Available online at www.sciencedirect.com

sclENcE(CbD“aEGT\- Electronic Notes in
Theoretical Computer
Science

ELSEVIER Electronic Notesin Theoretical Computer Science 95 (2004) 23-51
www.elsevier.com/locate/entcs

Class and Capsule Refinement in UML for
Real Time

2

Augusto Sampaio ! Alexandre Mota > Rodrigo Ramos *

Centro de Informdtica, Universidade Federal de Pernambuco, P.O.Box 7851
CEP 50740-540, Recife-PE, Brazil

Abstract

We propose refinement laws for the top level design elements of Real Time UML (UML-RT): classes
and capsules. These laws can be used to develop concrete design models from abstract analysis
models. Laws for introducing and decomposing classes and capsules are presented. Standard data
refinement techniques are adapted for classes, and process refinement techniques for capsules. We
also propose techniques for behavioural inheritance of classes and capsules. Soundness is briefly
addressed by relating UML-RT elements to OhCircus, a formal unified language of classes and
processes. To illustrate the overall strategy, we develop a detailed design of an operating system
resource scheduler from a high-level analysis model.

Keywords: Class refinement, process refinement, behavioral inheritance, laws for UML-RT

1 Introduction

The integration of formal languages with informal (or semi-formal) notations
has been a great challenge to the software engineering community, as this
brings the much expected hope that the theories, techniques and methods
carefully conceived in academia would play a decisive role in industrial software
development practices.

Several approaches have been proposed. Some combine formal and infor-
mal languages into a single notation, in a complementary way. OCL [28] itself

! Email: acas@cin.ufpe.br
2 Email: acm@cin.ufpe.br
3 Email: rtr@cin.ufpe.br

1571-0661/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.entcs.2004.04.004

mailto:acas@cin.ufpe.br
mailto:acm@cin.ufpe.br
mailto:rtr@cin.ufpe.br
http://www.elsevier.com/locate/entcs

24 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

is an example of this approach; it is used jointly with UML [2], with the pur-
pose to annotate UML models, rather than giving a semantics to the UML
constructs.

An alternative to combine notations is to assign meaning to an informal
language by mapping into a formal notation (or semantic model). In this
category we can find several proposals in the literature. In [14] the specification
language TROLL is used to formalise UML in such a way that both formalisms
can be applied for modelling. In [11] a simplified version of UML-RT (the
Unified Modelling Language for Real Time) [7] is mapped into CSP [18,29],
with constraints expressed in Object-Z [31], rather than in OCL.

This latter approach allows an interesting separation of concerns: the orig-
inal notation continues to be used as before but, due to the existence of a for-
mal semantics, techniques and methods proved sound for the formal language
can be adapted to the informal notation. In this context the formal notation
acts as a hidden formal model, useful to define a sound interface for software
engineering practice.

Motivated by this research direction, the aim of this paper is to define a
refinement strategy for UML-RT. The proposed strategy deals with classes
and capsules. A capsule models an active class in the sense that, in addition
to attributes and methods, its dynamic behaviour is given by a state machine.
The interaction of a capsule with its environment (other capsules) is achieved
via protocols. Typically, the only visible elements of a capsule are the sig-
nals introduced in the protocols to which a capsule is attached. Despite its
name, the focus of UML-RT is on modelling concurrent and distributed as-
pects through the concept of a capsule, rather than on time aspects. Time
concerns are out of the scope of this paper and is one of the topics for further
research.

Like UML, UML-RT has no formal semantics, and therefore no proved
sound refinement strategy. Our approach is to define refinement laws and
techniques, for classes and capsules, based on results already consolidated in
formal approaches. In particular, we briefly address soundness of the pro-
posed laws and techniques by suggesting a mapping into the formal notation
OhCircus [4], a unified language of classes and processes. While the work re-
ported in [11] also addresses a mapping into a formal notation, refinement is
not considered.

The language OhCircus extends Circus [34,5] with object-oriented features
(classes, inheritance and dynamic binding). The other elements of OhCircus
are exactly as in Circus, including the notion of a process, whose state is defined
using a Z [35] schema and whose behaviour is given by an action expressed in
the CSP notation. The semantics of Circus [34] (and the one currently being

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 25

defined for OhCircus) is based on the unifying theories of programming [19]. A
refinement strategy for Circus, which has been the main source of inspiration
for this work, is reported in [30,5]. Both Circus and OhCircus have a copy
semantics. Adopting OhCircus as our semantic model, we propose transforma-
tion laws which do not involve sharing (references). Dealing with references
at the semantic and at the UML-RT levels is a future research topic.

One of our purposes is to preserve the style of UML-RT as much as possible.
However, following a contractual approach [25], the characterisation of the
laws needs to refer to invariants of classes and capsules, as well as to pre-
and postconditions of methods. The standard notation used to annotate the
model with formal constraints is OCL, but we use Z for a matter of readability
and for simplifying the mapping into OhCircus.

The next section introduces UML-RT through a simple example: an ab-
stract analysis model of a simplified operating system. Section 3 presents
refinement laws and techniques for capsules and classes. The application of
the proposed laws are illustrated by the development of a concrete design
model for the resource scheduler component of the operating system, which
is the purpose of Section 4. Soundness of the laws is briefly discussed in Sec-
tion 5, where we present initial ideas towards a mapping from UML-RT into
OhCircus. The final section describes a summary of our results and topics for
further research.

2 UML-RT

UML-RT uses the basic UML mechanisms of stereotypes and tagged val-
ues for defining three new constructs: capsule, protocol and connector. For
each construct, a corresponding stereotype is introduced: <<capsule>> and
<<protocol>> stereotype classes, whereas <<connector>> stereotypes associ-
ations.

Capsules describe possibly complex active classes that may interact with
their environment through messages (input/output signals). To each capsule is
associated a unique behavior, given by a state machine. In addition, a capsule
can also be defined hierarchically, in terms of compound capsules, each of
which with a state machine and possibly a hierarchy of further compound
capsules.

Protocols define the only possible way a capsule can interact with its en-
vironment, offering a set of input/output signals, like services of an interface.
The actual interaction occurs through ports, which are declared in the respec-
tive capsules. Ports are instances of protocols and can regulate the flow of
information (the protocol might have its own state machine to describe this

26 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

S 4
ZZimeariants=
ready rn dom blod = & <=Capsules3
Tt fready u dom block u {eecuting] | crU
fo= - tyid= toid
ececuting & {ready v dom black} S
ran black o free = &
> {{F'-:-rtb}Ihl'l:Er-
[+
o0
<<Capsule=> <<Protocol==
Taszk P FesourceScheduler O5P rotocal
id: Identifier +red g *2in [Tash
e *hlock -] :zgcﬁlr:l:gl:lrﬂeleaﬁaij . 4"d9$“ﬂndjliﬂemurce)
getld]) . allacatel 2<Port== [T out {|dentifier)
o blocki) 9 avaliable (Resource)
R +iren_ |dEtrov] B+ demand_ck (woid)
ESCUIEE a“—%,:: interr upt®ndExecuts) P+ demand_not_dk (woid)
n+ExEC(|dEHti‘fiEfj
+ios

Fig. 1. ResourceScheduler Class Diagram

behavior) in communication of capsules. Ports can be public or private. Pub-
lic ports allow communication with the environment, whereas private ports
are used for communication with (and among) component capsules.

In general, a protocol may involve several participants (with several roles).
Often, however, most applications are confined to binary protocols (involving
only two capsules). For a binary protocol, only one role needs to be specified
(the baserole). The other complementary role, named conjugate and indicated
with the suffix ~ in the base role, can be inferred by inverting inputs with
outputs, and vice versa. A port which plays the conjugate role is represented
by a white-filled (in opposition to a black-filled) square.

Connectors are used to interconnect two or more ports of capsules and
thus describe their communication relationships. A connector is associated
with a protocol and acts as a physical communication channel between ports
which play complementary roles. A UML-RT class diagram typically includes
capsules, classes and protocols of a system, and their relationships. As a
convention, we describe invariants, pre- and pos-conditions as notes in the di-
agram. In Figure 1, we show a class diagram of a simplified operating system
which is formed of two capsules: CPU and ResourceScheduler, that communi-
cate through the 0SProtocol. The port os of CPU, an instance of 0SProtocol,
has been set conjugate with respect to the os port of ResourceScheduler. It
is worth noting that in the protocols input signals appear in the top compart-
ment whereas output signals in the bottom compartment. For capsules the
bottom compartment is used to declare ports; the remainder compartments

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 27

/ ResourceScheduler \
5—\ os.demand[e<ecuting = null)f r = gethts ghata)

| .
| fossend).demand ok allocate) e - [free. contais(r)]
| foz.send]).demand_not_oki); blockir) false
.:' oz.ind ins e

:‘ o= gvaliabler’ includelrReleas)

; o= o ut[ee cuting = null]f destron))
[ready.ieHotEm phyi]

\ Linterrupbrnd Execute); oz 2end(exec) SMJ

Systern -

Resource o=
\ Scheduler e
h]

Fig. 2. ResourceScheduler Structure Diagram

contain the same elements as in classes.

The attributes of ResourceScheduler are the task which is currently ex-
ecuting, a set of ready tasks, a set of tasks blocked on resources, and a set of
free resources. The invariant states that: the sets of ready and blocked tasks
are disjoint, tasks have distinct identifers, the executing task is not a ready
nor a blocked task, and the set of free resources is disjoint from the resources
on which tasks are blocked.

A view of the entire system can also be specified as a capsule that contains,
as compound capsules, ResourceScheduler and CPU. A structure diagram rep-
resents this view, with connectors linking the ports of the capsules (Figure 2).
As already mentioned, the actual behaviour of a capsule is given by a state
machine diagram, as show in Figure 2 for the capsule ResourceScheduler,
which reacts to events concerning scheduling and resource managing. In the
figure, states are represented by rectangles and transitions by directed arrows.
In general, a transition has the form e [g]/a, where e is an input signal (or a
set of input signals), g is a guard and a is an action. The transition is triggered
by the input signals and a true guard. As a result, the corresponding action
is executed.

28 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

An action can be any composition of a signal output, a method call,
or a command of the intended target programming language (for instance,
Java [15]). As in the Rational Rose-RT [32], a signal output is expressed here
using a send method, which may involve a parameter (the data transmitted
with the signal). A signal input is represented just by the signal name (qual-
ified by the corresponding port). If there is a parameter associated with the
signal, the data is obtained via a method call (getMsgData()). For simplicity,
we often omit signal parameters in the state machines.

The topmost transition of the state machine of Figure 2 triggers when the
signal demand is received, and there is a task executing (executing != null).
The action associated with this transition executes the method getMsgData()
to obtain a parameter (in this case, a resource) sent with the signal demand.
The subsequent transition depends on whether this resource is free or not.
If it is free, the signal demand_ok is output and the new resource is stored
in the set of free resources (through the action allocate()). Otherwise, the
currently executing task is blocked on that resource.

Similarly, there are transitions to capture the insertion of a new (ready)
task, release of tasks blocked on a resource, destruction and interruption of
the executing task, and allocation of a ready task for execution.

In this paper we assume that communication via signals is synchronous.
This is to simplify the mapping into the OhCircus language which, being based
on CSP, allows only synchronous communication. Dealing with asynchronous
communications is one of the topics for further investigation.

3 Laws for Classes and Capsules

The aim of the laws proposed here is to allow a systematic transformation of
an analysis model into a more concrete UML-RT design model. Since a major
concern is that these laws are useful for practitioners of software engineering,
ideally both the laws and the associated side conditions should be purely
syntactic. Furthermore, although we mention a few basic laws which capture
very simple transformations, like introducing a new class, and attributes and
methods to an existing class, our focus is on laws which express larger grain
(design-level) transformations. We present a few laws which capture specific
data refinement patterns, and characterise a more general data refinement
technique annotating the models with formal constraints in the Z notation, as
already mentioned.

In our refinement approach to UML-RT, inheritance (of both classes and
capsules) must preserve behaviour [23]. Specific laws and a general technique
for behavioural inheritance are presented. Investigating further refinement

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 29

(and refactoring) patterns for data refinement and behavioural inheritance is
one of the topics for future work.

In this work we interpret models more concretely than the view taken in
Alloy [20] or UML/OCL. Here only directed associations are used, taken as
class attributes, and not as relationships between all instances of classes. Thus
association constraints are confined to class invariants. Furthermore, invari-
ants can only include references to visible instances of the system environment,
where the visible instances are those determined by the attributes of the class
or by the attributes of another class accessed via navigation. An interest-
ing and detailed investigation of the subtle problems which emerge during
model transformations using UML with arbitrary constraints is reported in
[12], which uses Alloy [20] as a formal basis.

While simple associations are interpreted as attributes, aggregation and
composition are interpreted as data structures (in particular, as sets). When
we write predicates we do not consider visibility issues, and reference (even
private) attributes directly.

Apart from a relation on entire models (a graphical arrow) we use more
specific relations on classes, capsules, and state machines to emphasise that
some of the laws relate exclusively classes, and others express properties of
capsules. These more specific relations are annotated in the obvious way.
Some (if not all) the laws presented could be applied in both directions, but
here we emphasise their use in refining an analysis into a design model. The
side conditions presented concerns left to right applications.

3.1 Basic laws

We classify as basic laws those which express simple transformations such as
introducing a new design element (attribute, method, class, capsule, protocol,
relationship, ...) or expressing a general property of such elements. The
granularity of such laws can be as small as just changing the visibility of some
attribute or method, and are not the focus of this paper. Formalisation of
these and many other basic laws for an object-oriented language can be found
in [3], which also presents a normal form reduction strategy to illustrate the
expressive power of the set of laws. Some basic laws for UML-like models
expressed in Alloy is reported in [12].

3.2 Class extraction

It is common during analysis to identify a class (or capsule) which later, during
design, is found to represent more than one abstraction. So a transformation
to promote this hidden abstraction into an independent class is potentially

30 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

Z<invariants= Zinwariants=
iny a ir g role) irney o imvsCrole e col) . .
=<imeariant= >

: L et ecol)
2 i :
< p8 x
C EEEUIE +ecol E {{EEI;SUIE” +rale Ecol
e
W T W T mi T Ty
class ' E
miy: Ty) F==- — M T 1 {*esol
1 1 1
<< precondition == <<pracondition=> Z=precondition==
pre,~ presirole) pre;~ pregirale.acol preiecal)
<< pogteonditio ne = < <p ogtoond ition == “<pasteondition==
posty » postyrale rale’ 20 posty « role.mix, v postlecal g ool =y

provided Ecol is a fresh identifier, and role is not free in invy, pre; and
posty, and the state machine of P (assumed not to refer to role) is not
modified

Fig. 3. Class extraction from a capsule

useful.

The transformation captured in Figure 3 seems recurrent during design
steps. On the left-hand side of the figure, the capsule P has an aggregation
relationship (represented by role) with a class E, standing for some entity
type. A more concrete view is that P has an attribute role whose type
is some data structure (here assumed to be a set) which stores elements of
type E. Although the data structure provides some form of abstraction, the
fact that the collection is, for example, implemented as a set is visible in
P, while a more structured design (like a layered architecture) would isolate
the collection as a separate abstraction, with its associated business rules.
The right-hand side of the figure introduces the new class Ecol (representing
an encapsulated collection of instances from E) and replaces the aggregation
relationship between P and E with a simple association between P and Ecol,
which itself has an aggregation relationship with E.

In order to ensure the validity of this transformation, we need to consider
the invariant of P before and after the transformation, as well as and pre- and
postconditions of methods in P. For simplicity, we single out the method m.

Concerning the invariant, consider that, before the transformation, it in-
cludes a predicate invy, which may include references to role. As the type
of role changes after the transformation, its occurrences are replaced with
role.ecol. If the only free variable in invy is role itself, this predicate can
be taken as the invariant of the class Ecol. There is flexibility on what should

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 31

be the invariant of the class Ecol. Keeping the complete invariant in P (possi-
bly with the modifications explained above) safe-guards the original contract
and, therefore, from the perspective of the capsule P, the invariant of Ecol
could be any predicate for which the methods of Ecol are feasible [27]. How-
ever, taking the relevant part of the invariant of P as the invariant of Ecol
may be a more sensible decision, since, as a new abstraction, Ecol should
have its appropriate contract. Similar considerations apply to pre-conditions
of methods, as can be observed in the Figure 3. Nevertheless the pre-condition
cannot be strengthened, as is well-known from standard date refinement [33].

The effect of this law in each method of P is to possibly delegate part of
the contract concerning the attribute role to a corresponding method in the
new class Ecol. Assuming that the postcondition of m includes a predicate
(posty) on initial and final values of role, this is delegated to the postcondi-
tion of the method m in class Ecol, replacing occurrences of role and role’
with ecol and ecol’. In capsule P, the predicate posts is replaced with a
method call (role.m(x,y)). The additional parameter z is necessary since
it is an attribute of P but not of Ecol. It may seem unusual method calls
appearing in predicates. In our approach, however, this is not a problem be-
cause the language OhCircus, used as our model, has a well-defined semantics
for predicates involving method calls.

All these conditions are necessary for extracting a class from another class.
In the case of extracting a class from a capsule (as in Figure 3), we need to
further consider the effect on the state machine of P. In general, the behaviour
of the state machine must be preserved (or refined) by these transformations.
The notion of refinement of state machines is discursed in the next section.
For the purpose of this law, we require that state machine is not modified and
that it does not refer to the attribute role.

3.8 Capsule decomposition

At an abstract analysis level, it is usually convenient to model an application
using only a few components and interactions among them. During design,
with increasing knowledge of the internal structure of components, it is often
necessary to decompose these components into smaller ones, in order to tackle
complexity and to potentially improve reuse.

When a component is decomposed, the subcomponents may be combined
in a variety of ways, in order to preserve the original behaviour. For example,
they can be combined in parallel, in sequence, non-deterministically, and so
on; a process algebra like CSP offers a rich repertoire of operators to combine
processes. Therefore we can think of a set of laws to decompose components:
one for each operator, and possible combinations of operators.

32 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

Zdinvariant== << irm ariant== Z<invariant==
iy o Trie iy Irivig

3 3 i Ca
22Capsule=> 22Capsule== << apsule== 22 apsule==
FQ F P n]

a:-Ta a:Ta p fq |b:Th
mai [mbi)
ma[j +/
mbi) + S W +iz
+ [T + oy
+ 1k :
L - o
LT !
1
= wsend) | z=zend)

provided (a, ma, x, SMa) and (b, mb, y, SMb) partition PQ

Fig. 4. Parallel decomposition of capsules

In Figure 4, we introduce a law for decomposing a capsule into parallel com-
ponent capsules. On the left-hand side of the figure, two diagrams represent
different views (structure and behaviour) of the capsule to be decomposed, PQ.
The state machine of PQ interacts with the external environment through the
port k. This state machine is an AND-state composed of two states (SMa and
SMb), which may interact (internal communication) through the conjugated
ports x and y. Furthermore, in transitions on SMa, only the attribute a and
the method ma is used, while transitions of SMb use only the attribute b and
the method mb. Finally, the invariant of PQ is the conjunction inv, A inv,,
where inv, involves only a as free variable, and inv, only b. When a capsule
obeys such conditions, we say that it is partitioned. In this case, there are two
partitions: one is (a, inv,, ma, x, SMa) and the other is (b, inv,, mb, y, SMb).

The effect of the decomposition is to create two new component capsules,
P and Q, one for each partition, and redesign the original capsule PQ to act
as a controller. The new behaviour of PQ depends on the particular form of
decomposition. Figure 4 captures a parallel decomposition. The structural

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 33

<<inwariant=>

Z4invariants =

irn, & = |7 i
=< precondition= £33 1) B8 U <<precondition==
Plema Amag : T 0 T Mot Ted s Ty f=1 Preme
1632 P05 V] IR 111248 1015 117
<< postconditions = << posteondition=x
=
post g posty.

provided 1.Va:Ta; c:Tc; x:Tx|inva A invc e pre,,, A CI = pre,
2.Va:Ta; c,c’ : Tc; x: Tx; y: Ty | inva A inve A inve’ e
pre,,, A CI Apost, = (Ja’:Ta|invs’ e CI’ A post,)

Fig. 5. Data refinement for classes

diagram on the right-hand side of the figure shows the three state machines,
and how their ports are connected. The new state machine of PQ has the same
structure as the original one, except that now its role is only to serve as a
(parallel) proxy between the external port k and the internal capsules P and
Q. The new ports w and z were created to connect the state machine of PQ
with those of P and Q, respectively. The union of the signals of protocols W
and Z is the set of signals of protocol K. However, there is no need for W and
Z to be a partition of K: intersection of signals in W and Z is allowed.

3.4 Data Refinement

Both laws presented in the previous sections embody some change of data
representation. However, as they deal with specific data transformations,
captured by the syntactic patterns involved, the well-known proof obligations
associated with data refinement (like applicability and correctness) are implic-
itly discharged.

In the general case, however, it may be necessary to carry out changes
of data representation in contexts not covered by a specific pattern. So it is
important to characterise the general notion for UML-RT classes and capsules.

For classes, we adapt the familiar data refinement technique of Z [35],
with proof obligations to ensure applicability and correctness (see the proviso
of Figure 5, where CI stands for the coupling invariant). Although the law
suggests that the original class attributes and methods are renamed, this is just
to avoid confusion when expressing the proof obligations. Figure 5 illustrates
this by preserving the name of the class, which is not referenced in the proviso,
and renaming its attributes and methods.

The data refinement technique for capsules is based on that for classes,
but further considering the impact on the capsule state machine, which is an
object-oriented extension of a statechart of Harel [16,17]. The semantics of

34 A. Sampaio et al. / Electronic Notesin Theoretical Computer Science 95 (2004) 23-51

such machines can be given by hierarchical labelled transition systems (HLTS),
which are modular LTSs*. In general, however, due to the complexity involved
on analysing such hierarchies, one firstly transforms an HLTS into a flat LTS
(FLTS) [24], or simply LTS for short. In the remainder of this paper we
consider that a capsule state machine is an LTS, whenever convenient.
Following the works of Harel [17] and Milner [26], we postulate that re-

capsule

finement for capsules (P "= Q) always holds when the state machine of Q
simulates the behaviour of P. In the notation of [17], this simulation relation

machine

is written as (SMgp =< SMp). Here we write it as SMgy = SMp.

A simpler proof technique for data refinement of capsules assumes class
refinement between the two capsules, and the following notion of compatibility
between their state machines.

Definition 3.1 (Compatibility) Let P and Q be two UML-RT capsules, such

class

that P =" Q, for some coupling invariant CI. We say that the state machine
of P (SMp) is compatible with the state machine of Q (SM¢), compatible(P,Q),
iff SMp has the same LTS of SM(), except that for each transition ep [gp] / ap
of SMp, SM(, has the corresponding transition eg [gg] / ag such that

o If r is a simple request (event) then (r € ep & r € eg) and (r € ap & r €
aq);

e If ma() is a method call in SMp then (ma()€ ep ©mc()€ eg) and (ma() €
ap <mc() € ag), for some method ma of P and its refinement mc of Q;

eVa:Ta; c:Te; z: Ty | Cle(gp < gg);

class capsule

Therefore, if P = Q and compatible(P,Q) then P "= Q.

3.5 Behavioural inheritance

Generalisation is a very important design tool. It is common during the de-
velopment process to factor out an abstraction which can then be reused to
(re)define several others, more specialised ones, by inheritance. Conceptually,
this should not be confined to code reuse. The behaviour of the superclass
must be preserved by the subclass, whenever formal refinement is a major
concern, as is our purpose here. This is precisely captured by the notion of
behavioural inheritance [23,17]. For classes, it can be characterised in terms of
standard data refinement. If B is introduced as a subclass of A, this generates
a proof obligation that B must data refine A, concerning the original methods
of A.

4 An LTS is basically a directed graph capturing the behaviour of a concurrent system.

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 35

In [23], the principle of substitutability is well-motivated and formally char-
acterised to precisely capture under what conditions an object of a class can
be replaced with an object of the subclass, preserving the original behaviour.
This characterisation is in terms of three main notions: behaviour of meth-
ods, invariants and history properties. Another important issue is signature
compatibility (based on contravariance of arguments and covariance of results
of methods [23]).

Ensuring behavioural inheritance of redefined methods follows the same
conditions for data refinement. Concerning the invariant, the one of the sub-
class must be at least as strong as the one of the superclass. Furthermore, new
methods must preserve the invariant. Regarding history properties, they im-
pose constraints over state pairs during the computation lifecycle of an object.
Preservation of such properties by a subclass requires that they not weakened.

In our approach we adopt the characterisation of [23], as captured by Fig-
ure 6, but we do not consider history properties. The reason is that such
properties can be violated only in the presence of sharing, which we will con-
sider as future work. In the law presented in Figure 6 we also left implicit
conditions of signature compatibility, as these are easily verified at the level
of typechecking.

In many cases during practical modelling, the proof obligations of the
law presented in Figure 6 can be simplified. For instance, consider that the
coupling invariant between the super and the subclass is the identity function
(A.a =B.a+). This states that, for two related objects of type A and B, their
attribute a has exactly the same value. In this case, the proof obligations
could be simplified by removing the occurrences of CI. Another source of
simplification is when inv_{B} = inv_{A}, and the pre-condition of methods
is maintained. In this case, only the last obligation would need to be proved.

Capsule inheritance was initially defined in ROOM [1], indicating that
besides structural inheritance (attributes, methods and ports) the supertype
behaviour (defined by the capsule state machine) is also inherited. In the
definition of ROOM, the inherited state machine can be freely modified. As
we are concerned with behavioural preservation, we need to associate some
proof obligations with capsule inheritance, as we have done for classes, that
can similarly be characterised in terms of data refinement. We define capsule
inheritance as an extension of behavioural class inheritance by adding new
constraints on the state machines.

For Capsule we will assume the extension of the theory of substitutability,
in the work of Harel [17], for actives classes (capsules) on state based systems.
There, if all behaviour (contained in the state machine) of a parent capsule is
somehow present in the inheriting capsule, then the parent capsule is simulated

36 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

A F-| =<invariant== Ij
i,
A
a:Ta

=< precondition=>

ﬂinvariantbblj :EE; %; 7| Prema
i - r .
& 4 << posteondition= =

a:Ta postya

<< precondition=> B

Prema _mai: T | class | < <irvariant==
2ipesteondition: = mhiy Tl | = b:Th Imfg

P e maix: Tx) |- <=precondition ==

Rl Hmoz: T=) PTeman

<< precondition= =
Preg-

=< posteondition= =
Poctyan

<< posteondition ==
posty,

provided 1l.invp A CI = invy

2.pre,,, A CI = pre

maB

3.post,, .z A CI = post, .

Fig. 6. General pattern of behavioural subclassing

by this inheritance. According to Harel, the notion of simulation leads to the
notion of substitutability.

In our work, we regard capsule inheritance of state machines as an AND-
state formed of the state machines of the capsule and the one of the subcapsule,
as in the approach defined for CSP-OZ [10]. Additionally, we observe that a
capsule can offer more services than its supertype, and possibly additional
ports. We require that the inherited ports preserve their original signatures
(exactly the same types of parameteres). An interesting topic for further
investigation is to relax this condition and allow contra- and covariance of
port parameters, as discussed above for methods.

4 Case study: a resource scheduler

In order to illustrate the application of the laws proposed in the previous
section, we refine the abstract model of the ResourceSheduler, presented in
Section 2 (see Figure 1), into a more concrete design model. Each subsection
below is dedicated to a relevant refinement step.

4.1 Resource and Scheduler partitions

Aiming at decomposing the capsule ResourceScheduler into the component
capsules ResourceManager and Scheduler, the first step is to transform the

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 37

{{invi_riant}b " u(Fesources cheduler
executing & rea d d fing 1= null ¢
Wi, to: (ready u {executing]l | j_fg em and[e:ecuting nu:I] 15 request oks

ty# b ty.id % tid I send).requesty,
ranblockn free = —=-blocd mBlack(y
7':-’t]‘.t2 :dom black | | fos.send). demand_dki)
i 5 e : fozsendd.demand_not_ok()
1) n
1 1
3 :I oz o[cuting 1= null]f destroy)
Z4Capsule==
RezourceSchedular :| os.in insert)
[ready. = NotEmptyl)
insertl -
in cludeOr Releas &) ! executefAndinterr uptl); Stop
allo cate) . oz zend().exed)
block)
destroyl) :_l 5. unblockd mUnblock(
interruptAn dE:x<e cute]
+ f oz t
. .
I' :I oz, gualiable[block. containz] fjf
K releazel); recsend(unblock)
4
; :I o=, gualiable[blod.contairs] 1)/ included)
1
R ecource S ohe duler :| ros request] free contains(0f
i rzcsendC). block()
]
. res requesifree. contairs)f allocate
0z v
= rin ., \\.l’ rzc.zend)request_oki) j@

Fig. 7. ResourceScheduler State Machine

state machine of ResourceScheduler (see Figure 2) into an AND-state ma-
chine which reflects the capsule partitioning. As shown in Figure 7, the top
AND-state is concerned with the signals related to scheduling activities; this
state machine refers only to attributes and methods which are relevant for
scheduling. The bottom AND-state captures the resource manager activities,
and refes only to the corresponding signals, attributes and methods.

With this partitioning, the two AND-states need to communicate in order
to preserve the effect of the original state machine. For instance, the unblock
operation is now specified as a cooperation of both AND-states. When the
bottom state machine receives, from the environment, the signal available
(and a resource), it recovers the tasks blocked on that resource and sends these
tasks (as a parameter of signal unblock) to the top state machine, which adds
them to the set of ready tasks (executing method mUnblock).

The refinement above is a pure (although not at all trivial) state machine

38 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

B =2 =]
=P rotocol==
==Capsule== OSSP rotocal
B B' R esourceScheduler o (Tazk)
executing & ready) [+/os |PPdemand(Resource)
Tt I:rEEl.i!,l' u {e:fcecutlng}) | +/os =0, {Ideritifier)
by b byid = to0d # 1 rese <<Part>|*9 avaliable { Resaurce)
| #/zche B+ demand_dk (void)
! T+ demand_not_dk (woid)
! fores —
Ij esch I“"‘-&::{ecEI-:I-ent'rfilerj
<2Capsulass +ee outing Task "%
Scheduler +hlack
id : [dentifier <<Capsules=
] +ready Resourcehdanager
ins e () getldiy
bl
destrony) » includel)
exe cuteAn dinte rup]) T T2 [releazel)
mbln bl ocki) allacater)
m Bl o)
+/
= Z<Parts> ! s
i 2P o= Lt
+is £ fos
<<Fart== T
+/ o= oo I
= << P rotocol=> Zdinvariants=
Z=Protocol== ResSchProtocol {ff';;"" gan bl':'F'J'(n free =g
SchOSProtacol E’t1._tz. dnm block [t = -
: sorequest_ok (woid) ty.id = 1.id
*+in [Task) spblogk fraid)
*Tdemand (Resource) =sounblock (woid) ol
8 gt (] de ntifie) <<Protecol>>
msrequest (void) Fes05Frotocol
9+ demand_ok (waid)
O+ demand_not_ ok (waid) 0 avaliable (R esaurce)
9% anea [dentifier)

Fig. 8. Class diagram of ResourceScheduler decomposition

refinement. Formally, it must be carried out using the simulation relation [17]
of state machines, as discussed in the previous section. This detailed refine-
ment is out of the scope of this paper.

Apart from the state machine refinement, this step embodies a simple,
but subtle, data refinement to weaken the ResourceScheduler invariant, so
that each predicate in the invariant refers exclusively to attributes related to
scheduling or to resource managing, but not both. Recall that this is one of
the necessary conditions to allow the decomposition of the capsule, which is
the subject of the next section.

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 39

i rz.send)request);

/ Scheduler
A Resnurceﬁchedulh ‘,‘ oz . demand[executing '= null
A

:| os.ind sch.send)ind) 4 1= blacks mBlo c)
1=.request_ok/!
os.demand’ =
fos. .d d_ok
:| zch=send().dem and) 4 EesenClaamand okQ
fos . send.demand_not_ okl
:| os.aut! schsend) outl 4
:| o= outfexecuting = nullf destr oy
rs.exe of.sendl)exec)
:l os.ind insert)
]rs_demand_w [ready.ENoEmphCl |
ossend(idemand_ohi) ! executedndlnter roptl; Stop
rs.demand_not_okf & os.send]). exec)

| = _essend demand not o) j cooe gy
'Y \ rz.unblo midnblocki) /
o=, avaliable S
; et //i FesourcemManager \
. -

o=, 3wali able[block. cortains] s
release); re.sendllunblock)
o=, avaliablePblock . containsd O}
includ el
Resaurce 15.request] free contains] ry
:l r=.send’).block()
15 requeastfree contains]s

allozate
..\ ‘Irs.sendlj.request_d((;D_' Stip/)

Fig. 9. State machines of ResourceScheduler, Scheduler and ResourceManager

4.2 Capsule decomposition: Resource and Scheduler capsules

As we can now identify two clear partitions in the capsule ResourceSheduler,
it is possible to apply the parallel decomposition law (Figure 4) and generate
the ResourceManager and Scheduler capsules (Figure 8).

The capsule ResourceSheduler is associated with the 0SProtocol, as be-
fore. The two sets of communication signals for interaction of Scheduler and
ResourceManager with the environment partition the 0SProtocol. The latter
(singleton) set gives rise to the Res0SProtocol, and the former is captured
by the SchOSProtocol. Apart from these protocols, the ResSchProtocol
embodies the signals for the communication between ResourceManager and
Scheduler.

The new state machine of ResourceSheduler acts as a proxy which acti-
vates the two component capsules in parallel, as presented in Figure 9.

40 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

4.8 Data refining Scheduler: extracting a task collection

The remaining steps of our case study focus on a more concrete design for
the capsule Scheduler. In this step we refine the ready association role from
an aggregation of tasks into a simple association with a new TaskCollection
class, as shown in Figure 10.

<2invariants Z=inwariants»
axacuting & ready tashs Tt tasks |
Wi, t5: (ready tasks u {executing}l | =t tid= toid
Lzt tid=toid -
T 1
1
B TazkCollection
< preconditions =
<<Capsuless [Tready e Pl o tA5KS = &
Scheduler rem owel] -4 =<pesteondition=>
getTaski) postumoue: tashs' = tasks W {H}
ires &)
blo i) +t.35k5$
destroy) .
ez cute Anditer rupt] fenaing Ta=k
mUnblodk(
id : Identifier
+i=
+1 o= getdi)

Fig. 10. Extracting TaskCollection class from Scheduler

This can be justified by a direct application of the class extraction law,
presented in Figure 3. To ensure that the capsule Scheduler really matches
the left-hand side of the law, we would need to explicit the class invariant and
the pre- and postcondition of each method, which we omit for limitation of
space.

4.4 Introducing priority tasks

The target scheduler of our development is one which allocates tasks based
on priority. The purpose of this step is to introduce the class PriorityTask
which inherits from Task and includes a new attribute to record priority. We
also introduce PriorityTaskCollection as a subclass of TaskCollection.
In principle, this should not be necessary, since TaskCollection itself
might store instances of PriorityTask, but the inherited collection is intro-
duced because it redefines the remove method responsible for selecting the
next element of the collection for scheduling: while in the original collection
this choice is totally arbitrary, in the inherited one the task with higher pri-
ority is returned. Figure 11 shows the new classes and their relationships.

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 41

<<invariant== L =< precondition==
T, Lo tasks | Premmee: t35ks 2 &
ty= tpatyid = 1.0d << pasteondition= =
; posto e tasks' = tashs V1]
E TaskCallection -~
22Capsules= FriorityT ask Colle ction
Scheduler +ready, |inzer) :]
remowe] e el
insert) getTaski) i
bl ock) '
destron) +tasks :
e cutedn diter ru phl !
mlnblad) +aecuting Tazk Priority Task '

1
+irs id : ldentifier -{:]— priority : Priorty |]
+J o !

getld) = etP riority]) I

=< precondition ==
Pl epmoue: 1asks 2 &

Z<pogtconditions=
post e 1P Task [tp= {t tasks|tis PriorityTask} -(! ctasks s tp= &) v
[f =tpa Tl tpa Hopriority = by priorib)) ~ tasks' = tasks 3 {#}

Fig. 11. Introducing PriorityTask and PriorityTaskCollection

As already mentioned, this generates proof obligations to ensure behav-
ioural inheritance, which entails proving that the subclass data refines its su-
perclass for some coupling invariant relation. In this particular case, in both
refinements, the pattern captured by the law presented in Figure 6 is applica-
ble. In the case of PriorityTask, the proof obligations as easily discharged,
since it involves no method redefinition and the extra method setPriority
changes only the new attribute. Concerning PriorityTaskCollection, only
remove is redefined. Therefore, in both cases, the only condition is check is
the strengthening of the associates postconditions. This can be discharged by
simple predicate calculation.

4.5 A priority scheduler

A capsule PriorityScheduler can be designed as a specialisation of the par-
ent capsule Scheduler. The effect is inclusion of attributes and methods of
Scheduler into PriorityScheduler (with conjunction of invariants, and of
postconditions of redefined methods). In our example, no method needs to be
explicitly redefined, only the invariant is strengthened, as presented in Fig-
ure 12. Concerning the state machine, recall that the semantics of capsule
inheritance is an AND-state formed of the state machines of the capsule and
the one of the subcapsule. As PriorityScheduler has no additional control

42 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

<<inwariant==

IE eecuting & ready tasks
i, Lo (readyiasks u {executingll |
sabapsuless) 0y b Lt id e tid
Scheduler
infél?rh:d:l[j ::_:] C I IE
mB o <2Capsule=z>
destron) Frioritys chedular
g cutefnditer ro phl)
un bl ock) |
1

+is < <invariants=>
+ios ready iz PriorityTash Collection

Fig. 12. PriorityScheduler as a subcapsule of Scheduler

flow behavior, its state machine is just that of Scheduler.

5 Translation into OhCircus

In this section we suggest that a possible alternative to address the soundness
of the laws proposed for UML-RT is through a mapping into OhCircus. The
motivation for this mapping is that the main design elements and refinement
notions presented for UML-RT have a formal counterpart in OhCircus, based
on the unifying theories of programming.

We show how an OhCircus specification emerges gradually from our case-
study. We provide a rather informal translation from UML-RT into OhCircus
because this is also a theme for further research.

5.1 UML-RT classes

We start the translation with a very simple UML-RT class: Task (see Fig-
ure 8). This generates a class in OhCircus with the same attributes and meth-
ods, as expected.

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 43

class Task = begin

state TState = [id : Identifier]

public getld = res n : Identifier @ n := id

end

Although it is not visible from the diagram in Figure 8, the body of the
method—a Z predicate—comes directly from the UML-RT Task class anno-
tations.

5.2 UML-RT capsules

Differently from classes, UML-RT capsules correspond to OhCircus processes.
An OhCircus process is like a class except that a behaviour can also be de-
scribed via actions which are combined using the CSP operators.

The capsule Scheduler (see Figure 8) is translated into the following pro-
cess.

process Scheduler = begin

state ASState =
[private executing : Task; private ready : P Task | ...]
initial ASInit = [ASState’ | executing’ = null A ready’ =]

private Insert = ...]

Its state space is formed of two attributes whose names are the same as those
of the associations in the model. Furthermore, they are private, as is usual in
the design of a capsule. The invariant and method bodies are omitted, as they
are directly obtained from the annotations in the UML-RT model; only the
body of the initialisation method is presented for illustration. Like attributes,
methods are also private.

After describing the static part, we consider the dynamic one which is
expressed by OhCircus actions. We capture the main state machine by the
action named Machine (defined in the next section). The complete behaviour
is given by the following main action.

a4 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

(ASInit; Machine) \ protPorts U connectors
end

where protPorts and connectors are sets of channels representing the protected
ports and connectors used inside the capsule, respectively. Since protected
ports and inside connectors have the scope of the capsule and OhCircus chan-
nels have a global scope, we need to hide (\) them (protPorts U connectors)
from outside the capsule.

5.8 UML-RT state machines

We now present a definition for the action Machine based on the state machine
depicted in Figure 9. From the start state we can engage in the transition

os.demand [executing # null] / r = getMsgData();
rs.send() .request(executing, r)

as long as the signal os.demand is received and the guard executing # null
is true. After that, the action rs.send() .request () should be executed and
the machine goes to a next state. From this transition we know that demand is
an input signal, where the input value is catched by r = getMsgData() (see
Section 2), and request is an output signal, sending the message (executing,
r). Thus by considering Machine and S; as the start and the next states,
respectively, the previous behaviour can be partially expressed in CSP as

Machine = executing # null & demand?r — request!executing!r — S

At this point we have two choices: request_ok or block. From the pre-
vious mapping and due to the fact that state machines do not have explicit
internal choices we get

S = request_ok — Sy O block — Block(); Machine
The new state Sy can be straightforwardly defined as

So = demandOk — Machine O demandNotOk — Machine

and so on. In statechart terminology such transformations apply only to OR-
states, where there is only one active state at a time.

However, state machines can be more complex as illustrated in Figure 7.
An AND-state formed of substates SM,, and SMgyy, is translated into the
following OhCircus action

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 45

ResourceScheduler = SMy, [X | |Y]| SMaown

such that ResourceScheduler must behave as an interleaving of SM,, and
SM goun when the triggers available are needed by SM,, and SM iy, simulta-
neously, and synchronously when some trigger of SM,,, is waiting for an action
of SMj,un and vice-versa.

To obtain such a behaviour we first assume that evt(P) results in all trig-
gers of all transitions of P and thus define X to be

evt(SMyp) \ (evt(SMy,) N evt(SMaown))

that is, all triggers of SM,, except those common to SM,, and SM,yy,, and
Y to be

eVt (SMaouwn) \ (evt(SMy,) N evt(SMaoun))

that is, all triggers of SM,.,n except those common to SM,, and SMoun.

5.4 Ports, protocols, and connectors

We make no distinction between ports and protocols in OhCircus. From the
protocols, we map the signals and respective types into channel declarations,
as follows.

channel demand, available : Resource

channel block, unblock, request, request_ok

Finally, connectors are simply viewed as channels as well. Thus following [11],
suppose that a connector ¢ be connecting two ports p (of capsule P) and q (of
capsule Q). Then, in OhCircus we have the following representation

Ple/p] [lelll Qle/d]

where the channels ¢, p, and ¢ must be compatible (same type).

5.5 Linking refinement relations

By translating a UML-RT model into OhCircus, as briefly illustrated above,
one can then benefit from the formal notions and refinement laws of OhCircus.
In particular, for each refinement relation used in our strategy for refining
classes and capsules in UML-RT, there is a corresponding OhCircus relation

46 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

which assigns meaning to it. For example, the meaning of capsule refinement

(P CGPSUZGQ) is process refinement in OhCircus(P Cp Q). Similarly, class refine-
ment in UML-RT is defined as class refinement in OhCircus, state machine
refinement is defined as action refinement, and refinement of an entire model
is program refinement in OhCircus.

Concerning data refinement, for UML-RT we have focused on a proof tech-
nique. In a formal language such as OhCircus, the technique is usually proved
sound from a more general definition of simulation. So the standard data re-
finement technique which we adapted for UML-RT classes coincides with one
of the laws of the OhCircus simulation relation: the law for schema actions.

Once these connections among the refinement relations are established, it is
possible, for example, to relate laws expressed in the two notations, and carry
out their proofs in OhCircus. As an illustration, the capsule decomposition
law presented in Figure 4 has been directly inspired by the following law [30]
originally presented for Circus, which therefore is also a law of OhCircus.

In what follows, we assume that pd stands for the process declaration
below, where we use Q.pps and R.pps to stand for the process paragraphs of
the processes) and R; and F for a context (function on actions) which must
also make sense as a function on processes (according to the Circus syntax).

process P = begin
State = ().st A R.st
Q.pps T R.st
R.pps T Q.st

o F(Q.act, R.act)
end

The state of P is defined as the conjunction of two other state schemas: @).st
and R.st. The actions of P are).pps T R.st and R.pps T @.st, which handle
the partitions of the state separately. In @.pps T R.st, each schema expression
in @).pps is conjoined with ZR.st. This means that these process paragraphs
do not change the state components of R.st; similarly for R.pps T Q.st.

The law below applies to processes in the above form.

Law 5.1 (Process splitting)

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 47

Let qd and rd stand for the declarations of the processes () and R,
determined by @Q.st, Q.ppS, and Q.act, and R.st, R.pps, and R.act,
respectively, and pd stand for the process declaration above. Then

pd = (qd rd process P = F(Q,R))

provided @Q.pps and R.pps are disjoint with respect to R.st and
Q.st. a

The above law can be informally justified by first adding the declarations ¢d
and rd to the left-hand side, and then by promoting the context F' from main
actions to the corresponding processes. Formally, it is a simple consequence
of the semantics of process combinators in Circus [6].

It is worthwhile contrasting the presentation of the law presented in Fig-
ure 4 and the above law. The behaviour of a process in Circus and in OhCircus
is defined by an action, which can be expressed using CSP operators. Since
most CSP operators are also available for combining processes, a process de-
composition law can be uniformly and elegantly captured by a form of lift-
ing the relevant operator from actions to processes, as presented in [5]. In
UML-RT, even considering that we can use some statecharts combinators like
AND-state, no operator exists to compose capsules; thus the composition of
interest (parallelism, choice, ...) is achieved using a controller state machine
(a proxy), and protocols which ensure the expected synchronisation between
the controller and the component capsules (see decomposition law for UML-
RT in Figure 4). This makes the presentation of the laws relatively more dense
than in a notation in which the combination of the decomposed elements is
totaly embedded into an appropriate operator.

6 Conclusion

Based on results obtained with formal notations and techniques, we proposed
some transformation laws for UML-RT which seem useful to support a re-
finement strategy from analysis to design models, involving classes, capsules,
protocols and constraints expressing invariants, pre- and postconditions.

The main inspiration for this work has been the research on Circus and
OhCircus, and particularly the refinement strategy developed for process re-
finement in Circus [30,5], which is being currently extended for considering
class refinement and behavioural inheritance as available in OhCircus. This
has naturally led us to proposing the use of OhCircus as the semantic model
for our work with UML-RT.

48 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

The attempt to migrate and possibly extend results from formal methods
to semi-formal notations and processes (like UML-RT and the Rational Unified
Process) seems interesting in itself. But making these results useful in practice
is the real challenge. In this direction, we believe that providing a library of
transformation laws for the practitioner developer is a significant contribution.
Of course this must be backed upon a sound mathematical basis.

In our particular experience with UML-RT and OhCircus, some features of
these two languages can be compared and contrasted. While both languages
provide notions of classes, processes (capsules) and communication (protocols
and channels), OhCircus have been carefully designed to support a uniform re-
finement stretegy, which does not seem the case with UML-RT. This has been
briefly illustrated in the previous section, where we can note the difference in
expression of the decomposition laws for capsules (processes). This difficulty
is perhaps also reflected into processes which support the notation. For in-
stance, the Rational Unified Process [21] (RUP) embodies some activities for
identifying capsules and designing their internal structure. One of the steps
related to capsule identification requires that the developer decide whether
the identified capsule has a single or multiple flows of control, giving rise to
a single or multiple capsules, respectively. Our view is that this step is too
early in the process, when the developer does not yet have a precise view of
the control structure of a capsule. Therefore, in RUP there is no support for
a systematic decomposition of capsules, as we propose here.

Regarding UML software development by transformations, the work re-
ported in [22] gives a formal semantics to UML, OCL, and statecharts, in
terms of the Real-time Action Logic (RAL). From this semantics, a number of
laws for UML development is proposed and proved. The work reported in [13]
also addresses model transformations, but instead of using a logic it uses graph
representations. With respect to refactoring, [8,9] propose a formal semantics
to the structural part of UML and use that semantics to prove derived prop-
erties from UML class diagrams. The properties derivation is accompanied
by changes on the class diagram. Nevertheless, none of these works address
transformations involving capsules.

One immediate topic for future work is to address the soundness of the
proposed laws in detail, with a complete mapping of all the notation of UML-
RT (as well as the refinement relations for state machines, classes, capsules and
entire models) to OhCircus. This requires further work on the OhCircus side as
well, whose semantics is being currently defined using the unified theories of
programming. An alternative to the mapping of UML-RT into OhCircus could
be the definition of a semantics based on the unified theories of programming
to UML-RT itself. Considering asynchronous communication is also a relevant

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 49

topic for investigation, since this seems more usual among developers who use
UML-RT.

Although we have proposed general techniques for data refinement and
behavioural inheritance of classes and capsules, the real interest is on a com-
prehensive set of laws for model refinement and refactoring. In particular,
while code refactoring for classes is extensively discussed in the literature,
model refactoring for classes is not, let alone for capsules.

Process and tool support for the proposed refinement approach is clearly
important. An adaptation of RUP with specific activities to guide a system-
atic migration from an analysis into a more concrete design model, possibly
involving several levels of capsule decomposition, seems an interesting topic
of study to pursue. A plug-in or add-on to the Rational Rose-RT to support
this process would also help to motivate practical use.

Extending the approach with sharing (references) and time (both on the
UML-RT side as well as on the OhCircus side) is a longer term plan.

Acknowledgement

We owe much to Ana Cavalcanti and Jim Woodcock for the joint work on
Circus and OhCircus, which has been the main source of inspiration for this
work. The case study presented here in UML-RT has previously been specified
in OhCircus by Ana Cavalcanti, Augusto Sampaio and Jim Woodcock. We
also thank Paulo Borba, Marcio Cornélio, Rohit Gheyi, Tiago Massoni and
Franklin Ramalho for discussions related to this work.

References

[1] David Agnew, Luc J. M. Claesen, and Raul Camposano, editors. An Efficient Object-Oriented
Variation of the Statecharts Formalism for Distributed Real-Time Systems, volume A-32 of
IFIP Transactions. North-Holland, 1993.

[2] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

[3] Luca Cardelli, editor. A Refinement Algebra for Object-oriented Programming, volume 2743 of
Lecture Notes in Computer Science. Springer, 2003.

[4] A. Cavalcanti, A. Sampaio, and J. Woodcock. A Unified Language of Classes and Processes.
In St. Eve - State-oriented vs. Event-oriented thinking in Requirements Analysis, Formal
Specification and Software Engineering. Satellite Workshop - FM’03, Pisa, Italy, September
2003, 2003.

[5] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement Strategy for
Circus. Formal Aspects of Computing, 2003. To appear.

[6] A. L. C. Cavalcanti and J. C. P. Woodcock. @A Weakest Precondition Semantics for
Circus. Technical report, University of Kent at Canterbury Computing Laboratory, 2002.
In preparation.

50 A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51

[7] B. P. Douglass. Real Time UML - Developing Efficient Objects for Embedded Systems. Addison
Wesley, 1998.

[8] A. Evans. Reasoning with UML Diagrams. In Workshop on Industrial Strength Formal
Methods, WIFT’98. IEEE Press, 1998.

[9] A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a Formal Modeling Notation.
In J. Bézivin and P. Muller, editors, The Unified Modling Language, UML’98 — Beyond the
Notation, volume 1618 of Lecture Notes in Computer Science, pages 336 — 348. Springer-Verlag,
1999.

[10] C. Fischer. Combination and Implementation of Processes and Data: from CSP-OZ to Java.
PhD thesis, Fachbereich Informatik Universitat Oldenburg, 2000.

[11] C. Fischer, E. R. Olderog, and H. Wehrheim. @A CSP view on UML-RT structure
diagrams. In Heinrich Hussmann, editor, Fundamental Approaches to Software Engineering,
4th International Conference, FASE 2001, held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2001, Genova, Italy, April 2-6, 2001, Proceedings,
volume 2029 of LNCS, pages 91-108. Springer, 2001.

[12] R. Gheyi and P. Borba. Refactoring Alloy Specifications. In WMF 2003: 6th Workshop on
Formal Methods, Brazil, 2003.

[13] M. Gogolla and F. Parisi-Presicce. State diagrams in UML: A formal semantics using graph
transformations. In Manfred Broy, Derek Coleman, Tom S. E. Maibaum, and Bernhard Rumpe,
editors, Proceedings PSMT’98 Workshop on Precise Semantics for Modeling Techniques.
Technische Universitat Miinchen, TUM-19803, 1998.

[14] Martin Gogolla and Mark Richters. On combining semi-formal and formal object specification
techniques. In Francesco Parisi-Presice, editor, Recent trends in algebraic development
techniques: 12th international workshop, WADT’ 97, Tarquinia, Italy, June 3-7, 1997: selected
papers, volume 1376 of LNCS. Springer, 1998.

[15] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java™ Language Specification. Addison-
Wesley, 2nd edition, June 2000.

[16] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8:231-274, 1987.

[17] D. Harel and O. Kupferman. On Object Systems and Behavioral Inheritance. IEEE Trans.
Software Engineering, 28(9):889-903, 2002.

[18] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
[19] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall, 1998.

[20] Daniel Jackson. Alloy: a lightweight object modelling notation. Software Engineering and
Methodology, 11(2):256-290, 2002.

[21] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.
Addison-Wesley, 1999.

[22] K. Lano and J. Bicarregui. UML Refinement and Abstractoin Transformations. In ROOM 2
Workshop, 1998.

[23] B. H. Liskov and J. M. Wing. A Behavioural Notion of Subtyping. ACM Trans. on
Programming Languages and Systems, 16(6), 1994.

[24] G. Luttgen, M. Beeck, and R. Cleaveland. A compositional approach to statecharts semantics.
In ACM SIGSOFT 8th International Symposium on the Foundations of Software Engineering
(FSE 2000), volume 256 of ACM Software Engineering Notes, pages 120-129, San Diego, CA,
USA, November 2000. ACM Press.

[25] B. Meyer. Object-Oriented Software Construction. Prentice-Hall International, 2nd edition,
1997.

A. Sampaio et al. / Electronic Notes in Theoretical Computer Science 95 (2004) 23-51 51

[26] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[27] Carroll Morgan. Programming from Specifications. Prentice Hall, second edition, 1994.

[28] M. Richters and M. Gogolla. OCL: Syntax, semantics, and tools. In Tony Clark and Jos
Warmer, editors, Object Modeling with the OCL: The Rationale behind the Object Constraint
Language, pages 42—68. Springer, 2002.

[29] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in Computer
Science. Prentice-Hall, 1998.

[30] A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in Circus. In
L. Eriksson and P. A. Lindsay, editors, FME 2002: Formal Methods — Getting IT Right, volume
2391 of Lecture Notes in Computer Science, pages 451-470. Springer-Verlag, 2002.

[31] G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers, 1999.

[32] Rational Software. Rational rose-rt, 2003. URL: www.rational.com/products/rosert.

[33] M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition, 1992.

(34] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert, J. P. Bowen,
M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specification and Development in
Z and B, volume 2272 of Lecture Notes in Computer Science, pages 184-203. Springer-Verlag,
2002.

[35] J. C. P. Woodcock and J. Davies. Using Z-Specification, Refinement, and Proof. Prentice-Hall,
1996.

	Introduction
	UML-RT
	Laws for Classes and Capsules
	Basic laws
	Class extraction
	Capsule decomposition
	Data Refinement
	Behavioural inheritance

	Case study: a resource scheduler
	Resource and Scheduler partitions
	Capsule decomposition: Resource and Scheduler capsules
	Data refining Scheduler: extracting a task collection
	Introducing priority tasks
	A priority scheduler

	Translation into OhCircus
	UML-RT classes
	UML-RT capsules
	UML-RT state machines
	Ports, protocols, and connectors
	Linking refinement relations

	Conclusion
	Acknowledgement
	References

