

Tutorial: Applying Domain-Specific Modeling to Game

Development with the Microsoft DSL Tools

André W. B. Furtado, André L. de M. Santos

Microsoft Innovation Center at Recife / Informatics Center (CIn) - UFPE

Rua do Apolo, 181, CEP 50030-220, Recife/PE/Brazil

{awbf,alms}@cin.ufpe.br

Abstract. This tutorial introduces the concepts of domain-specific modeling

(DSM) and domain-specific languages (DSLs), presenting how the theory can

be productively put into practice with the Microsoft Visual Studio DSL Tools.

The required steps for applying DSM to the game development domain are

specified, illustrated with the creation of a visual DSL for modeling 2D

adventure games. The final intention is to allow game developers and

designers to work more intuitively, with a higher level of abstraction and

closer to their application domain.

Keywords: domain-specific modeling (DSM), domain-specific languages

(DSLs), digital games development.

1. Introduction

Digital games are one of the most profitable industries in the world, being a match even

for the movie and music industries [1]. However, software development

industrialization, an upcoming tendency entailed by the exponential growth of the total

global demand for software, will present many new challenges to game development.

Studies reveal that there is evidence that the current development paradigm is

near its end, and that a new paradigm is needed to support the next leap forward in

software development technology [2]. For example, although game engines [3] brought

the benefits of Software Engineering and object-orientation towards game development

automation, the abstraction level provided by them could be made less complex to

consume by means of language-based tools, the use of visual models as first-class

citizens (in the same way as source code) and a better integration with development

processes.

This tutorial intends, therefore, to anticipate to its audience one of the most

important software industrialization fundamentals: Domain-Specific Modeling (DSM)

[4]. DSM raises the level of abstraction beyond programming by specifying

(diagramming) the solution directly using domain concepts. The final products are

generated from these high-level specifications. This automation is possible because both

the language and generators need to fit the requirements of only one company and

domain. In other words, DSM does to code what compilers did to assembly language,

and industrial experiences of DSM consistently show it to be 5-10 times faster than

current practices.

By using the Microsoft Domain-Specific Language (DSL) Tools [5], the tutorial

will guide the audience through the practical steps of a DSM experience in game

development. It will explore how to properly choose a game development domain, how

to model such a domain with tool support, how to create visual editors to help game

designers intuitively manipulate the concepts of the domain, how to build automatic

code generators and, finally, how to embed the developed DSL into a real-world

development environment.

The remainder of this document is organized as follows: Section 2 introduces the

concept domain-specific languages. Section 3 provides an overview of the Microsoft

DSL Tools. Sections 4 to 14 detail the required steps to apply DSM in the game

development domain, while Section 15 concludes about the proposed approach.

2. Domain-Specific Languages

In all branches of science and engineering one can distinguish between approaches that

are generic and those that are specific [6]. A generic approach provides a general

solution for many problems in a certain area, but such a solution may be suboptimal. A

specific approach provides a much better solution for a smaller set of problems. One of

the incarnations of this dichotomy in computer science is domain-specific languages

versus generic programming languages.

Of course, this is not a new topic. The older programming languages (Cobol,

Fortran, Lisp) all came into existence as dedicated languages for solving problems in a

certain area (respectively business processing, numeric computation and symbolic

processing). Gradually, they have evolved into general purpose languages and over and

over again the need for more specialized language support to solve problems in well-

defined application domains has resurfaced. Over time, the following solutions have

been tried [6]:

• Subroutine libraries contain subroutines that perform related tasks in well-

defined domains like, for instance, differential equations, graphics, user-

interfaces and databases. The subroutine library is the classical method for

packaging reusable domain-knowledge.

• Object-oriented frameworks and component frameworks continue the idea of

subroutine libraries. Classical libraries have a flat structure, and the application

invokes the library. In object-oriented frameworks it is often the case that the

framework is in control, and invokes methods provided by the application-

specific code [7, 8].

• A domain-specific language (DSL) is a small, usually declarative, language that

offers expressive power focused on a particular problem domain. In many cases,

DSL programs are translated to calls to a common subroutine library and the

DSL can be viewed as a means to hide the details of that library.

A domain-specific language is a limited form of computer language designed for

a specific class of problems [9]. It is a programming language or executable

specification language that offers, through appropriate notations and abstractions,

expressive power focused on, and usually restricted to, a particular problem domain.

The key characteristic of DSLs is their focused expressive power. DSLs are

usually small, offering only a restricted set of notations and abstractions. Domain-

specific languages are usually declarative. Consequently, they can be viewed as

specification languages, as well as programming languages. Examples of popular

domain-specific languages include:

• SQL (Structured Query Language), a language that provides an interface to

relational database systems;

• HTML (Hypertext Markup Language), a markup language designed for the

creation of web pages and other information viewable in a browser;

• TeX, a typesetting language used to create highly structured documents,

especially good for mathematical notation;

• BNF (Backus-Naur Form), a meta-language for describing other languages,

particularly computer languages.

XML configuration files and GUI builders, in which the user experience is quite

different from textual programming languages, can also be pointed as examples, in spite

of not being usually perceived as DSLs.

Today, DSLs span many diverse domains, such as financial products, software

architectures, databases, video device driver specifications, operating system

specialization, web computing, image manipulation, 3D animation, drawing,

communication protocols, telecommunication switches, simulation, mobile agents,

robot control, partial differential equations and digital hardware design, just to mention

a few.

Adopting a DSL approach to Software Engineering (i. e., adopting a language

oriented programming approach) involves both risks and opportunities. Well-designed

DSLs manage to find the proper balance between these two. The benefits of DSLs

include:

• DSLs allow solutions to be expressed in the idiom and at the level of abstraction

of the problem domain; consequently, domain experts themselves can

understand, validate, modify, and often even develop DSL programs;

• DSL programs are concise, self-documenting to a large extent, and can be re-

used for different purposes [10];

• DSLs enhance productivity, reliability, maintainability [11, 12], and portability

[13];

• DSLs embody domain knowledge, and thus enable the conservation and reuse of

this knowledge;

• DSLs allow validation and optimization at the domain level [14, 15, 16];

• DSLs improve testability following approaches such as [17];

• Finally, the Microsoft Software Factories Initiative [18] argues that a well-

defined DSL is a powerful implementation language, providing much greater

rigor than a general purpose modeling language like UML [2].

On the other hand, some disadvantages of using DSLs can be also pointed out:

• The high costs of designing, implementing and maintaining a DSL;

• The high costs of education for DSL users;

• The limited availability of DSLs [19];

• The difficulty of finding the proper scope for a DSL;

• The difficulty of balancing between domain-specificity and general-purpose

programming language constructs;

• The potential loss of efficiency when compared with hand-coded software.

A deeper discussion about the trade-offs of using a DSL may depend on its

“internal” or “external” style. Internal DSLs morph the host language into a DSL itself.

External DSLs, on the other hand, are written in a different language than the main

(host) language of the application and are transformed into it using some form of

compiler or interpreter [9].

Graphical or visual DSLs, which are used by means of graphical notations

instead of text, are an evolution of external DSLs. They are used in domain-specific

modeling (DSM).

Two examples of graphical DSLs are illustrated in Figure 1, which is a

screenshot from the Microsoft Visual Studio 2005 Team System (VSTS) [20]. The DSL

on the left describes software solution components, such as web services. It is used to

automate component development and configuration. The DSL on the right describes

logical server types in a data center. It is used to design and implement data center

configurations. Web service deployments are described by dragging service components

onto logical servers. Differences between the resources they require and the resources

services available on the logical servers onto which they are deployed are flagged as

validation errors by the IDE.

 Figure 1 – Visual DSLs in Microsoft Visual Studio Team System

Another example of a visual DSL is illustrated by Tolvanen [21], in Figure 2. It

presents a simple domain-specific modeling language used to model a conference

registration application that runs on a smart phone. The design is expressed in a

language created specially for defining enterprise applications on smart phones, and

would be useless to other domains. It includes modeling concepts such as notification,

query, pop-up, and text message (the actual UI widgets and services already found on a

phone).

Figure 2 – DSL for smart phone applications

With these and other similar modeling concepts, it is possible to specify both the

static structure of applications and their dynamic behavior, and the design provides

enough information to automatically generate full code for this application. This sample

language includes the design rules for phone application development and completely

hides the implementation details. No programming concepts (classes, interfaces, structs,

etc.) can be found in the model.

By using DSM in a development process, the created models are not only used

for documentation. Actually, they are live artifacts, which can be transformed into other

artifacts (such as other diagrams or source-code). This is possible once transformers

(such as code generators) are created, along with a domain framework (such as a game

engine) which is consumed by the generated artifacts, as shown in Figure 3. Items in the

left side of the figure are created only once, by the language designer. Items on the

right, on the other hand, provide abstraction to developers and improve their

productivity, being created each time a new product needs to be generated.

Figure 3 – DSM artifacts

Using internal DSLs reduces the tool cost, but the resulting constraints on the

DSL itself can also greatly reduce the benefits [9]. An external DSL, on the other hand,

gives the greatest potential to realize benefits, but comes at a greater cost to design the

language, build the translator, and consider tools to support programming. This is

especially true for visual DSLs, which demand more tooling such as graphical editors.

In other words, unless there are ways to make it faster, cheaper and easier to develop

external/visual DSLs, it will not be cost-effective to provide automatic refinement or

other forms of automation for narrow domains.

This is where language workbenches come into play. They contrast the early

days of domain-specific modeling, where no tools were available to create domain-

specific languages and support modeling with them in a cost effective manner [21].

Those wishing to adopt DSM were left to develop their own tools from scratch based on

generic graphics libraries. Considering that building a modeling tool is an effort that

requires many man-years of development, DSM was left as an option only for large

organizations that could commit to such an undertaking.

Nowadays, this situation has changed. A growing number of experts, as well as

tool vendors, see DSM as a viable solution that offers developers better tools to deal

with the growing complexity of the problem domains surrounding them. Besides the

establishment of an independent organization (DSM Forum) [4] to spread DSM

knowledge and know-how, this also lead to the creation of a new category of tools,

named language workbenches [9]. Such tools use IDE tooling in a bid to make language

oriented programming a viable approach.

Essentially, the promise of language workbenches is that they provide the

flexibility of external DSLs without a semantic barrier. Furthermore, they make it easy

to build tools that match the best of modern IDEs. The result makes language oriented

programming much easier to build and support, lowering the barriers that have made

language oriented programming so awkward for so many.

 Examples of language workbenches include the Meta Programming System

[22], Intentional Software [23] and Microsoft Visual Studio Team System (VSTS) [20].

However, VSTS is more deeply aligned with the software factories initiative, where

DSLs are not only used to automate programming but also for other areas of software

development that often do not get automated, such as deployment, testing, and

documentation. It also explores simulators for situations where DSLs are not meant to

be executed directly in development, such as deployment DSLs.

3. Visual Studio Team System DSL Tools

VSTS is a software development life-cycle management tools platform that helps

software teams collaborate to reduce the complexity of delivering modern service-

oriented solutions. It provides functionalities than spans all software development

process, which includes analysis and design activities, such as application modeling.

VSTS delivers a set of designers (built-in visual editors), as part of Visual

Studio 2005 Team Architect Edition, that enable architects and developers to design

service-oriented applications and operations infrastructure simultaneously. Examples of

such designers are the Class Designer, Application Designer, System Designer, Logical

Datacenter Designer and the Deployment Designer. Since much functionality are

common to all VSTS designers, such as zooming, multiple selecting, dragging items

from the Toolbox and so on, Microsoft has decided to implement a common platform

(suite of tools), upon which designers can be built. This platform, named DSL Tools

[5], is not only internally used by built-in VSTS designers but is also delivered to end-

users as part of Visual Studio Team System. It provides a framework and toolset that

enable partners to build custom visual designers and domain-specific language

designers using Visual Studio. Figure 4 illustrates where the DSL Tools are situated in

Visual Studio modeling strategy.

 Figure 4 – DSL Tools enable new designers to be plugged in Visual Studio

In other words, it is possible to extend VSTS by creating and plugging into it a

new designer, based on a visual domain-specific language. Through the DSL Tools, one

can create, edit and visualize metadata that is underpinned by a code framework, which

makes it easier to define domain-specific schemas for metadata, and then to construct a

custom graphical designer hosted in Visual Studio. The suite consists of:

• A project wizard for creating a fully configured solution in which it is possible

to define a domain model that consists of a designer and a textual artifact

generator. Running a completed solution from within Visual Studio opens a test

solution in a separate instance of Visual Studio, making it possible to test the

designer and artifact generator;

• A format and a graphical designer for defining and editing domain models;

• A graphical designer for creating designer definitions, from which the code for

implementing designers is generated. This makes it possible to define a

graphical designer hosted in Visual Studio without any hand coding;

• A set of code generators, which take a domain model definition and a designer

definition as input, and produce code that implements both of the components as

output;

• A framework for defining template-based artifact generators, which takes data

(models) conforming to a domain model as input, and outputs text based on the

template. Parameters in the template are substituted using the results of running

a C# [24] script embedded in the template.

Figure 5 presents the overall user experience when dealing with a DSL created

with DSL Tools and hosted in Visual Studio .NET. The Toolbox (at the left) presents

some domain concepts that can be dragged and dropped to the designer (at the middle).

The Error List (at the bottom) presents errors raised from semantic validators. The

Properties window (at the right bottom) makes it possible to edit properties of the

selected item in the diagram, eventually launching advanced property editors. By using

menu commands, users can launch a code generator as well as create their own code.

Finally, users can use an Explorer Window (top right) to hierarchically browse through

concept instances added to the model.

4. Domain Definition

Once enough background is provided about domain-specific languages, language

workbenches and the Microsoft Visual Studio Team System DSL Tools, some

suggested steps required to apply DSM to game development can be detailed. Defining

the target domain is the first task to be performed. Its purpose is to decide which types

of games will be modeled and generated.

The great diversity of games created so far has turned the digital games universe

into a very broad domain. Therefore, using DSM towards computer games development

in general, ranging from 2D platform games to 3D flight simulators, constitutes a too

broad and ineffective endeavor. In such a scenario, the production process and its tools

would not be able to fully exploit DSM benefits such as component reuse and

assemblage. In other words, a narrower subset of games should be chosen.

Figure 5 – Overall DSL consumer experience in VS.NET

One of the most often used attempts to classify computer games is to define

game genres, which together compose a game taxonomy [25]. Some of the most popular

game genres [25, 26, 27] are summarized in Table 1.

However, this tutorial suggests that in spite of solely relying on a game genre

name to define a domain, a description of what is understood from such genre should

also be provided, as well as any relevant information such as dimension (2D, 2D ½,

3D), sound support, input handling, networking support and so on. Therefore, a

suggestion of a product line (domain) definition template for a DSM process is

presented in Table 2, already filled with an example.

Table 1 – Popular game genres

Genre Name Description Examples

Adventure

Games which are set in a “world” usually made up
ofmultiple, connected rooms or screens, involving
an objective which is more complex than simply

catching, shooting, capturing, or escaping,
although completion of the objective may involve

several or all of these.

Berzerk, Adventure
(Atari), Myst, Tomb

Raider, Space Quest,
Indiana Jones

Board

Adaptation of existing board games or games
which are similar to board games in their design
and play even if they did not previously exist as

board games.

Backgammon,
Othello, Checkers,

Chess

Fighting

Games involving characters who fight usually
hand-to-hand, in one-to-one combat situations. In
most of these games, the fighters are represented

as humans or anthropomorphic characters.

Street Fighter, Mortal
Kombat, Dragon Ball

Z

Platform

Consists of animated objects running, climbing and
jumping on platforms. Characters and settings are

seen in side view as opposed to top view, and
most games scroll the screen while the main

character moves.

Super Mario Bros.,
Alex Kid, Comander

Keen

Role-Playing
Games in which players create or take on a

character represented by various statistics, which
may even include a developed persona.

Final Fantasy,
Dungeons & Dragons,

Diablo

Shooter
Games involving shooting at, and often destroying,
a series of opponents or objects, usually requiring

quick reflexes.
Doom, Half-Life, Halo

Simulation

Games or programs which attempt to simulate a
realistic situation, for the purpose of training, and

usually the development of some physical skill
such as steering (as in driving and flight

simulators).

Flight Simulator,
Apache, F-22, The

Sims

Sports
Games which are adaptations of existing sports or

variations of them.

NHL Hockey, FIFA
Soccer,

NBA Basketball,
Top Spin

Strategy

Games which require planning, complex decisions
and balancing the use of limited resources towards

a higher-lever goal (improve a city, evolve a
civilization, etc.), while dealing with internal forces
(crime, pollution, etc.) or external forces (natural

disasters, enemies, etc.).

Age of Empires,
WarCraft, Civilization,

SimCity

Table 2 – Detailed Domain Definition

Product Line (Domain) Definition

Related game genre(s): adventure

Description: The modeling process will produce computer games in which the player control a main

character in a world composed by connected rooms. Rooms may contain items to be collected, such as

keys and weapons. Enemies may also be present in a room; they must be avoided or defeated. Victory

condition is specified by the game designer (a specific room is reached, a number of enemies is

defeated, an object is collected, etc.).

Target Platforms: PCs

Feature Overview

Feature Description

Dimensionality Two-dimensional (2D). World rooms are viewed from above.

User interface
Information display screens containing texts, radio buttons and

graphical elements are supported. HUDs (heads-up display) can
also be configured and displayed.

Game flow
Each game should have, at least, a main character, an introduction
screen, one room and a game over screen (this last one is reached

when the number of lives of the main character becomes zero).

Sound/Music
Games will be able to reproduce sound effects (wav files) as event

reactions. Background music (mp3 files) can be associated with
game rooms or information display screens.

Input handling Keyboard only.

Networking High scores can be uploaded to and retrieved from a web server.

Artificial Intelligence

Enemies can be set to chase the player within a room. More
elaborated behaviors can be created visually by combining

predefined event triggers and event reactions, or programmatically
by developers.

Multiplayer
Online multiplayer is not supported by the factory. Event triggers

and reactions can be combined, however, to allow two-player mode
in a single computer.

End-user editors
Not supported by the factory. Once created, a game cannot be

customized by its players.

The next sections present the tasks required to create and embed a DSL into

VS.NET. The tasks are presented as a set of steps, grouped in major activities.

5. Environment Setup

5.1. Install Visual Studio .NET 2005.

5.2. Install Visual Studio SDK (Software Development Kit)
1
, which contains the DSL

Tools plug-in. This tutorial uses the September 2006 version of the VS SDK, also

known as “Visual Studio 2005 SDK version 3.0”.

1
 Available at http://go.microsoft.com/fwlink/?LinkId=73702.

6. Creating a new DSL Tools Project

6.1. Open VS.NET and select menu File > New Project. In the left panel, select Other

Project Types > Extensibility. In the right panel, select Domain Specific Language

Designer. Provide a language name (such as “AdventureLanguage”) in the Name field.

6.2. A wizard will appear. In its first screen, select Minimal Language and click Next.

6.3. In the next wizard screen, enter in the first field an extension for the DSL diagram

files (such as “adv”). Click Next.

6.4. In the next wizard screen, enter in the field a name for the product that the new

DSL belongs to (such as “DemoGameDsl”), an organization name (such as “UFPE”)

and a namespace for the projects which will be generated (you can leave the default

option, such as “UFPE.DemoGameDsl.AdventureLanguage”). Click Finish.

6.5. A new solution will be created in VS.NET, and a designer with some sample

elements will be displayed, as shown in the picture below. Delete these elements by

pressing CTRL + A then DEL.

7. Modeling Domain Concepts

7.1. Drag and drop domain concepts from the Toolbox (Domain Class elements) to the

main designer. Suggested domain concepts are Game (the root concept), Entity,

MainCharacter, NPC (non-playable character) and Room.

7.2. Provide more detail for the domain concepts by adding domain properties to them.

For example, a game entity may contain properties to indicate its hit points, position and

image, while a room may have its width and height. To add domain properties, right-

click the correspondent Domain Properties compartment of the concept and then in Add

new DomainProperty. Give a name to the property and specify its type in the Properties

window.

7.3. Some built-in types (String, Boolean, Double, etc.) may not satisfy the language

designer needs. For example, an entity position should better be represented by a Point

type, which is not built-in (it is defined in the namespace System.Drawing). To add such

external types or to create your own enumeration types, right click the root node of the

DSL Explorer window and select the desired option (Add New External Type, Add New

Enumeration, etc.).

8. Modeling Domain Relationships

8.1. Use the Inheritance Toolbox element to say that NPCs and MainCharacters are

specializations of the Entity base concept. To avoid a concept to appear twice in the

diagram (both in the inheritance relationship and in its original definition) right-click the

concept and select Bring Tree Here.

8.2. Set the Inheritance Modifier property of the Entity concept to abstract.

8.3. Use the Embedding Relationship Toolbox element to say that the Game concept is

strongly related to Rooms and to Entities
2
. It is possible to adjust relationship name and

multiplicity as desired through the Property window.

8.4. Use the Reference Relationship Toolbox element to say that the Room concept is

weakly related to Entities. Use this same Toolbox element to say that a Room refers to

other Room (a subsequent room in the game). To create such a relationship from a

concept to itself, double-click the desired concept after selecting the relationship in the

Toolbox.

2
 A “strong” relationship here means that if a Game concept instance ceases to exist, its rooms and entities

are also destroyed. “Weak” relationships are modeled through the Reference Relationship Toolbox item.

9. Defining DSL Visual Syntax

9.1. Right-click the root node of the DSL Explorer window (AdventureLanguage) and

select Add New Diagram. A new element named “Diagram1” will be added to the

Diagram Elements section in the main designer. Rename the element to “Diagram”.

9.2. Click on the Diagram element in the designer and, through the Properties window,

change the value of the Class Represented property to Game.

9.3. Drag a Geometry Shape from the Toolbox do the main diagram. Rename it to

“RoomShape”. Change its Fill Color property to LightGray. Then select the Diagram

Element Map element in the Toolbox to map the Room concept to the RoomShape. A

line will appear, linking both elements.

9.4. Drag an Image Shape from the Toolbox do the main diagram. Rename it to

“MainCharacterShape”. Then select the Diagram Element Map element in the Toolbox

to map the MainCharacter concept to the MainCharacterShape. A line will appear,

linking both elements. Set the MainCharacterShape Image property to an image of your

choice. This image will be used to visually represent the main character concept in

diagrams modeled by developers using the AdventureLanguage.

9.5. Repeat the previous step to create a NPCShape and link it to the NPC concept.

9.6. Drag a Connector element from the Toolbox to the main diagram. Rename it to

“NextRoomConnector”. Change its Target End Style property to FilledArrow. Then

select the Diagram Element Map element in the Toolbox to map the

RoomReferencesTargetRooms relationship to the NextRoomConnector.

9.7. Repeat the previous step to create an EntityRoomConnector and link it to the

RoomReferencesEntities relationship.

10. Customizing the Developer Toolbox

10.1. Select the Editor node in the DSL Explorer window. Change its Root class

property to Game.

10.2. In the DSL Explorer window, delete the Editor > Toolbox Tabs >

AdventureLanguage > Tools > ExampleElement and ExampleRelationship elements.

10.3. In the DSL Explorer window, right-click the element Editor > Toolbox Tabs >

AdventureLanguage and then select Add New Element tool. Rename it from

“ElementTool1” to “Room”. Set its Class property to Room and specify an image in the

Toolbox Icon property.

10.4. Repeat the previous step to create other two Toolbox entries, one for the

MainCharacter concept and the other for the NPC concept.

10.5. In the DSL Explorer window, right-click the element Editor > Toolbox Tabs >

AdventureLanguage and then select Add New Conection tool. Rename it from

“ConnectionTool1” to “RoomTransition”. Set its Connection Builder property to

RoomReferencesTargetRoomsBuilder and specify an image in the Toolbox Icon

property.

10.6. Repeat the previous step to create other a Toolbox entry named “EntityInclusion”

for the relationship RoomReferencesEntities.

11. Adding Semantic Validators

11.1. In the DSL Explorer window, select the Editor > Validation node and specify

through the Properties window when semantic validation should be invoked (when

saving the diagram file, when opening it, after clicking in a context menu command,

etc.).

11.2. Add a class to the Dsl project by right-clicking the project name in the Solution

Explorer window and then selecting Add > Class. The name of the class should be the

name of the concept to which you want to add a semantic validator (for example,

Room).

11.3. Add the partial modifier to the class definition and ensure that the class

namespace is the same one you specified in the step 6.4.

11.4. Import the namespaces Microsoft.VisualStudio.Modeling and

Microsoft.VisualStudio.Modeling.Validation.

11.5. Add the modifier [ValidationState(ValidationState.Enabled)] to the class.

11.6. Add to the class a method which will implement a semantic validator (for

example, CheckEntityExistance). This method should receive a ValidationContext

object as parameter. Add a ValidationMethod attribute the to the method, specifying

through its constructor parameters when the validation should be invoked:

[ValidationMethod(ValidationCategories.Menu | ValidationCategories.Save)].

11.7. Implement business logic for the method, calling the LogError method of the

ValidationContext object when the validation fails. Such a method receives as

parameters the error text to be displayed in the Error List, an error code and the

elements which will receive the focus when the user double-clicks the error. For

example, the following code created a semantic validation to warn the user if a modeled

Room contains no entities.

12. Implementing or Reusing a Domain Framework (Game Engine)

12.1. Developers using DSM can launch code generators, which receive modeled

diagrams as input. The generated code consumes a domain framework which

encapsulates domain knowledge as exposes it as a set of APIs (application program

interfaces), that are reused by the many products generated from the modeling process.

Considering the digital games development domain, such a domain framework is a

game engine. Implement one or reuse an existing engine, probably adjusting it to the

domain. The engine interface should be made easy to consume, in order to reduce the

complexity required by the code generator.

13. Testing the DSL

13.1. In the Solution Explorer window, click in the Transform All Templates button.

13.2. Build the solution by pressing CTRL + SHIFT + B (or menu Build > Build

Solution).

13.3. Press CTRL + F5 (or menu Debug > Start Without Debugging) to launch an

experimental version of VS.NET which will contain the AdventureLanguage visual

DSL already embedded.

13.4. Open the Test.adv file and play around with it. Notice that:

• The Toolbox at the left contains domain concepts and relationships which can be

dragged and dropped to the main designer.

• Concepts and relationships, once dragged to the main designer, show the visual

representation previously defined.

• An AdventreLanguage Explorer window at the top right presents the modeled

concepts hierarchically.

• Semantic validators raise errors to the Error List (at the bottom) when you try to

save a file containing an empty room (i.e., a room with no entities).

14. Defining a Code Generator

14.1. Still in Visual Studio experimental instance (where the AdventureLanguage DSL

is consumed) use the Solution Explorer window to add reference(s) to the .NET

assembly(ies) of the domain framework (i.e., the game engine).

14.2. Delete the AdventureLanguageReportVB.tt file and open

AdventureLanguageReport.tt (“tt” stands for “text template”). The DSL Tools includes

a text template transformation toolkit that supports the processing of text templates. A

text template is a file that contains a mixture of text blocks and control logic. When you

transform a text template, the control logic combines the text blocks with the data in a

model to produce an output file. You can use text templates to create text artifacts such

as code files and HTML reports.

14.3. Since we’ll be interested in creating C# source code, change the directive <#@

output extension=".txt" #> to <#@ output extension=".cs" #> (C# source code file).

14.4. Change the requires section of the AdventureLanguage directive (third line) to

requires="fileName='Test.adv'". This will make the code generator do receive the

diagram modeled in the file Test.adv as input.

14.5. Implement your code generator by using C# programming language statements

and expressions inside the <# ... #> tags. Text outside such tags will be directly copied

to the output file. You can, however, use if-then-else branches, for/foreach/while loops

and almost every C# statement to specify what will be outputted. To output the resulting

value of a specific expression, use the <#= ... #> tags. For example, the following code

generator script outputs a MyGame class containing a Main method where instances of

the Room class (defined in the GameEngine assembly) are created. Notice that, since the

generator script deals with the Point struct, which is defined in the System.Drawing.dll

.NET assembly, it was necessary to add a <#@ assembly

name="System.Drawing.dll" #> directive to the generator.

14.6. Save the .tt file and notice that a AdventureLanguageReport1.cs source code file is

created, containing the output of the code generator. This file can be compiled with the

remainder of the solution, including code that developers have added on their own.

14.7. Improve your code generator, making the generated code compliant with the game

engine APIs. After this is done, modeled diagrams can automatically be transformed

into the final code and the whole solution can be compiled, generating the final game.

15. Conclusions

This tutorial introduced the concepts of domain-specific modeling (DSM), domain-

specific languages (DSLs) and the Visual Studio Team System DSL Tools. The

required DSM steps in game development were covered, such as domain definition,

concepts and relationship modeling, DSL visual syntax design and code generator

implementation. A more complete DSL Tools usage example (the SharpLudus game

software factory) can be found in http://www.cin.ufpe.br/~sharpludus.

 As it can be noticed, taking advantage from domain-specific modeling does not

come without a cost. Effort should be done to design a DSL, its visual representation,

generators and domain framework. Therefore, the use of DSM only makes sense if a

product line, and not only a single product, is intended to be developed.

 While DSM seems to be a very interesting approach to provide a more intuitive

game development experience, it is worth noticing that the presented proposal alone

will not ensure the success of a game development. In fact, no technology is substitute

for creativity and a good game design. Game industrialization, languages, frameworks

and tools are means, not goals, targeted at the final purpose of making people have

entertainment, fun and enjoy themselves. Players, not the game or its constituent

technologies, should be the final focus of every new game development endeavor.

References

1. Entertainment Software Association, Essential Facts about the Computer and Video Game

Industry, 2005;

2. Greenfield, J. et. al., Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools, Wiley & Sons, 2004;

3. Zerbst, S., Duvel O., 3D Game Engine Programming, Course Technology PTR, 1st edition;

4. Domain-Specific Modeling (DSM) Forum, http://www.dsmforum.org;

5. Visual Studio 2005: Domain-Specific Language Tools,

http://msdn.microsoft.com/vstudio/DSLTools/;

6. Deursen, A.; Klint, P.; Visser, J. Domain-Specific Languages: An Annotated Bibliography,

http://homepages.cwi.nl/~arie/papers/dslbib/;

7. Fayad, M. E.; Schmidt, D. C. Object-oriented application frameworks, Communications of

the ACM, 1997;

8. Johnson, R.; Foote, B. Designing reusable classes, Journal of Object-Oriented

Programming, 1988;

9. Fowler, M. Language Workbenches: The Killer-App for Domain Specific Languages?,

http://www.martinfowler.com/articles/languageWorkbench.html;

10. Ladd, D. A.; Ramming, J. C. Two application languages in software production, in

USENIX Very High Level Languages Symposium Proceedings, 1994;

11. Kieburtz, R. B.; McKinney, L.; Bell, M.; Hook, J.; Kotov, A.; Lewis, J.; Oliva, D. P.;

Sheard, T.; Smith, I.; Walton, L. A software engineering experiment in software component

generation, in Proceedings of the 18th International Conference on Software Engineering,

1996;

12. van Deursen, A.; Klint, P. Little languages: Little maintenance?, Journal of Software

Maintenance, 1998;

13. Herndon, R. M.; Berzins, V. A. The realizable benefits of a language prototyping language,

IEEE Transactions on Software Engineering, 1988;

14. Menon, V.; Pingali, K. A case for source-level transformations in MATLAB, in

Proceedings of the second USENIX Conference on Domain-Specific Languages, 1999;

15. Bruce, D. What makes a good domain-specific language? APOSTLE, and its approach to

parallel discrete event simulation, in First ACM SIGPLAN Workshop on Domain-Specific

Languages, 1997;

16. Basu, A.; Hayden, M.; Morrisett, G.; von Eicken, T. A language-based approach to protocol

construction, in First ACM SIGPLAN Workshop on Domain-Specific Languages, 1997;

17. Sirer, E. G.; Bershad, B. N. Using production grammars in software testing, in Proceedings

of the second USENIX Conference on Domain-Specific Languages, 1999;

18. Visual Studio Team System Developer Center: Software Factories,

http://msdn.microsoft.com/architecture/overview/softwarefactories;

19. Krueger, C. W. Software reuse, ACM Computing Surveys, June 1992;

20. Visual Studio 2005 Team System: Overview,

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvsent/html/vsts-over.asp;

21. Tolvanen, J.-P. Domain-specific Modeling: Welcome to the Next Generation of Software

Modeling, http://www.devx.com/enterprise/Article/29619;

22. JetBrains Meta Programming System, http://www.jetbrains.com/mps;

23. Intentional Software, http://intentsoft.com;

24. C# Developer Center, http://msdn.microsoft.com/vcsharp/;

25. Crawford, C. A Taxonomy of Computer Games,

http://www.vancouver.wsu.edu/fac/peabody/game-book/Chapter3.html;

26. Sawyer, B. The Getting Started Guide to Game Development FAQ,

http://www.gamedev.net/reference/articles/article261.asp;

27. Wolf, M. Genre and the Video Game, in Wolf M.J.P, The Medium of the Video Game,

University of Texas Press, 2002;

