Proof mining in $\mathbb{R}\text{-trees}$ and hyperbolic spaces

Laurențiu Leuștean

TU Darmstadt, Germany

and

Institute of Mathematics "Simion Stoilow" of the Romanian Academy

General metatheorem

Theorem 1 (Gerhardy/Kohlenbach, 2005)

P Polish space, *K* compact metric space, ρ "small" type, $B_{\forall}(x^{\rho}, n^{0})$, $C_{\exists}(x^{\rho}, m^{0})$ contain only x, n free, resp. x, m free. Assume that

$$\mathcal{A}^{\omega}[X,d]_{-b} \vdash \forall z \in P \forall y \in K \forall x^{\rho} (\forall n B_{\forall}(x,n) \to \exists m C_{\exists}(x,m)).$$

Then there exists a computable functional $\Phi : \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{(\mathbb{N} \times ... \mathbb{N})} \to \mathbb{N}$ such that the following holds in all nonempty metric spaces (X, d):

for all representatives r_z of $z \in P$ and all $x \in S_\rho, x^* \in \mathbb{N}^{(\mathbb{N} \times \dots \mathbb{N})}$, if there exists an $a \in X$ such that $x^* \geq_{\rho}^a x$, then

$$\forall y \in K \big(\forall n \le \Phi(r_z, x^*) B_{\forall}(x, n) \to \exists m \le \Phi(r_z, x^*) C_{\exists}(x, m) \big)$$

The theorem also holds for nonempty hyperbolic spaces (X, d, W), CAT(0)-spaces, normed spaces, inner product spaces.

General metatheorem

• the metatheorem can be used as a black box: infer new uniform existence results without any proof analysis

- run the extraction algorithm:
 - extract an explicit effective bound
 - given proof $p \Rightarrow$ new proof p^* for the stronger result
 - new mathematical proof of a stronger statement which no longer relies at any logical tool

Metatheorems for other classes of spaces

- adapt the metatheorem to other classes of spaces:
 - 1. the language may be extended by a-majorizable constants
 - 2. the theory may be extended by purely universal axioms

Gromov hyperbolic spaces

(X, d) metric space

• the *Gromov product* of x and y with respect to the *base point* w is defined to be:

$$(x \cdot y)_w = \frac{1}{2}(d(x, w) + d(y, w) - d(x, y)).$$

• Let $\delta \ge 0$. X is called $\delta - hyperbolic$ if for all $x, y, z, w \in X$,

$$(x \cdot y)_w \ge \min\{(x \cdot z)_w, (y \cdot z)_w\} - \delta.$$

X is *Gromov hyperbolic* if it is δ -hyperbolic for some $\delta \geq 0$.

• X is $\delta - hyperbolic$ iff for all $x, y, z, w \in X$,

 $d(x,y)+d(z,w)\leq \max\{d(x,z)+d(y,w),d(x,w)+d(y,z)\}+2\delta.$

Gromov hyperbolic spaces

• The theory of Gromov hyperbolic spaces, $\mathcal{A}^{\omega}[X, d, \delta$ -hyperbolic]_{-b} is defined by extending $\mathcal{A}^{\omega}[X, d]_{-b}$ as follows:

- 1. add a constant δ^1 of type 1,
- 2. add the axioms

 $\delta \geq_{\mathbb{R}} 0_{\mathbb{R}},$

 $\forall x^X, y^X, z^X, w^X \left(d_X(x, y) +_{\mathbb{R}} d_X(z, w) \leq_{\mathbb{R}} \right. \\ \leq_{\mathbb{R}} \max_{\mathbb{R}} \left\{ d_X(x, z) +_{\mathbb{R}} d_X(y, w), d_X(x, w) +_{\mathbb{R}} d_X(y, z) \right\} +_{\mathbb{R}} 2 \cdot_{\mathbb{R}} \delta \right)$

• Theorem 1 holds also for $\mathcal{A}^{\omega}[X, d, \delta$ -hyperbolic]_{-b} and nonempty Gromov hyperbolic spaces (X, d, δ)

W-hyperbolic spaces

[Takahashi, Goebel/Kirk, Reich/Shafrir, Kohlenbach]

A *W*-hyperbolic space is a triple (X, ρ, W) where (X, d) is metric space and $W: X \times X \times [0, 1] \to X$ s.t.

$$(W1) d(z, W(x, y, \lambda)) \le (1 - \lambda)d(z, x) + \lambda d(z, y),$$

(W2)
$$d(W(x, y, \lambda), W(x, y, \tilde{\lambda})) = |\lambda - \tilde{\lambda}| \cdot d(x, y),$$

(W3) $W(x, y, \lambda) = W(y, x, 1 - \lambda),$

 $(W4) \quad d(W(x, z, \lambda), W(y, w, \lambda)) \le (1 - \lambda)d(x, y) + \lambda d(z, w).$

Notation: $(1 - \lambda)x \oplus \lambda y := W(x, y, \lambda)$. $[x, y] := \{W(x, y, \lambda) : \lambda \in [0, 1]\}.$

\mathbb{R} -trees

- \mathbb{R} -trees introduced by Tits('77)
- A geodesic in a metric space (X, d) is a map $\gamma : [a, b] \to \mathbb{R}$ s.t. for all $s, t \in [a, b]$,

 $d(\gamma(s),\gamma(t)) = |s-t|$

X is said to be a *geodesic space* if every two points are joined by a geodesic.

• A metric space (X, d) is an \mathbb{R} -tree if X is a geodesic space containing no homeomorphic image of a circle.

• X is an \mathbb{R} -tree \Leftrightarrow X is a 0-hyperbolic geodesic space \Leftrightarrow X is a W-hyperbolic space satisfying

 $d(x,y) + d(z,w) \le \max\{d(x,z) + d(y,w), d(x,w) + d(y,z)\}.$

\mathbb{R} -trees

• $\mathcal{A}^{\omega}[X, d, W, \mathbb{R}$ -tree]_{-b} results from $\mathcal{A}^{\omega}[X, d, W]_{-b}$ by adding the axiom:

$$\begin{cases} \forall x^X, y^X, z^X, w^X (d_X(x, y) +_{\mathbb{R}} d_X(z, w) \leq_{\mathbb{R}} \\ \leq_{\mathbb{R}} \max_{\mathbb{R}} \{ d_X(x, z) +_{\mathbb{R}} d_X(y, w), d_X(x, w) +_{\mathbb{R}} d_X(y, z) \}). \end{cases}$$

• Theorem 1 holds also for $\mathcal{A}^{\omega}[X, d, W, \mathbb{R}$ -tree]_{-b} and nonempty \mathbb{R} -trees.

Uniformly convex W-hyperbolic spaces

 (X, ρ, W) is *uniformly convex* if for any r > 0, and $\varepsilon \in (0, 2]$ there exists a $\delta \in (0, 1]$ s. t. for all $a, x, y \in X$,

$$\begin{aligned} d(x,a) &\leq r \\ d(y,a) &\leq r \\ d(x,y) &\geq \varepsilon r \end{aligned} \right\} \qquad \Rightarrow \qquad d\left(\frac{1}{2}x \oplus \frac{1}{2}y,a\right) \leq (1-\delta)r. \tag{1}$$

A mapping $\eta : (0, \infty) \times (0, 2] \to (0, 1]$ providing such a $\delta := \eta(r, \varepsilon)$ for given r > 0 and $\varepsilon \in (0, 2]$ is called a *modulus of uniform convexity*.

Uniformly convex W-hyperbolic spaces

• The theory $\mathcal{A}^{\omega}[X, d, W, \eta]_{-b}$ of uniformly convex *W*-hyperbolic spaces extends the theory $\mathcal{A}^{\omega}[X, d, W]_{-b}$ as follows:

- 1. add a new constant η_X of type 000,
- 2. add the following axioms:

$$\begin{cases} \forall r^0 \forall k^0 \forall x^X, y^X, a^X (d_X(x, a) <_{\mathbb{R}} r \land d_X(y, a) <_{\mathbb{R}} r \land \\ \land d_X(W_X(x, y, 1/2), a) >_{\mathbb{R}} 1 - 2^{-\eta_X(r, k)} \to d_X(x, y) \leq_{\mathbb{R}} 2^{-k}), \end{cases}$$

$$\forall r^0, k^0(\eta_X(r,k) =_0 \eta_X(q(r),k)).$$

• Theorem 1 holds also for $\mathcal{A}^{\omega}[X, d, W, \eta]_{-b}$ and nonempty uniformly convex *W*-hyperbolic spaces (X, d, W, η)

Fixed point theory of nonexpansive mappings

(X, d, W) W-hyperbolic, $C \subseteq X$ convex, $(\lambda_n)_{n \in \mathbb{N}}$ sequence in [0, 1]

• $T: C \to C$ nonexpansive if for all $x, y \in C$

 $d(Tx, Ty) \le d(x, y),$

• The *Krasnoselski-Mann iteration* starting from $x \in C$:

$$x_0 := x, \ x_{n+1} := (1 - \lambda_n) x_n \oplus \lambda_n T x_n$$

• asymptotic regularity - defined by Browder/Petryshyn(66) for normed spaces:

T is λ_n -asymptotically regular if for all $x \in C$,

$$\lim_{n \to \infty} d(x_n, Tx_n) = 0.$$

Fixed point theory for nonexpansive mappings

Theorem Browder-Göhde-Kirk

 $(X, \|\cdot\|)$ uniformly convex Banach space, $C \subseteq X$ non-empty convex, closed and bounded, $T: C \to C$ nonexpansive. Then T has a fixed point.

Theorem Ishikawa '76

 $(X, \|\cdot\|)$ Banach space, $C \subseteq X$ a nonempty convex bounded subset, $T: C \to C$ nonexpansive. Suppose that (λ_n) is divergent in sum and $\limsup_{n \to \infty} \lambda_n < 1$. Then T is λ_n -asymptotically regular.

Groetsch's Theorem

Theorem

 (X, d, W, η) uniformly convex W-hyperbolic space s.t η decreases with r(for a fixed ε), $C \subseteq X$ nonempty convex, $T: C \to C$ nonexpansive s.t. $Fix(T) \neq \emptyset$, $(\lambda_n) \subseteq [0, 1]$ satisfying

$$\sum_{k=0}^{\infty} \lambda_k (1 - \lambda_k) = \infty.$$

Then T is λ_n -asymptotically regular.

• version for uniformly convex W-hyperbolic spaces of an important theorem for Banach spaces proved by Groetsch(72)

Logical analysis

 $\mathcal{A}^{\omega}[X, d, W, \eta]_{-b}$ proves: $\forall (\lambda_n) \subseteq [0,1] \forall x \in X, T : X \to X \left(Mon(\eta, r) \land T n.e. \land Fix(T) \neq \emptyset \right)$ $\wedge \sum_{k=1}^{\infty} \lambda_k (1 - \lambda_k) = \infty \to \lim d(x_n, Tx_n) = 0 \big)$ k=0 \uparrow $\forall (\lambda_n) \subseteq [0,1] \, \forall x \in X, T : X \to X \left(Mon(\eta, r) \land T \, n.e. \land Fix(T) \neq \emptyset \right)$ $\theta(n)$ $\wedge \exists \theta : \mathbb{N} \to \mathbb{N} \forall n \in \mathbb{N} (n \le \sum_{i=1}^{n} \lambda_i (1 - \lambda_i)) \to \lim d(x_n, Tx_n) = 0 \Big)$

Logical analysis

$$\forall k^0 \,\forall \theta^1 \,\forall \lambda_{(\cdot)}^{0 \to 1} \,\forall x^X, T^{X \to X} \big(T \, n.e. \,\wedge \, Fix(T) \neq \emptyset \,\wedge \, Mon(\eta, r) \,\wedge \\ \wedge \,\forall n^0 (n \leq_{\mathbb{R}} \sum_{i=0}^{\theta(n)} \lambda_i (1 - \lambda_i)) \to \exists N^0 (d_X(x_N, T(x_N)) <_{\mathbb{R}} 2^{-k}) \big),$$

where $\lambda_{(\cdot)}^{0\to 1}$ represents an element of the compact metric space $[0, 1]^{\mathbb{N}}$ with the product metric.

Concrete consequence of metatheorem

Corollary

P Polish space, *K* compact Polish space, B_{\forall} , and C_{\exists} be as in Theorem 1. Assume that $\mathcal{A}^{\omega}[X, d, W, \eta]$ proves that

$$\forall z \in P \forall y \in K \forall x^X, T^{X \to X} (T \, n.e. \land Fix(T) \neq \emptyset \land \forall n^0 B_{\forall} \to \exists N^0 C_{\exists}),$$

then there exists a computable functional $\Phi : \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \times \mathbb{N}^{\mathbb{N} \times \mathbb{N}} \to \mathbb{N}$ s.t.

$$\forall r_z \in \mathbb{N}^{\mathbb{N}} \forall b \in \mathbb{N} \forall y \in K \forall x^X, T^{X \to X} (T \, n.e. \land \land \forall \delta > 0 (Fix_{\delta}(T, x, b) \neq \emptyset) \land \forall n^0 B_{\forall} \to \exists N \leq_0 \Phi(r_z, b, \eta_X) C_{\exists})$$

holds in any nonempty uniformly convex W-hyperbolic space.

$$Fix_{\delta}(T,x,b) := \{ y^X \mid d_X(y,T(y)) \leq_{\mathbb{R}} \delta \wedge d_X(x,y) \leq_{\mathbb{R}} b \}.$$

Logical analysis

Corollary yields the existence of a computable functional $\Phi(k, \theta, b, \eta)$ such that for all $(\lambda_n) \in [0, 1]^{\mathbb{N}}, x \in X, T : X \to X$,

$$T n.e. \land Mon(\eta, r) \land \forall \delta > 0(Fix_{\delta}(T, x, b) \neq \emptyset) \land \\ \land \forall n(n \leq \sum_{i=0}^{\theta(n)} \lambda_i(1 - \lambda_i)) \to \exists N \leq \Phi(k, \theta, b, \eta)(d(x_N, T(x_N)) \leq 2^{-k})$$

holds in any nonempty uniformly convex W-hyperbolic space (X, d, W, η) .

Bounds on asymptotic regularity

Theorem

 (X, d, W, η) uniformly convex W-hyperbolic space s.t η decreases with r, $C \subseteq X$ convex bounded subset with diameter $d_C, T : C \to C$ n. e. $(\lambda_n) \subseteq [0, 1], \theta : \mathbb{N} \to \mathbb{N}$ s. t. $\forall n \in \mathbb{N} \left(\sum_{i=0}^{\theta(n)} \lambda_i (1 - \lambda_i) \ge n \right).$

Then T is λ_n -asymptotic regular and moreover

 $\forall \varepsilon > 0 \,\forall n \ge \Phi(\varepsilon, \theta, d_C, \eta) \, \big(\rho(x_n, Tx_n) \le \varepsilon \big).$

• for uniformly convex normed spaces: Kohlenbach, J. Math. Anal. and Appl.(03)

Bounds on asymptotic regularity

L., J. Math. Anal. and Appl. (to appear).

• extraction of $\Phi(\varepsilon, \theta, d_C, \eta)$:

$$\Phi(\varepsilon, \theta, d_C, \eta) := \begin{cases} \theta \left(\left\lceil \frac{d_C + 1}{\varepsilon \cdot \eta \left(d_C + 1, \frac{\varepsilon}{d_C + 1} \right)} \right\rceil \right) & \text{for } \varepsilon < 2d_C \\ 0 & \text{otherwise.} \end{cases}$$

• quadratic rate of asymptotic regularity for CAT(0)-spaces and \mathbb{R} -trees

$$\Phi(\varepsilon, d_C, \lambda) := \begin{cases} \frac{1}{\lambda(1-\lambda)} \left[\frac{4(d_C+1)^2}{\varepsilon^2} \right] & \text{for } \varepsilon < 2d_C \\ 0 & \text{otherwise.} \end{cases}$$

Effective bounds for asymptotic regularity

	$\lambda_n = \lambda$	general λ_n
Hilbert	quadratic:	$\theta\left(\frac{1}{\varepsilon^2}\right)$:
	Browder/Petryshyn(67)	K.(03)
UC normed	K.(03), Kirk/Martinez(90)	K.(03)
normed	quadratic:	K.(01)
	Baillon/Bruck(96)	
\mathbb{R} -trees, CAT(0)	quadratic: L.	$\theta\left(\frac{1}{\varepsilon^2}\right)$: L.
UC W-hyperbolic	L.	L.
W-hyperbolic	exponential: K./L.(03)	K./L.(03)