A Framework for Iterative, Interactive Analysis of Agent-Goal Models in Early Requirements Engineering (Research Proposal)

> Jennifer Horkoff¹ Eric Yu² Department of Computer Science¹ Faculty of Information² jenhork@cs.utoronto.ca yu@ischool.utoronto.ca University of Toronto June 7, 2010 iStar'10

Early Requirements Engineering

- Early stages of requirement analysis focusing on understanding:
 - Stakeholders and systems
 - Stakeholder's needs
 - Domain problems
 - Different views of the problems
- Challenges in Early RE
 - Incomplete and imprecise information
 - Difficult to quantify or formalize critical success criteria such as privacy, security, employee happiness, customer satisfaction
 - Ideally Early RE should involve a high degree of stakeholder interaction
 - Gather and validate information

Existing Approaches for Early RE

- **Example:** Soft System Methodology (rich pictures) (Checkland, 2000)
- **Example:** Text (or tables)
 - Flexible, user-friendly, but difficult to systematically analyze or support via tools
- Examples courtesy of RE'09 "Next Top Model" Competition

	unineer Broblems				aloges pasts	
10	Business rythless	Second of	nonhiem	01	Service fee enemon	÷.
11	Dispatching errors create high opera- tional cost and un-	Incorrect information collected or antenud Manual lacder and resources selectons are incorrect Biochorder desources			effcently	
				62	Increase attractivene	55.
				63	Reduce training cost	
	Nappy customers			64	Minimize administral	ve
-	Dispatcher training	Theorem is training (time and cost) required to know geography and nature/uregency of incidents Tell Turnover due to stressed and unbreak department		G6	Increase quality of se	inik
	and turnover rate crearie high cost			3. System context		
93	Inefficiencies counts	Manually selecting ladders and number of resources Jupdating and viewing veloce alluation board J.Redundant dispatches occur A.Resources status aimt up-to-date		System comprises - Call processing - Dispatch support - Resource database - Carl on-board equipment - Simulator		4
	high operational cost (and slow repooned)					1
						13
						4
		5.Edu int	trainfo captured about incidents		+ Measurement manager	
A	ctors		-2010			
Actor			Roles			
Dispatcher			Records callo, conferns/rejects duplicates, consults map, disp			
M	ter officer		Receives/acknowledges proens, keeps resource information a			
rve.	brgade officer		Heceves sourceweages orders			
Resource efficer			Enterstmantains map and resource deta			
Any authorized person			Retreves statistics/measurements			
Transer		Huns the simulator				

Last optimed 2009-09-03

If the dispatcher y worthoad e as perceived by

entext comprises Dispatch center Ladders Fre brigades Callers reporting fre incidents Taxanto center

stones, does tollow

Existing Approaches for Early RE

- **Goal-** Goal- and Agent-Oriented Models (GORE) (agent-goal models)
 - Can allow modelers to model **fuzzy concepts** (softgoals)
 - Provide **useful views** even over incomplete and imprecise information
 - Allow for **systematic analysis**; however:
 - Existing analysis procedures often require specific information such as probabilities, costs, priorities, or quantitative estimates
 - (Giorgini et al., 2004), (Franch, 2006), (Letier & van Lamsweerde, 2004), (Amyot et al., 2010), (Bryl et al., 2007), (Gans et al., 2004), (Fuxman et al., 2004), etc.
 - Claim: Quantitative results are often based strongly on estimates, which are especially unsure during early stages
 - Most procedures are fully automated "push-button"-type
 - Claim: Difficult for stakeholders to understand or trust results produced automatically over incomplete and imprecise information

Research Objectives

- Need: Methods and tools to support Early RE elicitation and analysis which:
 - Are simple enough (on the surface) to use with stakeholders
 - Are structured enough to:
 - provide user guidance
 - allow for systematic analysis
 - allow for tool support
 - But are flexible enough to allow for:
 - representation of imprecise and incomplete information
 - Allow for incomplete and imprecise information to be supplemented by domain knowledge
 - Prompts iteration over domain knowledge
 - Increasing the likelihood of discovering objects, problems and alternative designs in the domain

Computer Science UNIVERSITY OF TORONTO Goal

Models

2

• ? GM

Analysis

Our Approach

- A Framework for Iterative, Interactive Analysis of Agent-Goal Models in Early Requirements Engineering
- Expand the capabilities of agent-goal models in the following ways:
 - Survey and analysis of existing analysis procedures
 - Interactive forward evaluation
 - Interactive backward evaluation
 - Multiple evaluations over a single model
 - Human judgment management
 - Assumptions and argumentation
 - Supporting model iteration
 - Suggested methodology

Survey and Analysis

- Many different approaches for agent-goal model analysis
 - Forward and backward satisfaction propagation: (Giorgini et al., 2004), (Amyot et al., 2010), (Letier & van Lamsweerde, 2004)...
 - Metrics: (Franch, 2006)...
 - Planning: (Bryl et al., 2007)...
 - Simulation: (Gans et al., 2004)...
 - Model Checking: (Fuxman et al., 2004)...
- Which procedures support what GM syntax?
- Which procedures to use in what circumstances? (How do you select among them?)
- More specific comparison: what differences do different conventions in forward satisfaction propagation procedures have on the results?

Interactive Forward Satisfaction Analysis

- Allow "What if?" questions
- A question/scenario/alternative is placed on the model and its affects are propagated "forward" through model links
- Interactive: user input (human judgment) is used to decide on partial or conflicting evidence "What is the resulting value?
- Qualitative: uses a simple qualitative scale
- Publications: CAiSE'09 (short paper), PoEM'09, IJISMD (to appear)

Full Denial

Multiple Evaluations & Human Judgment Management & Model Iteration

- Allow users to manage and compare alternatives over a model
 - Need to allow users to conceptualize, and itemize alternatives, comparing results
 - Works for both forward and backward procedures
- Allow users to manage, reuse and change their judgments over the models
 - (Optionally) reuse human judgments, build a DB of judgments per model
 - Perform checks for consistency, make suggestions?
- Support model iteration
 - When users change the model or their judgments:
 - **D** The effects of the change on evaluation results should be displayed
 - Re-evaluation should be allowed, but only for the results affected by the change

Assumptions, Arguments & Suggested Methodology

- Allow users to record and use important domain information in the modeling analysis process
 - Capture arguments behind model constructs and evaluation judgments
 - Capture domain assumptions
 - Explore ways to use assumptions and arguments beyond the model
 - Lists, views, tables, requirement specs
- Provide a methodology to guide early modeling and analysis
 - Guidelines for participatory modeling and evaluation:
 - Where to start, how to come up with useful evaluation questions?
 - Iterating over models
 - First draft: PoEM'09, IJISMD (to appear)

Tool Support: OpenOME

Case Studies (Validation)

- Application of forward procedure
 - Trusted Computing, Knowledge Management, i* Patterns, Social Service Organization
 - PST'06, HICSS'07, REFSQ'08, CAiSE'09, PoEM'09, IJISMD
- **Exploratory experiment tested benefits of forward procedure**
 - Model iteration, prompted further elicitation, improved understanding
 - Careful examination of model vs. systematic procedure?
 - CAiSE'09, PoEM'09, IJISMD
- Expansion of experiment to individual case studies over more subjects using both forward and backward implementation (in progress)
 - Comparison of results using and not using the procedure
 - Initial results show issues in i* knowledge, usability issues in the analysis procedures and the affects of model and domain "buy-in"
- Case Studies with groups/organizations: apply implementation of forward and backward procedure
 - Inflo in-house case study (in progress)
 - Later industrial case study (security patterns?)

Summary: Scientific Contributions

- Early RE Analysis: Allowing analysis over informal, incomplete agent-goal models
- Iterative, Interactive Algorithm: Detailed algorithm which iterates, adapting to user input
- Model Iteration Supporting iteration over the model by showing users effects of model and judgment changes
- Minimal re-evaluation after model changes
- Multiple Case Studies Assessing how agent-goal model evaluation can be used in practice with stakeholders through multiple case studies in a variety of settings

Thank you

- □ jenhork@cs.utoronto.ca
- □ <u>www.cs.utoronto.ca/~jenhork</u>
- □ <u>yu@ischool.utoronto.ca</u>
- □ <u>www.cs.utoronto.ca/~eric</u>
- **OpenOME:**
 - <u>https://se.cs.toronto.edu/trac/ome</u>

Future Work

■ The suggested framework could be extended to:

- Support varying levels of qualitative scales
- Support varying levels of human interaction
- Tie into "Late" RE analysis using detailed information
 - Mixture of qualitative and quantitative values (use numbers where you have them)

References

- Checkland, P.: Soft systems methodology: A Thirty Year Retrospective. Systems Research and Behavioral Science 17, (S1) S11--S58 (2000)
- Giorgini, P., Mylopoulos, J., Sebastiani, R.: Simple and Minimum-Cost Satisfiability for Goal Models. In: Persson, A., Stirna, J. (eds) CAiSE 2004. LNCS, vol. 3084, pp. 20-3-5. Springer, Heidelberg (2004)
- Franch, X.: On the Quantitative Analysis of Agent-Oriented Models: In Dubois, E., Pohl, K. (eds) CAiSE'o6. LNCS, vol. 4001, pp. 495--509. Springer, Heidelberg (2006)
- Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evaluating Goal Models within the Goal-oriented Requirement Language. Int. Journal of Intelligent Systems (IJIS) (2010)
- E. Letier, and A. van Lamsweerde, "Reasoning about Partial Goal Satisfaction for Requirements and Design Engineering," Proc. Int. Symp. on the Found. of SE (FSE'04), ACM Press, 2004, pp. 53-62.
- V. Bryl, P. Giorgini, and J. Mylopoulos, "Supporting Requirements Analysis in Tropos: a Planning-Based Approach," Proc. Pacific Rim Int. Work. on Multi-Agents (PRIMA'07), Springer, 2007, vol. 5044, pp. 243-254.
- D. Gans, D. Schmitz, T. Arzdorf, M. Jarke, and G. Lakemeyer, "SNet Reloaded: Roles, Monitoring and Agent Evolution," Proc. Inter. Bi-Conf. Work. on Agent-Oriented Inf. Sys. (II) (AOIS'04), Speringer, 2004, LNCS, vol. 3508, pp. 68-84.

