\
& d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle} \in A_{0}^{\prime} \\
& \tau_{0}^{\prime}\left(d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle}\right)=\operatorname{anti}\left(\tau_{0}\left(c_{i}\right), \beta_{i}\right) \\
& y_{1}: \tau_{0}\left(c_{1}\right), \ldots, y_{m}: \tau_{0}\left(c_{m}\right) \vdash \hat{P}\left[y_{1}, \ldots, y_{m}\right]: s \\
& y_{1}: \beta_{1}, \ldots, y_{m}: \beta_{m} \vdash \hat{P}\left[y_{1}, \ldots, y_{m}\right]: \gamma \\
& y_{1}: \operatorname{anti}\left(\tau_{0}\left(c_{1}\right), \beta_{1}\right), \ldots, y_{m}: \operatorname{anti}\left(\tau_{0}\left(c_{m}\right), \beta_{m}\right) \vdash \hat{P}\left[y_{1}, \ldots, y_{m}\right]: s^{\gamma}
\end{aligned}
$$

Application: Parsing as intersection

Theorem. UNIVERSAL RECOGNITION reduces to NON-EMPTINESS.

$$
\begin{aligned}
M \in \mathcal{O}(\mathscr{G}) & \Longleftrightarrow \mathcal{O}(\mathscr{G}) \cap\{M\} \neq \varnothing \\
& \Longleftrightarrow \mathcal{O}\left(\mathscr{G}_{\cap}\right) \neq \varnothing
\end{aligned}
$$

Application: Parsing as intersection

Lemma. A singleton set is the image of a relabeling.

Application: Parsing as intersection

Lemma. A singleton set is the image of a relabeling.
Take $M \in \Lambda_{\text {lin }}(\Sigma)$ in long normal form with

$$
\vdash_{\Sigma} M: \beta
$$

Let $\overrightarrow{\operatorname{Con}}(M)=a_{1} \ldots a_{n}$, and let $\hat{M}\left[x_{1}, \ldots, x_{n}\right] \in \Lambda_{\text {lin }}$ be such that $M=\hat{M}\left[a_{1}, \ldots, a_{n}\right]$.

Application: Parsing as intersection

Lemma. A singleton set is the image of a relabeling.
Take $M \in \Lambda_{\text {lin }}(\Sigma)$ in long normal form with

$$
\vdash_{\Sigma} M: \beta
$$

Let $\overrightarrow{\operatorname{Con}}(M)=a_{1} \ldots a_{n}$, and let $\hat{M}\left[x_{1}, \ldots, x_{n}\right] \in \Lambda_{\text {lin }}$ be such that $M=\hat{M}\left[a_{1}, \ldots, a_{n}\right]$.

Let

$$
x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n} \vdash \hat{M}\left[x_{1}, \ldots, x_{n}\right]: \alpha
$$

be a principal pair for $\hat{M}\left[x_{1}, \ldots, x_{n}\right]$. Since $\hat{M}\left[x_{1}, \ldots, x_{n}\right]$ is linear, $\alpha_{1}, \ldots, \alpha_{n} \vdash \alpha$ is a balanced sequent.

Application: Parsing as intersection

Lemma. A singleton set is the image of a relabeling.
Take $M \in \Lambda_{\text {lin }}(\Sigma)$ in long normal form with

$$
\vdash_{\Sigma} M: \beta
$$

Let $\overrightarrow{\operatorname{Con}}(M)=a_{1} \ldots a_{n}$, and let $\hat{M}\left[x_{1}, \ldots, x_{n}\right] \in \Lambda_{\text {lin }}$ be such that $M=\hat{M}\left[a_{1}, \ldots, a_{n}\right]$.

Let

$$
x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n} \vdash \hat{M}\left[x_{1}, \ldots, x_{n}\right]: \alpha
$$

be a principal pair for $\hat{M}\left[x_{1}, \ldots, x_{n}\right]$. Since $\hat{M}\left[x_{1}, \ldots, x_{n}\right]$ is linear, $\alpha_{1}, \ldots, \alpha_{n} \vdash \alpha$ is a balanced sequent.

By the Coherence Theorem,

$$
\Gamma \vdash N: \alpha \quad \text { for some } \Gamma \subseteq\left\{x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n}\right\}
$$

implies $N={ }_{\beta \eta} \hat{M}\left[x_{1}, \ldots, x_{n}\right]$.

Application: Parsing as intersection

Define $\Sigma^{\prime}=\left\langle A^{\prime}, C^{\prime}, \tau^{\prime}\right\rangle$:
$A^{\prime}=$ the set of atomic types in $\alpha_{1}, \ldots, \alpha_{n}, \alpha$,
$C^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}, \quad$ distinct fresh constants

$$
\tau^{\prime}\left(a_{i}^{\prime}\right)=\alpha_{i}
$$

Application: Parsing as intersection

Define $\Sigma^{\prime}=\left\langle A^{\prime}, C^{\prime}, \tau^{\prime}\right\rangle$:
$A^{\prime}=$ the set of atomic types in $\alpha_{1}, \ldots, \alpha_{n}, \alpha$, $C^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}, \quad$ distinct fresh constants $\tau^{\prime}\left(a_{i}^{\prime}\right)=\alpha_{i}$.

Define a relabeling $\mathscr{L}=\langle\sigma, \theta\rangle$ from Σ^{\prime} to Σ :

$$
\begin{aligned}
& \quad \sigma \text { is such that } \sigma\left(\alpha_{i}\right)=\tau\left(a_{i}\right), \sigma(\alpha)=\beta, \\
& \theta\left(a_{i}^{\prime}\right)=a_{i} .
\end{aligned}
$$

Application: Parsing as intersection

Define $\Sigma^{\prime}=\left\langle A^{\prime}, C^{\prime}, \tau^{\prime}\right\rangle$:
$A^{\prime}=$ the set of atomic types in $\alpha_{1}, \ldots, \alpha_{n}, \alpha$, $C^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}, \quad$ distinct fresh constants $\tau^{\prime}\left(a_{i}^{\prime}\right)=\alpha_{i}$.

Define a relabeling $\mathscr{L}=\langle\sigma, \theta\rangle$ from Σ^{\prime} to Σ :

$$
\begin{aligned}
& \sigma \text { is such that } \sigma\left(\alpha_{i}\right)=\tau\left(a_{i}\right), \sigma(\alpha)=\beta \\
& \theta\left(a_{i}^{\prime}\right)=a_{i} .
\end{aligned}
$$

$\vdash_{\Sigma^{\prime}} N: \alpha$ implies $N={ }_{\beta \eta} \hat{M}\left[a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right]$.

Application: Parsing as intersection

Define $\Sigma^{\prime}=\left\langle A^{\prime}, C^{\prime}, \tau^{\prime}\right\rangle$:
$A^{\prime}=$ the set of atomic types in $\alpha_{1}, \ldots, \alpha_{n}, \alpha$,
$C^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}, \quad$ distinct fresh constants $\tau^{\prime}\left(a_{i}^{\prime}\right)=\alpha_{i}$.

Define a relabeling $\mathscr{L}=\langle\sigma, \theta\rangle$ from Σ^{\prime} to Σ :

$$
\begin{aligned}
& \sigma \text { is such that } \sigma\left(\alpha_{i}\right)=\tau\left(a_{i}\right), \sigma(\alpha)=\beta \\
& \theta\left(a_{i}^{\prime}\right)=a_{i}
\end{aligned}
$$

$\vdash_{\Sigma^{\prime}} N: \alpha$ implies $N={ }_{\beta \eta} \hat{M}\left[a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right]$.
Gives a quick proof that second-order ACGs generate PTIME languages (Salvati 2005).

