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Cidade Universitária, Recife — PE, 50.732-970, Brazil

LEANDRO L. MINKU

University of Birmingham, School of Computer Science,
Birmingham B15 2TT, United Kingdom

TERESA B. LUDERMIR

Federal University of Pernambuco, Center for Informatics,
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Interest in hybrid methods that combine artificial neural networks and fuzzy inference
systems has grown in recent years. These systems are robust solutions that search for
representations of domain knowledge, reasoning on uncertainty, automatic learning and
adaptation. However, the design and definition of the parameter effectiveness of such
systems is still a hard task. In the present work, we perform a statistical analysis to
verify interactions and interrelations between parameters in the design of neuro-fuzzy
systems. The analysis is carried out using a powerful statistical tool, namely, Design
of Experiments (DOE), in two neuro-fuzzy models — Adaptive Neuro Fuzzy Inference
System (ANFIS) and Evolving Fuzzy Neural Networks (EFuNN). The results show that,
for ANFIS, input MFs number and output MFs shape are usually the factors with the
largest influence on the system’s RMSE. For EFFuNN, the MF shape and the interaction
between MF shape and number usually have the largest effect size.

Keywords: Neuro Fuzzy Systems; Design of Experiments; Adaptive Neuro Fuzzy
Inference System; Evolving Fuzzy Neural Networks.

1. Introduction

The complexity and the dynamism of real world problems require sophisticated
methods and tools for the construction of knowledge systems that can be used in
the solution to such problems. The search for systems that can solve increasingly
complex problems has stimulated research in a number of scientific fields, espe-
cially Hybrid Intelligent Systems. This area seeks to combine different techniques
of learning and adaptation to overcome their individual limitations. Among such
systems, one important model — Neuro-Fuzzy Systems — is an approach that can
learn from the environment and then reason about its state. A neuro-fuzzy system is
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based on a fuzzy inference system, which is trained by a learning algorithm derived
from artificial neural network theory. While the learning capability is an advantage
provided by artificial neural network, the formation of a linguistic rule base is an
advantage provided by the fuzzy inference system.

Intelligent systems have presented promising results in the solution of many
complex problems. However, many problems are by nature imprecise, nonlinear
and contain features that are altered by variations in the environment.2 As con-
ventional methods used in the construction of intelligent systems are generally
non-adaptive and rigid, hybrid systems only obtain adequate results on specific
points and under certain problem circumstances. Thus, the adaptability and insta-
bility of the problem require constant system re-configurations, such that they are
used in situations where the operational points of the problem appear in different
ways.6

The problem regarding the topology and parametric configuration of neuro-
fuzzy systems worsens when we consider that many of the parameters are fuzzy
variables and that these systems often operate in real time. The determination of
network parameters is a difficult design task. Such parameters include membership
functions, number and shape of each input variable, learning rates, an efficient
technique for determining the initial rule base and fuzzy operators. Even in models
that construct the rule base automatically, the performance of the system still
depends on the careful selection of the sensitivity threshold, error threshold and
learning rates.

The tuning and configuration of most intelligent systems are accomplished
empirically based on a trial and error process. As shown in papers dealing with
real applications, the designer has to select the topology and parameters to be used
in each phase of the system design empirically, and this decision is usually taken
in terms of the most common parameters, operators and membership functions
performed.

Thus, it is very important to determine which factors have the greatest influence
on the behavior and performance of the neuro-fuzzy system. The designer or the
automatic parameter optimization method should therefore pay close attention to
the selection of the most statistically significant parameters. In the present work, we
perform a statistical analysis to verify the interactions and interrelations between
variables in the design of neuro-fuzzy systems and to verify the most relevant fac-
tors in the design of such systems. This analysis was proposed in Zanchettin et al.
(2005) and this work extends the main concepts of the methodology. The method
used to perform the analysis is the Design of Experiments (DOE).3 DOE has been
successfully used in several areas for parameter estimation.11–13 Experiments with
two neuro-fuzzy systems — Adaptive Neuro Fuzzy Inference System (ANFIS)4 and
Evolving Fuzzy Neural Networks (EFuNNs)5 — are performed with four differ-
ent prediction and classification problems. The prediction databases used were the
chaotic Mackey–Glass time series1 and the Gas Furnace time-series.7 The classifi-
cation problems were Wine Recognition10 and Fisher Iris.8
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This paper is divided into five sections. Section 2 presents details of the neuro-
fuzzy models. Section 3 describes the design of experiment methodology. Section 4
presents the results of the statistical experiment. Section 5 contains a summary of
the paper.

2. Background

2.1. Adaptive neuro fuzzy inference system

ANFIS was perhaps the first integrated hybrid neuro-fuzzy model and belongs to
the class of rule-extracting systems using a decompositional strategy, where rules
are extracted at the level of individual nodes within the neural network. After
extraction, rules are aggregated to form global behavior descriptions.

The ANFIS architecture consists of a five-layer structure, presented in Fig. 1.
In the first layer, the node output is the degree to which the given input satisfies
the linguistic label associated to the membership functions. The parameters in the
first layer are referred to as premise parameters.

In the second layer, each node function computes the firing strength of the
associated rule. In general, any T-norm operators that perform fuzzy AND can
be used as the node function in this layer. Each node i in third layer calculates
the ratio of the ith rule firing strength for the sum of firing strength of all rules.
The fourth layer is the product of the normalized firing level and the individual

Fig. 1. ANFIS system.
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rule output of the corresponding rule. Parameters in this layer are referred to as
consequent parameters.

The single node function of the fifth layer computes the overall system output as
the sum of all incoming signals. Note that only Layer 1 and Layer 4 contain modifi-
able parameters. Learning or adjustment of these parameters is a two-step process.
First, while holding the premise parameters fixed, information is propagated for-
ward in the network to Layer 4, where the consequent parameters are identified
by a least-squares estimator. Next, in the backward phase, the consequent para-
meters are held fixed while the error is propagated and the premise parameters are
modified using gradient descent.

The ANFIS algorithm used in the experiments was adapted from.4 There are
many possibilities for the choice of the basic parameters in the design of this neuro-
fuzzy system: (1) number of inputs and outputs; (2) choice of a nonlinear function
within the input neurons; (3) membership functions (triangular, trapezoidal, etc.) to
represent a linguistic value; (4) defuzzifier method; (5) conjunction and disjunction
operators; (6) initial step size; and (7) training epochs.

2.2. Evolving fuzzy neural networks

EFuNNs are neural networks that perform a set of fuzzy rules and a fuzzy inference
machine in a connectionist way. An EFuNN is a connectionist system that facili-
tates learning from data, reasoning over fuzzy rules, aggregation, rule insertion and
rule extraction. The system operates in an on-line mode and learns incrementally
through locally tuned elements. It grows as data arrive and regularly shrinks either
through node pruning or through node aggregation. EFuNN is an architecture that
can classify multiple classes. Moreover, if a new class is added through training,
EFuNN can automatically evolve a new output to reflect the change in the data set.

EFuNNs have a five-layer structure, presented in Fig. 2. Each input variable is
represented by a group of spatially arranged neurons to represent a fuzzy quan-
tization of this variable. Fuzzy quantization in variable space is represented in
the second layer of nodes. Different membership functions (MF) can be attached
to these neurons (triangular, Gaussian, etc.). The nodes representing membership
functions can be modified during learning.

The third layer contains rule nodes that evolve through hybrid supervised/
unsupervised learning. The rule nodes represent prototypes of input-output data
associations, graphically represented as an association of hyper-spheres from the
fuzzy input and fuzzy output spaces. Each rule node r is defined by two vectors of
connection weights — W1(r) and W2(r) — the latter of which is adjusted through
supervised learning based on the output error and the former is adjusted through
unsupervised learning based on a similarity measure within a local area of the input
problem space.

The fourth layer of neurons represents fuzzy quantification for the output vari-
ables in a similar manner as the input fuzzy neuron representation. The fifth layer
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Fig. 2. EFuNN system.

represents the real values for the output variables. In the case of “one-of-n” EFuNNs,
the maximum activation of the rule node is propagated to the next level. In the case
of “many-of-n” mode, the activation values of m (m > 1) rule nodes that are above
an activation threshold are propagated further in the connectionist structure.

EFuNN evolving algorithm used in our experimentation was adapted from Ref. 5
and is based upon the principle that rule nodes only exist if they are needed. As
each training example is presented, the activation values of the nodes in the rule
and action layers are examined along with the error over the action nodes. If the
maximum rule node activation is below a set threshold (the Sensitivity Threshold),
then a rule node is added. If the action node error is above a threshold value
(the Error Threshold), a rule node is added. Finally, if the radius of the updated
node is above a radius threshold (Maximum Radius), then the updating process is
terminated and a rule node is added.

EFuNN has several parameters that need to be optimized according to the
dataset used. These include: (1) number of inputs and outputs; (2) learning rate
for W1 and W2; (3) pruning control; (4) aggregation control; (5) number of member-
ship functions; (6) shape of membership functions; (7) initial sensitivity threshold;
(8) maximum radius; (9) error threshold; and (11) m-of-n value.

3. Statistical Methodology

Experimental design theory is a branch of statistics that provides the researcher
with numerous methods for selecting the independent variable values in which a
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limited number of experiments will be conducted. The various experimental design
methods create certain combinations of numerical experiments (analysis) in which
the independent variables are prescribed at specific values or levels. The results
of these planned experiments are used to investigate the sensitivity of a dependent
quantity — identified as the response — to the independent variables. Each analysis
is an experimental run. In each run, factors are set to specific values within their
respective ranges and responses of one or more variables are recorded.

Prior to experimental design, the allowable range of each of the k variables
is defined by lower and upper bounds. The allowable range is then discretized at
equally-spaced levels. The range of each variable is scaled to span (−1, 1) for numer-
ical stability and ease of notation. The region enclosed by the lower and upper
bounds of the variables is termed the design space, the vertices of which determine
an m-dimensional cube or hypercube. If each of the variables is specified at only the
lower and upper bounds (two levels), the experimental design is called a 2k full fac-
torial. The second part of the design and analysis of experiments is the statistical
analysis. In this stage, the sensitivity of the response to the variables is investi-
gated. The techniques most commonly used are regression analysis and analysis of
variance (ANOVA).3 These techniques are used to perform a systematic decom-
position of the variability in the observed response values and to assign portions
of the variability either to the effect of an independent variable or to experimen-
tal error. The analysis provides information regarding how much each factor (and
factor interaction) contributes to the overall variance of the data, indicating the
importance (as a percentage) that each factor or interaction plays in the process.
These experiments are screening experiments, since the experiments differentiate
the important factors and interactions from the unimportant ones. In addition to an
ANOVA analysis in the screening experiments, regression analysis can be employed
to determine a relationship between the factors and response variables in the form
of an equation.3

ANOVA allows the testing of the null hypothesis, which states all of the means
are equal, against an alternative hypothesis that there is at least one mean that is
not equal to the others. The test finds the sample mean and variance for each level
of the main factor. Using these values, two different estimates of the population
variance are obtained. The first is obtained by finding the sample variance of the
nk sample means from the overall mean. This variance is referred to as the variance
between the means. The second estimate of the population variance is found by
using a weighted average of the sample variances. This variance is called the variance
within the means. Therefore, ANOVA allows us to determine whether a change in
the measure of a given variable is caused by a change in the level of a factor or
is originated through some random effect. In this way, we can distinguish between
the components that cause the variations appearing in a dataset and to determine
whether the discrepancies between the means of the factors are greater than would
reasonably be expected according to the variations within these factors.
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3.1. Description of problems

3.1.1. Mackey–Glass database

Neuro-fuzzy models were used to predict points of the time series that result from
the Mackey–Glass equation integration,1 given by:

dx

dt
= −bx(t) + a

x(t − τ)
1 + x(t − τ)

(1)

This is a time-series with chaotic behavior, recognized as a reference in the
study of the learning and generalization capacity of different architectures of neural
networks and neuro-fuzzy systems. To obtain the time series value at integer points,
a fourth-order Runge–Kutta method was applied to generate 1.000 data points. The
time step used assumes the values x(0) = 1.2, τ = 17, and x(t) = 0 for t < 0.

In the statistical experiments, replications were performed using the time-series
value in different time steps. Five series w were built, where the objective of the
neuro-fuzzy system was to predict future points of the series (y) using past temporal
points of the series (x). The series used in the experiments are defined below:

w(1) = [x(t − 12)x(t − 8)x(t − 4)x(t), y(t + 4)]

w(2) = [x(t − 18)x(t − 12)x(t − 6)x(t), y(t + 6)]

w(3) = [x(t − 24)x(t − 16)x(t − 8)x(t), y(t + 8)]

w(4) = [x(t − 30)x(t − 20)x(t − 10)x(t), y(t + 10)]

w(5) = [x(t − 36)x(t − 24)x(t − 12)x(t), y(t + 12)]

Offline training was performed using 500 data points (t = 118 to 617) by giving
four inputs (x) and the attempt was made to predict the output (y). The neuro-
fuzzy systems were tested with another 500 data points (t = 618 to 1117).

3.1.2. Gas furnace database

This is a time-series database for a gas furnace process with gas flow rate x(t) as the
furnace input and CO2 concentration y(t) as the furnace output. This series is the
well-known Box and Jenkins gas furnace data.7 In simulations, we want to extract
a dynamic process model to predict y(t) using four candidate inputs to neuro-fuzzy
systems. The original data set contains 296 [x(t), y(t)] data pairs.

Replications were performed using the time-series value in different time steps.
Five series w were built and are defined below:

w(1) = [y(t − 1)y(t − 2)x(t − 1)x(t − 2), y(t)]

w(2) = [y(t − 1)y(t − 3)x(t − 1)x(t − 3), y(t)]

w(3) = [y(t − 2)y(t − 3)x(t − 2)x(t − 3), y(t)]

w(4) = [y(t − 3)y(t − 4)x(t − 3)x(t − 4), y(t)]

w(5) = [y(t − 4)y(t − 5)x(t − 4)x(t − 5), y(t)]
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Offline training was performed using the first 145 data points by giving four
inputs and the neuro-fuzzy systems were tested with the remaining 145 data points.

3.1.3. Wine recognition database

These data are the results of a chemical analysis of wines grown in the same region
in Italy, but derived from three different cultivars.10 The analysis determined the
quantities of 13 constituents found in each of the three types of wine. The patterns
possess 13 features with three classes defined by the three cultivars.

The database was split into a training and test set. Offline training was per-
formed using the first 133 patterns and the neuro-fuzzy systems were tested with
the remaining 45 data points. Replications were performed using five different par-
titions of the original database. This database was obtained from Ref. 9.

3.1.4. Iris database

Fisher’s Iris data set contains 150 random samples of flowers from the iris species
setosa, versicolor, and virginica collected by Anderson (1953). There are 50 obser-
vations for each species regarding sepal length, sepal width, petal length and petal
width in centimeters. This data set was obtained from Ref. 9.

Replications were performed using five different partitions of the data. The
database was split into a training and test set. Offline training was performed using
the first 111 patterns and the neuro-fuzzy systems were tested with the remaining
39 data points.

3.2. Experiment design

Design of experiments was applied in order to determine the factors with the great-
est influence on the system performance. When analyzing the influence of each
of these parameters, the designer should pay close attention to the ones present-
ing values that are statistically more significant. It should therefore be possible to
avoid the necessity for a detailed analysis of different configurations that might, in
fact, lead to the design of various neuro-fuzzy systems with very similar behavior
patterns.

The response variable used to perform the statistical analysis is the root mean
square error (RMSE — between desired and actual output of the system) in the
output of the neuro-fuzzy system, when some of the levels of the factor considered
vary with respect to a reference design. The changes in the response variable are
produced when a new combination of membership function, number of membership
functions, training epoch, etc., is considered, thereby changing the design of the
neuro-fuzzy system.

In the study performed with ANFIS, we performed a factorial experiment with
two levels (2k factorial experiment), seeking to reduce the amount of experiments
run. Table 1 presents the controlled factors. The factors G = gridpartitions (type
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Table 1. ANFIS experiment configuration.

Levels

Factors Inferior (−1) Superior (+1)

A Input MF number 2 3
B Input MF shape Sine Triangular
C Output MF shape Linear Constant
D Training epochs 10 50
E Initial step size 0.01 0.1
F Optimization method Hybrid Backpropagation

Table 2. EFuNN experiment configuration.

Levels

Factors Inferior (−1) Superior (+1)

A MF number 3 5
B MF shape Triangular Sine
C Initial sensibility threshold 0.9 0.99
D Error threshold 0.01 0.16
E M -of-n 1 3
F Maximum radius 0.3 0.8

of data partition), H = 0 (minimum training error), I = 0.9 (increment learning
rate) and J = 1.1 (decrement learning rate) were fixed during the experiments.

The factors controlled in the design of experiments performed with EFuNN are
presented in Table 2. The other EFuNN parameters, F = 1/number of samples
represented by the node (learning rate for W1 and W2), G = nonpruning (pruning
control) and H = nonaggregation (aggregation control) were maintained with
default values.

4. Statistical Results

In ANFIS experiments, the analyses were performed in a random fashion. Six
control factors (system parameters) were considered — each with two levels —
resulting in 64 combinations. Each of the level combinations of the control factors
was accomplished five times, totaling 320 analyses.

Through the variance analyses of the factorial experiment, considering the sta-
tistical significance level of 5%, four factors were identified in the Mackey–Glass
database with a greater influence over the performance of the neuro-diffuse net-
work. Table 3 gives the ANFIS variance analysis of the Mackey–Glass data. The
analysis of variance table contains the sum of squares, degrees of freedom, mean
square, statistics test and significance level. Note that the output membership func-
tion shape adopted and input membership function present the greatest statistical
relevance.

The optimization method of training had no influence over the network
response. The value of the initial step size also had restricted participation in
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Table 3. Mackey–Glass ANFIS ANOVA table.

S. Squares D. F M. Square F-Ratio Sig. Level

Main
factors

A 0.0128083 1 0.0128083 282.93 0.000
B 0.0004353 1 0.0004353 9.62 0.002
C 0.0155286 1 0.0155286 343.03 0.000
D 0.0003656 1 0.0003656 8.08 0.005
E 0.0000423 1 0.0000423 0.93 0.335
F 0.0000000 1 0.0000000 0.00 1.000

Significant
interactions

AC 0.0069277 1 0.0069277 153.03 0.000
CD 0.0002206 1 0.0002206 4.87 0.028
DE 0.0002106 1 0.0002106 4.65 0.032

system performance. However, the parameters output membership function shape
and input membership function number exercised a considerable influence over
ANFIS performance.

The results of this analysis for all databases are displayed in Table 4. For the
Mackey–Glass database, the most influential factors were: output membership func-
tion shape, corresponding to ≈ 31.72% of the system variance; input membership
function number, corresponding to ≈ 26.16% of the variance; output membership
function shape, corresponding to ≈ 0.89% of the variance; and training epochs,
corresponding to ≈ 0.75%.

The interaction between factors (variation among the differences between means
for different levels of one factor over different levels of the other factor) was also iden-
tified: input membership function number and output membership function shape,
corresponding to ≈ 14.15% of the system variance; output membership function
shape and training epochs, corresponding to ≈ 0.45% of the variance; and training
epochs and initial step size, corresponding to ≈ 0.43% of the total data variance.

In the Gas Furnace database, the most influential ANFIS factors were: output
membership function shape, corresponding to ≈ 22.83% of the variance and input
membership function number, corresponding to ≈ 20.33% of the variance. The most
relevant interaction was between input membership function number and output
membership function shape, corresponding to ≈ 14.65%. Figure 3 presents the main
effects of each controlled factor in the design experiment. The point is that some
factors have similar behavior and therefore may exercise no essential influence over
the system performance.

For the Fisher Iris data set, the most influential factors were also input member-
ship function number — corresponding to ≈ 13.52% of the variance — and output
membership function shape — corresponding to ≈ 8.63% of the variance. The
most relevant interactions were among input membership function number, output
membership function shape, training epoch and initial step size. Input membership
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Table 4. Influence factors analyses.

Database Experiments

Mackey–Glass Gas Furnace Iris Wine

System Factors Inf. (%) Factors Inf. (%) Factors Inf. (%) Factors Inf. (%) Similar

Main factors
ANFIS B 31.7187 C 22.8338 A 13.5263 A 15.6013 A

A 26.1622 A 20.3387 C 8.6340 C 6.3340 C
E 0.8891 B 3.7187 B
D 0.4506
C 0.43012

Significant interactions

AC 14.1505 AC 14.6532 ACE 3.4871 ACE 5.2871 BE
CD 0.45 ACE 0.9078 ACD 3.0151 BE 3.7859 ACE
DE 0.43 AE 0.8187 BE 1.7859 ACD 3.5151 ACD

ACD 0.6002 BD 1.6746 AB 1.1605 AB
CE 1.2558
AD 1.2087
DE 1.1853

CDE 0.9616

Main factors

EFUNN B 68.8400 B 58.4861 B 76.4700 B 66.1116 B
A 13.1100 E 4.0053 A 0.3900 A 5.5087 A
E 0.9200 A 0.5647 E 10.1200 D 0.7804 E
D 0.5400 E 0.2111 D
C 0.5300

Significant interactions

AB 12.9200 AB 10.2400 AB 10.2400 AB 12.3352 AB
BE 0.9000 BE 0.3900 BE 0.3900 BD 0.7804 BE
CD 0.4800 AE 0.0100 BDE 0.7239 BD
BC 0.2500 ABE 0.0001 DE 0.7239 AE
BD 0.2400 ABE 0.4700 ABE

BCD 0.2300 ADE 0.3681 DE
AE 0.0500 ABDE 0.3681 ABDE

ABE 0.0500 BE 0.3644 AE
CDE 0.0100 AD 0.3296
DE 0.0100 ABD 0.3296

ABDE 0.0100 AE 0.2612

function number — corresponding to ≈ 15.60% of the variance — input membership
function shape — corresponding to ≈ 6.33% of the variance — and output member-
ship function shape — corresponding to ≈ 3.71% of the variance — was the most
influent factors for the Wine Recognition database. In this database, the most rel-
evant interactions among the factors were similar to the others databases.

Figure 4 presents a representation of the interaction between the ANFIS and
EFuNN factors in Fisher Iris database. The experiment analyses exposed very simi-
lar interactions between the same factors in all databases. A deeper analysis reveals
that a statistically larger number of training epochs can aid model generalization.
Among the output membership functions, the linear function produces a better



May 18, 2010 13:29 WSPC/S1469-0268 157-IJCIA 00282

148 C. Zanchettin, L. L. Minku & T. B. Ludermir

Fig. 3. Main effects projection.

effect on the error surface in the same way as a larger number of input membership
functions. The shape of input membership functions had little influence over model
variability.

In EFuNN experiments, analyses were performed in a random fashion. Six con-
trol factors were considered — each with two levels — resulting in 64 combinations.
Each of the level combinations of the control factors was performed five times, total-
ing 320 analyses.

In the factorial experiment with the Mackey–Glass database, five factors were
identified with a larger influence over EFuNN performance (Table 4): membership
function shape, corresponding to ≈ 68.84% of the system variance; membership
function number, corresponding to ≈ 13.11% of the variance; m-of-n, corresponding
to ≈ 0.92% of the variance; error threshold, corresponding to ≈ 0.54% of variance;
and initial sensibility threshold, corresponding to ≈ 0.53% of total variance. The
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Fig. 4. Interaction projection.

interaction between factors was also identified: membership function number and
membership function shape, corresponding to ≈ 12.92% of total system variance;
membership function shape and m-of-n, corresponding ≈ 0.90% of total variance;
and initial sensibility threshold and error threshold, corresponding ≈ 0.48% of the
variance. There were other interactions between factors, but all had a variance
smaller than ≈ 0.50% of the total variance of the system.

Figure 5 presents a representation of the relevant factor effects in all investigated
databases. The most relevant factors in the four data sets have some similarities.
For the Gas Furnace database, the most influent factors were membership function
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Fig. 5. EFuNN factor effects projection.

shape, corresponding to ≈ 76.47% of the system variance; m-of-n, corresponding
to ≈ 0.39% of the variance; and membership function number, corresponding to
≈ 10.12% of the variance. The most relevant interaction was between membership
function number and membership function shape, corresponding to ≈ 10.24% of
total system variance.

For the Fisher Iris database, membership function shape — with variance
of ≈ 76.47%; membership function number — with variance of ≈ 10.12%; and
m-of-n — with variance of ≈ 0.39% — had greater relevance. The interaction
between the factor had similar behavior, where membership function number and
membership function shape — corresponding to ≈ 10.24% of the system variance —
had the most influential interaction. In Wine recognition database, the most influ-
ential factors were: membership function shape — corresponding to ≈ 66.11% of
the system variance; membership function number — corresponding to ≈ 5.50%
of the variance; error threshold — corresponding to ≈ 0.78% of variance; and
m-of-n — corresponding to ≈ 0.21% of the variance. The most relevant interaction
was between the membership function number and membership function shape.

The membership function shape has the greatest influence over the perfor-
mance of the neuro-fuzzy model, possibly because it directly influences problem
representation. In the experiments, this influence was larger than the influence
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presented by the addition of new membership functions. However, the interaction
between these factors can result in more adapted models.

In the neuro fuzzy system EFuNN, maximum radius, initial sensibility threshold
and error threshold are all parameters used to determine if a new node will be
created, but they have different influences in the training. In variance analyses, the
maximum radius parameter has a small influence over the EFuNN performance. If
the sensibility threshold is large, the radius (radius = 1 — sensibility threshold)
is very small and it is difficult to violate the area of maximum radius. Maximum
radius probably only exercises influence over the results if small values are used in
comparison with the sensibility threshold.

The initial sensibility threshold and error threshold have greater participation
in EFuNN performance than maximum radius. Although the sensibility threshold
is adjusted during training, its initial value exercises a considerable influence in
the training. The value of m-of-n also has little influence, though it does exercise a
larger influence than maximum radius. This is perhaps characterized by the problem
characteristics.

The most important interaction is between the factors membership function
number and membership function shape. A low number of membership functions
associated to a triangular membership function can result in models with better
generalization. The interaction between the other factors was statistically impor-
tant, but with little representation of the system variance.

5. Final Remarks

This paper presents a study of the different parameters involved in the design of
neuro-fuzzy models. The design of experiments was used to analyze and compare
experiments by describing the statistical interactions and interrelations between
neuro-fuzzy model parameters.

Experiments were performed with four prediction and classification problems.
Analyses of the results indicate that the most relevant parameters (over 10% of
the system variance) are very similar in the systems for all databases. Another
important conclusion regards the interaction of these parameters, which was very
homogeneous in each neuro fuzzy system for all databases.

This methodology can reduce efforts in designing neuro-fuzzy systems, reducing
both the search space and complexity of the system tuning. In automatic optimiza-
tion techniques, this information can be mapped in the cost functions for adapt-
ability to consider the optimization of parameters with greatest influence over the
neuro-fuzzy system performance. Future work should perform this methodology
analysis on other neuro-fuzzy systems and integrate these conclusions to an auto-
mated training methodology.
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