
407

17
Software Factories*

Ivan Aaen
Peter Bøtcher

Lars Mathiassen

Abstract. Software factory efforts and related ideas have
been around for thirty years. The term signals a commit-
ment to long-term, integrated efforts—above the level of
individual projects—to enhance software operations. This
is not only a powerful, but a necessary idea taking the
challenges involved in professionalizing software opera-
tions into account. The term factory has, however, the con-
troversial connotation that software development and
maintenance is comparable to mass-production of indus-
trial products, and arguably this is not the case.

The paper discusses contrasting views by providing a
survey of software factory concepts, by highlighting varia-
tions and differences between them, and by discussing the
relative strengths and weaknesses of their approaches to
professionalize software operations. Based on a compari-
son of four well-known factory, or factory-like, concepts
the paper identifies useful contributions and possible illu-
sions related to the idea of a software factory.

Introduction
Software organizations experience considerable pressures to profes-
sionalize their operation. Clients and customers ask for transparent
development processes and faster feed-back, they require higher
productivity, and, last but not least, they want better quality in the
delivered services and products. For more than thirty years, soft-

IMPROVING ENVIRONMENTS

408

ware engineer’s have been occupied with this challenge trying to
come up with innovations to enhance software operations. Through-
out this period, the idea of the software factory has kept emerging
as a sort of ultimate response to the needs of our profession.

A historical interpretation of the software factory concept and
experience is provided by M. A. Cusumano (1989). R. W. Bemer was
probably the earliest proponent suggesting in 1968 that General
Electric develop a software factory to enhance programmer produc-
tivity through standardized tools, a computer-based interface, and a
database with historical data for financial and management controls
(Bemer 1969). Approximately at the same time, M. D. McIlroy of
AT&T proposed a different factory-like concept emphasizing sys-
tematic reusability of code when developing new programs (McIlroy
1969).

The first company in the world to label a software organization
as a factory was Hitachi in 1969, while the second software factory
was established by one US leader in the custom software field, Sys-
tem Development Corporation, during 1975–1976. According to
Cusumano, a software factory boom then followed, in particular in
Japan where NEC, Toshiba, and Fujitsu launched their own factory
efforts during 1976–1977. More recently, Mitsubishi and Nippon
Telephone and Telegraph have initiated factory-like efforts, and in
1985 MITI—Japan’s Ministry of International Trade and Industry—
started the national SIGMA project as a cooperative effort to de-
velop an infrastructure from which to produce high-quality software
in great quantity (Cusumano 1989).

The term factory signals a commitment to long-term, inte-
grated efforts—above the level of individual projects—to enhance
software operations. This is not only a powerful, but also a neces-
sary idea taking the challenges involved in professionalizing soft-
ware operations into account. But for many the term factory has at
the same time the controversial connotation that software devel-
opment and maintenance is comparable to mass-production of in-
dustrial products, and arguably this is not the case. This can easily
lead to illusions with respect to the kinds of interventions that can,
in fact, improve software operations. It is not surprising, therefore,
that some software professionals like the concept while others do
not.

The term factory can be used to denote either one or more
buildings with facilities for manufacturing or the seat of some kind

SOFTWARE FACTORIES

409

of production. To many people the concept of a factory also implies a
particular way of organizing work with considerable job specializa-
tion, formalization of behavior and standardization of work proc-
esses. In this paper we will not adopt this historically based conno-
tation. Rather we use the term without assumptions regarding par-
ticular ways to standardize, formalize, specialize, or achieve func-
tional grouping. The factory is an organization inhabited by people
engaged in a common effort, work is organized one way or the other,
standardization is used for coordination and formalization, and sys-
tematization is important, but there will be several options for the
design of a particular software factory. This paper investigates how
existing approaches to the software factory has chosen among such
options by fitting each approach into one of Henry Mintzberg’s five
basic organizational structures (Mintzberg 1983): the simple struc-
ture (organic, centralized, direct supervision); the ad-hocracy
(organic, decentralized, mutual adjustment); the machine bureauc-
racy (bureaucratic, centralized, standardized processes); the profes-
sional bureaucracy (bureaucratic, decentralized, standardized
skills); and the divisionalized form (decomposed based on standard-
ized output).

In the paper, we discuss and evaluate contrasting views on
software factories. We do that by presenting a selection of different
software factory concepts, by highlighting variations and differences
in the underlying approaches, and by discussing the relative
strengths and weaknesses of different approaches to professionalize
software operations. The goal is to clarify useful contributions and
possible illusions related to the idea of a software factory.

The approach taken is basically that of a literature survey. We
have selected four well-known factory-like approaches to profes-
sionalize software operations. The four approaches cover Japanese,
European, and North American initiatives, some are mainly tool
oriented while others are more process oriented, and together they
cover the range from quite early to more recent initiatives. The four
approaches are: a Japanese approach to the industrialized software
organization (Matsumoto 1981, 1987), a European approach to the
generic software factory (Fernström 1991, 1992), a North-American
approach to the experience-based component factory (Basili 1989,
1993; Basili et al. 1992), and, finally, a North-American approach to
the mature software organization (Nilsson 1990; Paulk et al. 1993a).

IMPROVING ENVIRONMENTS

410

The paper is divided into two major sections. In the first sec-
tion we present and interpret the four approaches. The second sec-
tion is devoted to a comparison and discussion of the four ap-
proaches. We outline the important similarities and differences, and
we discuss their relative strengths and weaknesses. The paper is
concluded with a discussion of the contributions and illusions re-
lated to software factories.

I. Software factory approaches
In order to compare software factory approaches we need to know
the contents of each approach as well as the context in which it was
conceived. The context gives an understanding of the scope and
main focus of an approach. Under this heading we outline the set-
ting in which the approach was developed. The contents of each ap-
proach is described in a fairly top down manner starting at the top
with the objective of the approach and the strategy advocated for
achieving the objective. In the middle we describe the organizational
design of the software factory in question, and at the bottom we de-
scribe the implementation of this organization. Thus the description
of each approach falls under five headings:.

Context. In which setting was the approach developed?
Objective. Which goals are pursued and which specific prob-

lems are sought to be solved?
Strategy. How should these goals be achieved?
Organization. What is the proposed design of the software fac-

tory?
Implementation of improvement. How should the improvement

efforts be implemented?

Under the last of these headings we characterize similarities and
differences between the studied approaches by referring to the
common elements involved in implementing software factories iden-
tified by Cusumano in his study of Japanese initiatives (Cusumano
1991): commitment to process improvement; product-process focus
and segmentation; process-quality analysis and control; tailored and
centralized process R&D; skills standardization and leverage; dy-
namic standardization; systematic reusability, computer-aided tools
and, integration; incremental product/variety improvement.

SOFTWARE FACTORIES

411

I.1. The industrialized software organization (Japan)
As a representative for the Japanese software factory approach we
have chosen Toshiba’s software factory concept, described in (Mat-
sumoto 1981, 1987). This concept is used to denote Toshiba’s soft-
ware division and its procedures as they were in 1981 and 1987 re-
spectively.

Context. The software produced in the software factory is
primarily for control systems, nuclear reactors, turbines etc. The
establishment of the software factory in 1981 is motivated by a wish
for software of higher quality in terms of minimizing the number of
defects in the software. The focus on software quality is matched by
a focus on productivity to ensure that the quality efforts do not
weaken competitiveness via increased costs.

Objective. To meet these constraints the objective is to in-
crease software quality and to improve productivity. Later in 1987
the objectives of quality and productivity are maintained with the
additional objective of creating an environment in which design,
programming, test, installation, and maintenance can be performed
in a unified manner.

Strategy. The strategy in 1981 includes three elements. The
first is to design buildings that support the software development
process, the second is to build a Software Work Bench (SWB) which
is an integrated software support for the activities in the software
development process, and the third is to establish an organization
that controls and monitors the software development process. Later
in 1987 these strategies are maintained, but more initiatives are
added: properly designed work spaces; software tools, user inter-
faces, and tool maintenance facilities; standardized baseline man-
agement system for design review, inspection, and configuration
management; standardized technical methodologies and disciplines;
education program; project progress management system; cost man-
agement system; productivity management system; quality assur-
ance system with standardized quality metrics; quality circle activi-
ties; documentation support; existing software library with mainte-
nance support; technical data library; career development system.

Organization. The organization of the Toshiba software fac-
tory is determined by some of the elements in the software factory:
Software work bench, project management, reusability, measuring
productivity, measuring quality, and quality circles.

IMPROVING ENVIRONMENTS

412

The term software work bench is used to denote an integrated
system for supporting all workers in the factory. The system con-
sists of a number of subsystems that collectively offer support for:
programming, debugging, project files, program generation, and
program reuse; program test; requirements specification, software
design description, and documentation; maintaining software in op-
eration at customer sites; project management; quality assurance;
software configuration control and reuse.

The software factory has a standardized waterfall model for
system development. The project management strategy used is
called look-forward-management. The idea is to calculate costs from
equations containing data from the organizational history. All
projects are decomposed into unit workloads. A unit workload is de-
fined to be an activity to complete a software configuration by one
person. Progress in the projects is managed based on daily or
weekly status reports on these unit workloads. The use of frequent
progress reports enables tracking of actual versus expected progress
before items are complete. Therefore corrective actions can be taken
during the process. This in combination with the use of organiza-
tional data to estimate the expected time and resources form the
background for the term look-forward-management.

Quality and productivity is measured in the software factory.
There are quality factors defined for each baseline of the life-cycle
model. Software quality is understood in terms of reliability, and
the quality measures express the number of expected faults left in
the code after test, and the expected time between failures. These
measures are estimated from the number of faults found in test.
Productivity is also measured for every step in the life-cycle model.
The software factory uses two types of measures: cost-based meas-
ures and capability-based measures. The cost based measures are
cost per person-month, profit per person-month, and cost per
equivalent assembler source lines. The capability measures are used
in progress management, work assignment, and education planning.
On the project and factory level equivalent assembler source lines
per person-month, specification pages per person-month, and test
items per person-month are created. On the person level a personal
spectrum is created which includes productivity and fault rate. For
instance, the number of pages produced by an analyst per hour is
the productivity measure for an analyst. The number of faults per
page is the fault rate. In the programming phase the productivity

SOFTWARE FACTORIES

413

measure is the number of equivalent assembler source lines pro-
duced per hour.

Reuse of software is considered to be the single most critical is-
sue in improving quality and productivity. The primary source of
reuse is reliable and documented software. To promote reuse an or-
ganization for reuse has been designed. The key elements are the
software reusing parts steering committee, the software reusing
parts manufacturing department, and the software reusing parts
center. The steering committee gathers, selects, and authorizes
needs for creating, updating, and discarding reusable modules, and
the manufacturing department processes these needs. The parts
center is the place where all the reusable parts are kept and avail-
able to the projects. To help the search for reusable parts, keywords
are assigned to describe the functionality of the reusable parts and
search mechanisms are offered.

Quality circles are volunteers’ groups. They meet to discuss
and exchange ideas on quality improvement, productivity, im-
provement of methodology etc. Each year both a factory-wide and a
company-wide quality circle conference are held. The best groups
are rewarded by being invited to these conferences where various
awards are presented to honor excellent activities.

The dominant traits of the organizational design are: a deter-
mined effort to make the operating work routine, simple, and repeti-
tive and to standardize work processes. Responsibilities and rou-
tines are standardized and there is a clearly defined hierarchy of
authority combined with an elaborate administrative structure. All
in all this organizational design corresponds to what Mintzberg
terms a Machine Bureaucracy (Mintzberg 1983).

Implementation of improvement. Although this approach
puts a heavy emphasis on infrastructures (buildings and tools), the
implementation efforts in this approach are comprehensive: all of
Cusumano’s nine implementation elements can be identified here.

I.2. The generic software factory (Europe)
The second idea to be considered is a European approach to the ge-
neric software factory (Fernström 1991; Fernström et al. 1992; Nils-
son 1990). The approach is funded under the Eureka program and is
called the Eureka Software Factory.

Context. The participants in the project are large European
companies, computer manufacturers, software houses, research in-

IMPROVING ENVIRONMENTS

414

stitutes, and universities. The project was designed with a 10 year
horizon (1987–1996) with 2400 man-years of work financed by in-
dustry (50%) and national government (50%). Most of the develop-
ment work was performed in sub-projects.

In this project the aim is to provide the technology, standards,
organizational support, and other necessary infrastructures in order
that software factories be constructed and tailored from components
marketed by independent suppliers. The software factory concept
denotes a combination of software tools and software processes to be
installed in an organization. A software factory thus consists of both
computerized and non-computerized parts.

The main focus in the project is on the factory support envi-
ronment i.e. the computerized support part of a software factory.
The project defines a communication-centered CASE-architecture to
be combined with specific support for describing and enacting soft-
ware-engineering activities. Together this is intended to help build-
ers of software factories in their effort to integrate CASE products
into software process models. In this respect the Eureka Software
Factory can be viewed as a Generic Software Factory to produce
software factories.

Objective. The objective is to produce an architecture and a
framework for ISDEs—Integrated Software Development Environ-
ments—basic building blocks, general components, and environ-
ments for different application areas (like business applications,
real time applications, telecommunication systems, and embedded
systems). Based on this it should be possible to “compose” support
environments tailored to the tasks to be performed by users in spe-
cific projects. The main principle is to adapt the factory support en-
vironment to the organization rather than the other way around.

Strategy. The Generic Software Factory develops components
and production environments that are part of software factories to-
gether with standards and guidelines for software components. The
component standards ensure that the different components of an
ISDE can communicate through a common software bus. This bus
handles communication, data conversion, configuration, and other
services. The bus makes it possible to select and combine compo-
nents that conform to specific needs in an organization or a project.
Composing a user environment thus consists of selection, combina-
tion, and set-up of a number of components.

SOFTWARE FACTORIES

415

A software factory is produced as shown in figure 1. The Ge-
neric level defines a reference architecture for software factories
with standards for Eureka Software Factory compliant components.
The Component Base level denotes the base of available components
for building factory support environments. The number of compo-
nents compliant with the Eureka Software Factory standards is con-
tinuously extended. The Factory Model level describes specific soft-
ware factories in terms of models of the processes to be supported by
the factory and the characteristics of the components integrated into
the support environments. Finally, the Software Factory level de-
notes the customized software factory instance put into place within
the software development organization.

Component
Base

Generic
ESF

Factory
Model

Software
Factory

Figure 1. Producing an instance of a software factory.

Organization. Process modeling plays an important role in the
definition of the requirements for the factory support environment.
The users are placed in work contexts that form parts of explicit
models of the software production process. The work contexts are in-
tended to support the work of individuals, to increase predictability
of the process, and to bridge between the computerized and non-
computerized parts of tasks.

The software processes describe the working procedures sup-
ported in the factory. Part of this description deals with the cus-
tomization of the factory support environment to fit the organization
and projects. The process models cover the relationships between
roles, tasks, activities and tools, and the task descriptions serve as
templates for specific tasks to be executed during a project.

The dominant traits of the organizational design are: a deter-
mined effort to formalize the operating work, to link automated and
non-automated work into coherent processes and thereby to stan-

IMPROVING ENVIRONMENTS

416

dardize the work processes. The organizational design consists of an
elaborate process design focusing on tasks and tools, and the aim is
to embed the software process in tools. Like Japan’s Industrialized
Factory this organizational design corresponds to Mintzberg’s Ma-
chine Bureaucracy (Mintzberg 1983). However these two approaches
differ significantly in strategy: the Industrialized Factory seeks to
enforce standardization mainly via work procedures, whereas the
Generic Software Factory uses automated tools.

Implementation of improvement. Management of the im-
provement effort is not explicitly described in the Eureka Software
Factory. Rather, adopting the factory support environment from the
Generic Software Factory to the organization is viewed as an atomic
process. The main emphasis is on establishing technological infra-
structures, and of Cusumano’s nine implementation elements only a
few play a prominent role in this approach: product-process focus
and segmentation; tailored and centralized process R&D; systematic
reusability; computer-aided tools and integration.

I.3. The experience-based component factory (US)
The third idea to be considered is a North-American approach to the
experience-based component factory (Basili 1989, 1993; Basili et al.
1992).

Context. The Experience-based Component Factory is devel-
oped at the Software Engineering Laboratory which has existed
since 1976 as a consortium between NASA/Goddard Space Flight
Center, University of Maryland, and Computer Science Corporation
(Basili 1993). Its goals are to “(1) understand the software process in
a production environment, (2) determine the impact of available
technologies, and (3) infuse identified/refined methods back into the
development process”. The approach has been to experiment with
new technologies in a production environment, to extract and apply
experiences and data from the experiments, and to measure the im-
pact with respect to cost, reliability, quality etc.

Objective. It is assumed that significant changes are needed
in the way software is produced. Software organizations need to in-
crease both quality and productivity, and a solution is summarized
in three goals: “improve the effectiveness of the process, reduce the
amount of rework, and reuse life-cycle products” (Basili et al. 1992).

Strategy. The strategy, continuos improvements based on re-
use of prior experiences and flexible automation, consists of three

SOFTWARE FACTORIES

417

key elements: an improvement paradigm, a dedicated experience
organization, and a contingency approach.

An improvement paradigm (plan, execute, analyze, synthesize)
is applied to integrate efforts on the organizational and project level
(Basili et al. 1992): Projects are planned explicating goals and util-
izing packaged experiences from previous projects; projects are then
executed and controlled by measurement; subsequently the results
are analyzed and compared with the planned goals; finally,
experiences are synthesized and packaged in the form of new or up-
dated models to be used in future projects.

A dedicated experience organization is formed because reuse of
experiences requires separate resources to create and maintain re-
usable objects (Basili 1993). The activities are thus divided into two
separate logical and physical organizations: the project organization
whose focus is delivery of software supported by packaged reusable
experiences, and an experience factory whose focus is to support
projects by providing reusable experiences.

A contingency approach is taken because “every environment
has its characteristics and pursues its goals by means different from
any other one” (Basili et al. 1992), and because “the organization
must be able to change its configuration” (Basili et al. 1992). The ar-
chitecture of the Experience-based Component Factory is therefore
described on different levels of abstraction: the reference level
(representing agents with specified functions), the conceptual level
(representing flows of data and control between agents), and the
implementation level (defining the actual technical and organiza-
tional implementation). The reference architecture is used to char-
acterize established initiatives and to describe possible, alternative
approaches, e.g. a clustered architecture in which every develop-
ment takes place in the project organization versus a detached ar-
chitecture in which no development, but only design and integra-
tion, takes place in the project organization.

Organization. The organization of the Experience-based
Component Factory is illustrated in figure 2. The project organiza-
tion is primarily responsible for the planning and development ac-
tivities; the focus is on problem solving. The experience factory is
primarily responsible for the learning and technology transfer ac-
tivities; focus is on understanding solutions and packaging experi-
ences for reuse. This organization “recognizes the fact that im-
proving software process and product requires the continual accu-

IMPROVING ENVIRONMENTS

418

mulation of evaluated experiences (learning), in a form that can be
effectively understood and modified (experience models), stored in a
repository of integrated experience models (experience base), that
can be accessed/modified to meet the needs of the current project
(reuse)” (Basili 1993).

The experience factory is divided into several sub-organiza-
tions, each dedicated to a particular kind of experience. A first divi-
sion results in a number of domain factories whose purpose it is to
identify, collect, organize, and provide experiences related to a spe-
cific application domain, e.g. production control systems or financial
systems. A further subdivision of the experience factory is the com-
ponent factory whose purpose it is to develop and package reusable
software components. A software component is any product in the
software life-cycle, such as: code components, designs, collections of
code components and designs, and documents in general. A reusable
software component is a collection made of software components
packaged with everything that is needed to reuse and maintain it.
This includes the code, its functional specification, its context, a full
set of test cases, a classification according to a certain taxonomy,
and a reuser’s manual (Basili et al. 1992).

The dominant traits of the organizational design are: project-
organized units are responsible for planning and development.

factory

Execute

Plan Domain

modification . . .

tailorable processes, tools,

project analysis, process

similar projects

Component
factory

products, models . . . from

Project organization Experience factory

project characteristics

data, lessons learned . . .

Figure 2. The organization of the Experience-based Component
Factory (Basili 1993).

SOFTWARE FACTORIES

419

These units receive support from specialist units. Focus is on
learning, training, and technology transfer. In other words focus is
on skills and collective experience rather than procedures as the
preferred way to coordinate work. All in all this organizational de-
sign corresponds to what Mintzberg terms a Professional Bureauc-
racy (Mintzberg 1983).

Implementation of improvement. Practical use of the Ex-
perience-based Component Factory concept requires an incremental
management approach. The starting point is the present operation
in the software organization. A unique experience factory is de-
signed and implemented as an instantiation of the reference archi-
tecture reflecting the specific characteristics of the organization in
question. The factory is used to collect data about strengths and
weaknesses, to set baselines for improvements, to establish experi-
ments with new techniques and methods, and to collect experiences
to be reused in new projects. In this way, the organization starts to
understand the relationship between certain process characteristics
and product qualities. As the software processes are changed new
baselines can be established identifying new possible improvements
(Basili 1993). This approach puts a heavy emphasis on continuous
improvement and points to a wide range of implementation efforts
in order to facilitate this. Although all of Cusumano’s implementa-
tion elements can be identified, the main focus here is on software
process.

I.4. The mature software organization (US)
Finally, we will review a software factory-like concept, the mature
software organization, defined by the Capability Maturity Model
(CMM).

Context. The CMM was initiated by the US Department of
Defense’s need to evaluate software contractors. There had been too
many failing systems and software project disasters. To evaluate
software contractors a questionnaire was developed, and based on
experiences from using this questionnaire and based on industry
feedback and involvement the Software Engineering Institute de-
veloped the CMM, see figure 3 (Paulk et al. 1993a).

Objective. Based on the initial experiences from the contrac-
tor the objective is to create a framework for software process im-
provement to achieve a predictable, reliable, and self-improving
software development process that produces software of high quality

IMPROVING ENVIRONMENTS

420

(Paulk et al. 1993a). Predictable meaning cost estimates and sched-
ule commitments can be met, reliable meaning the capability of the
process is known, and self improving meaning that there is a con-
stant focus on improving the process, and that the knowledge and
abilities to improve are established. All this should be achieved
through attention to process (improvement) and not methods or
tools.

 Quality management
Process measurement and analysis

Initial (1)

Repeatable (2)
 Software configuration management
 Software quality assurance
 Software subcontract management
 Software project tracking and oversight
 Software project planning
Requirements management

Defined (3)

 Peer reviews
 Intergroup coordination
 Software product engineering
 Integrated software management
 Training program
 Organization process definition
Organization process focus

Managed (4)

 Process change management
 Technology change management
Defect prevention

Optimizing (5)

 Software quality management
 Quantitative process management

Figure 3. The Key Practice Areas in the Capability Maturity Model
(Paulk et al. 1993a).

SOFTWARE FACTORIES

421

Strategy. The strategy in CMM is to do stepwise improvements in
the software organization. The model defines which processes are
key in software development and defines the order of the improve-
ment of the processes. CMM has five maturity levels that describe
the development from a chaotic and problematic process to a man-
aged and optimizing process. Each level characterizes the extent to
which an organization's processes are explicitly defined, managed,
measured, controlled, and performed effectively.

Each maturity level is composed of key process areas. For ex-
ample, one of the key process areas for level 2 is software project
planning. There are 18 key process areas in all, each of these is de-
fined and discussed in great detail, and this essentially defines the
standards needed to reach a specific level of maturity (Paulk et al.
1993b). A key process area is a cluster of related activities that
when performed together collectively achieve a set of goals impor-
tant for establishing process capability at that maturity level. It is
defined in terms of goals for performing the key process area, com-
mitments that must be in place in order to be able to perform the
key process area, abilities that must be established for the area, ac-
tivities that are included in an area, measurement and analysis that
must be taken to determine the status and effectiveness of the ac-
tivities, and finally verification of implementations ensures that the
activities are performed in compliance with the process that has
been established for the area. The specifications of the key process
areas are generic which allows flexibility in actual implementations
in the organizations. This means that when areas are assessed, im-
plemented, or improved there is a need for professional judgment
and an understanding of what is appropriate for the specific organi-
zation. A key practice area can be implemented in an organization
and be compliant with the CMM, but it may still be possible to im-
prove the area and change the implementation.

Organization. The ideal organization as described by CMM
has a set of characteristics. In this organization software is devel-
oped in a disciplined manner in which planning and tracking of
software projects is stable and earlier successes are repeated. At the
project level, the projects’ processes are under the effective control of
a project management system, following realistic plans based on the
performance of previous projects. The software process is described
and consistent and both software engineering and management

IMPROVING ENVIRONMENTS

422

activities are stable and repeatable. Schedule, and functionality are
under control, and software quality is tracked.

The software process and the software product quality are pre-
dictable because they are measured and kept within measurable
limits. Trends in the process and product quality can be predicted
within the quantitative bounds of these limits and when the limits
are exceeded, action is taken.

At the organizational level, the process capability is based on a
common, organization-wide understanding of the activities, roles,
and responsibilities in a defined software process. The entire or-
ganization is focused on continuous process improvement and has
the means to identify weaknesses and strengthen the process pro-
actively, with the goal of preventing the occurrence of defects. Data
on the effectiveness of the software process is used to perform cost
benefit analyses of new technologies and proposed changes to the
organization's software process. Innovations that exploit the best
software engineering practices are identified and transferred
throughout the organization.

No matter on which CMM maturity level an organization is,
continuos improvement is a key concept in the CMM software fac-
tory. When the organization is committed to use the CMM and all
levels in the organization have been informed about the strategy
chosen, an appraisal of the organization must be conducted in order
to find out which processes are the most important to improve. This
appraisal involves questionnaires and interviews conducted in col-
laboration between consultants and an internal appraisal team. The
result of the appraisal is a number of recommendation on what to
improve and based on these recommendations management will de-
cide which areas to address.

To find ways to improve and to implement the improvements,
most CMM improvement efforts are organized in software engi-
neering process groups (Herbsleb et al. 1994). These groups manage
the improvement effort, they keep track of the improvement activi-
ties, and they support and facilitate ad-hoc process area working
groups. The ad-hoc groups consist of software engineers and others
involved in the software development projects and each group work
on implementing improvements in a single process area. A software
engineering process group is often mostly staffed by software project
members who work in the group for a period of, say, two years and
then return to work in software development projects (Fowler et al.

SOFTWARE FACTORIES

423

1990). When the organization believes that the committed process
problem areas have improved (typically after 18 to 36 month) a new
appraisal is conducted in order to find new areas of improvement
(Hayes et al. 1995; Paulk et al. 1993b).

The dominant traits of the organizational design have much in
common with the Experience-based Component Factory: project-or-
ganized units are responsible for planning and development, and
these units receive support from specialist units. The support units
have primary responsibility for training, change management,
quality assurance, and for the definition of a standard software
process in the organization. Furthermore the support units are re-
sponsible for learning from project experiences. Projects have pri-
mary responsibility for development, management, coordination, re-
views, defect prevention. This responsibility extends to adapting the
standard software process to the project. Like the Experience-based
Component Factory focus is here on skills and collective experience
rather than procedures as the preferred way to coordinate work.
Like the Experience-based Component Factory this organizational
design corresponds to Mintzberg’s Professional Bureaucracy (Mintz-
berg 1983). However these two approaches differ with respect to the
definition of specialized units: The Experience-based Component
Factory assigns detailed responsibilities to specialized units, where-
as the Mature Software Organization identifies a great number of
objectives and commitments to organizational functions rather than
named specialist units.

Implementation of improvement. Key elements in man-
aging the improvement process are continuos improvement, top
management commitment, identifying resistance in the organiza-
tion, and letting the people closest to the processes in question im-
prove those processes. In this approach we find a heavy emphasis on
stepwise improvement. The implementation efforts cover a wide
spectrum and all of Cusumano’s implementation elements can be
identified here. Like the Experience-based Component Factory the
main focus of this approach is on software process.

II. Comparison and discussion
In the next paragraphs the four software factory approaches are
compared and discussed. Table 1 (a & b) summarizes the compari-
son of the approaches.

IMPROVING ENVIRONMENTS

424

Industrial-
ized Factory
(Japan)

Generic
Factory
(Europe)

Experience-
based Com-
ponent Fac-
tory (US)

Mature Soft-
ware Organi-
zation (US)

I. Factory Yes Yes Yes No

Generic
concept

No Yes Yes Yes

II. Objective Increased
quality and
productivity of
development
and mainte-
nance.

Tailor-made
integrated
software
development
environments.

Better process
effectiveness,
less rework,
and more
reuse.

An effective,
predictable,
reliable and
self-improving
process.

III. Strategy Infrastruc-
tural
Combining
physical, or-
ganizational
and tool-based
infrastruc-
tures.

Tool-driven
Standardiza-
tion of compo-
nents and cus-
tomization of
processes and
components.

Continuos
Improvement
based on ex-
perience and
flexible auto-
mation.

Stepwise
Improvement
by moving up
process ma-
turity levels.

Metrics for
improvement

Yes No No Yes

Customized
project model

No Yes Yes Yes

Reuse of life-
cycle products

Yes No Yes No

Technology
focus

Yes Yes No No

Table 1(a). Similarities and differences between the four approaches.

II.1. Similarities and differences
Whereas the Mature Software Organization does not mention soft-
ware factory as a term, and the Experience-based Component Fac-
tory uses the term component factory, both the Generic Software
Factory approach and the Industrialized Software Factory approach
explicitly use the term software factory. The term has different
meanings in what it refers to, since the Mature Software Organiza-
tion, the Generic Software Factory, and the Experience-based Com-
ponent Factory all describe a generic concept, whereas the Industri-
alized Software Factory uses the term to refer to a specific instance
of a software factory: the Toshiba software factory.

SOFTWARE FACTORIES

425

The software factories have different objectives. The Mature
Software Organization and the Generic Software Factory aim at
creating a framework for improvement (based on different strate-
gies), whereas the Experience-based Component Factory has the
specific objective to improve process effectiveness, reduce rework
and reuse life-cycle products, and the Industrialized Software Fac-
tory has the objective to create tailor-made integrated software de-
velopment environments. All four software factories are, however,
unifying processes, tools, or architectures, even though only the In-

Industrial-
ized Factory
(Japan)

Generic
Factory
(Europe)

Experience-
based Com-
ponent Fac-
tory (US)

Mature Soft-
ware Organi-
zation (US)

IV. Organi-
zation

• Standard-
ized life-
cycle model

• Dedicated
organiza-
tional units.

• Process
model with
roles, tasks,
activities,
and tools.

• Task de-
scriptions
follow from
process
model.

• Separate
project orga-
nization for
problem
solving

• Separate ex-
perience fac-
tory for
learning and
technology
transfer.

• No specific
organiza-
tional model.

• Organiza-
tional re-
sponsibilities
specified

Structure Machine bu-
reaucracy
based on
standard work
procedures

Machine bu-
reaucracy
based on
automated
tools

Professional
bureaucracy
with named
specialized
units

Professional
bureaucracy
with identified
organizational
functions

Reuse of
process com-
ponents

Projects are
standardized

Yes Yes Yes

Competency
focus

Yes No Yes Yes

V. Imple-
mentation
of improve-
ment

(Quality
circles)

Not present Incremental
management.

Groups and
commitment
processes

Dedicated
improvement
organization

(Yes) No Yes Yes

Table 1(b). Similarities and differences between the four approaches.

IMPROVING ENVIRONMENTS

426

dustrialized Software Factory mentions this explicitly as an objec-
tive.

Another difference in the objectives is that the Industrialized
Software Factory and the Generic Software Factory explicitly aims
to improve tools and software development environments, whereas
the Experience-based Component Factory and the Mature Software
Organization both focus on development and improvement proc-
esses.

Concerning the proposed strategy we make three key observa-
tions. Firstly, the Mature Software Organization and the Experi-
ence-based Component Factory both rely on continuos improvement.
Secondly, the Industrialized Software Factory emphasizes physical
infrastructure, organizational measures, and an integrated tool-box
for the developers. Thirdly, the Generic Software Factory proposes
to develop components and production environments as part of
software factories together with standards and guidelines for soft-
ware components.

The Industrialized Software Factory and the Mature Software
Organization have metrics to track or support process improvement,
whereas the Generic Software Factory and the Experience-based
Component Factory have no metrics for software process improve-
ment. The Generic Software Factory, the Experience-based Compo-
nent Factory, and the Mature Software Organization all use cus-
tomized project models, whereas the Industrialized Software Fac-
tory does not, since all projects are standardized. Reuse of life-cycle
products are built into the strategy of the Experience-based Com-
ponent Factory and the Industrialized Software Factory, but is not
part of the strategy of the Generic Software Factory or the Mature
Software Organization. Finally, the Industrialized Software Factory
and the Generic Software Factory have a strong focus on technology.
The Experience-based Component Factory and the Mature Software
Organization do not focus on technology, but have a strong focus on
processes.

The Industrialized Software Factory, the Experience-based
Component Factory, and the Mature Software Organization all de-
scribe organizational units of the software factory. The Industrial-
ized Software Factory has dedicated organizational units for reuse
and quality improvements. The Experience-based Component Fac-
tory also have an organizational unit handling reuse, in addition to
other dedicated organizational learning units. The Mature Software

SOFTWARE FACTORIES

427

organization has the software engineering process group as a key or-
ganizational unit in the software factory together with ad-hoc
groups to improve specific key processes. The Generic Software
Factory, however, does not recommend any organizational units
within the software factory, since all handling of changes and im-
provements are placed in the generic software factory servicing all
other software factories.

The Industrialized Software Factory, the Experience-based
Component Factory, and the Mature Software Organization all have
a competency focus, acknowledging the need for addressing people
issues in a software factory, whereas the Generic Software Factory
does not address this issue. In the Industrialized Software Factory
all projects are standardized, but the other three factory approaches
compensate for differences between projects by having reuse of
process components build into the organization of the software
factory.

The Experience-based Component Factory and the Mature
Software Organization are the two factory approaches that put the
most emphasis on the implementation of improvement, and the
most emphasis on describing a dedicated improvement organization.
In the Experience-based Component Factory an incremental man-
agement approach is recommended, starting by understanding the
current state-of-the-art in the organization. In the Mature Software
Organization strong emphasis is put on management issues both in
the process of establishing the software factory and in organization
of the software factory. Software engineering process groups and
commitment processes are used and key to the Mature Software Or-
ganization management concept. The Industrialized Software Fac-
tory has quality circles, but the Generic Software Factory does not
suggest any guides or thoughts related to managing the process of
creating a software factory.

II.2. Strengths and weaknesses
This schematic highlighting of similarities and differences eluci-
dates some key distinguishing features between the four approaches
as presented in figure 4. The four approaches fall into two groups,
one focusing on the creation of an infrastructure to support the
software process (the Industrialized Software Organization and the
Generic Software Factory), and another focusing on developing op-
timal software processes based on experience (the Experience-based

IMPROVING ENVIRONMENTS

428

Component Factory and the Mature Software Organization). The
key distinguishing features in the first group are: the Industrialized
Software Organization provides a specific model of the physical in-
frastructure and related organizational features; the Generic Soft-
ware Factory provides a model that can be used to generate a tech-
nological infrastructure customized to meet the requirements of a
specific software process. The key distinguishing features in the
second group are: the Experience-based Component Factory relies
on a continuous improvement strategy based on situational learn-
ing; the Mature Software Organization relies on a stepwise im-
provement strategy based on general process requirements.

Industrialized
Software

Organization

Generic
Software
Factory

Generic factory con-
cept emphasising
customized technolo-
gical infrastructure

Specific factory con-
cept emphasising
physical infrastruc-
ture and organization

Mature
Software

Organization

Experience-
based

Component
Factory

Stepwise improvement
emphasising a general
software process

Focus on
software
process

Focus on
infra-

structure

ment emphasising
Continuous improve-

situational learning

Figure 4. The key distinguishing features between the software
factories.

Based on this understanding we can evaluate the most important
strengths and weaknesses of each of the four approaches, see table
2. The major contributions from the Industrialized Software Factory
approach are first of all the highlighting of how dependent software
processes are upon having elaborate infrastructures, and the
insistence of viewing these infrastructure as a whole consisting of
physical, organizational, and technological elements. On the other
hand, this approach may nurture the illusion that complex organ-
izational issues can be managed through structural intervention.
The limited emphasis on the dependency upon the life-cycle model
and the cultural environment of the factory may furthermore lead to
the illusion that the approach has quite general applicability.

The Generic Software Factory approach points to the impor-
tance of powerful and tailorable technological infrastructures. The
elaborate focus on workbench features forms a major contribution to

SOFTWARE FACTORIES

429

the development of technological infrastructures for software facto-
ries. The strong and narrow focus on a technical solution and the
weak emphasis on managing its actual implementation in specific
settings do, however, support the illusion that technology is not only
a necessary but also a sufficient means for building and imple-
menting successful software factories for specific project require-
ments.

The Experience-based Component Factory highlights the im-
portance of process features for professional praxis and contributes
specifically to the organization of how to build reusable components
and how to facilitate incremental learning based on the experiences
gained in the organization. This approach, however, gives only
limited attention to infrastructural support and it is conservative in

Approach Strengths Weaknesses

Industrialized
Software
Factory

• Contemporary software
processes depend on elabo-
rate infrastructures

• A holistic view of infrastruc-
ture covering physical infra-
structure, organization and
technology

• Managing complex organiza-
tional issues primarily
through structural inter-
vention

• Applicability dependent on
life-cycle model and cultural
environment

Generic
Software
Factory

• Contemporary software
processes depend on elabo-
rate infrastructures

• Elaborate focus on work-
bench features

• Tailorable to specific process
models

• Managing complex organiza-
tional issues primarily
through structural inter-
vention

• Narrow focus on technology
at the expense of organiza-
tional and cultural conditions

Experience-
based
Component
Factory

• Professional praxis depends
primarily on process features

• Focus on reusable compo-
nents

• Incremental learning based
on experiences

• Limited attention to infra-
structural support

• Conservative
• Limited attention to imple-

mentation of improvement

Mature
Software
Organization

• Professional praxis depends
primarily on process features

• Provides managerial guid-
ance on prioritizing initia-
tives for any software process

• Stepwise enhancement add-
ing new process areas and
stabilizing existing ones

• Limited attention to infra-
structural support

• Abstract

Table 2. Strengths and weaknesses of the four approaches.

IMPROVING ENVIRONMENTS

430

the sense of mainly dealing with the existing organization with little
focus on future demands and opportunities. This may give an illu-
sionary belief that organization and learning is what matters when
building software factories, and that incremental learning in itself
will prepare the organization to deal with changing conditions.

Finally, the Mature Software Organization approach also
highlights the importance of process features. But in this approach
focus is on managerial guidance. The guidelines for incremental en-
hancement of the software process forms an important contribution
to the development of a professional praxis in software factories.
Like the Experience-based Component Factory this approach pays
little attention to infrastructural support and, specifically for this
approach, recommendations are given in an abstract and general
form with few guidelines for evaluating the effectiveness of a spe-
cific set of software processes. This may give way to the idealistic
illusion that process improvement is mainly a matter of managing
commitments within an organization.

Conclusion
The paper has discussed contrasting views on software factories by
providing a survey of software factory concepts, by highlighting
variations and differences in the underlying approaches, and by dis-
cussing relative strengths and weaknesses of different approaches
to professionalize software operations. Based on a comparison of
four well-known factory, or factory-like, approaches to professional-
ize software operations useful contributions and possible illusions
related to the idea of a software factory have been identified.

Although very different by nature and in contents the four ap-
proaches provide important contributions to professionalize and
mature software organizations. Building an effective and efficient
software organization requires a powerful combination of suitable
infrastructures, process features, and managerial guidelines. The
four approaches are important contributions towards this goal. At
the same time the approaches individually may lead to unfortunate
illusions. Learning from the relative strengths and weaknesses be-
tween the approaches may help us avoid becoming victims of these
illusions.

On a more general level, all four concepts signal a commitment
to efforts to enhance software operations above the level of individ-

SOFTWARE FACTORIES

431

ual projects, and—even though the approaches are limited in scope
and emphasis—they all integrate a variety of means into an ambi-
tious strategy. Still, the term software factory has the connotation
that software development and maintenance is comparable to mass-
production of industrial products, and arguably this is not the case.
In this respect, the mature software organization offers a rhetoric,
which signals the same level of commitment while being more in
line with the characteristics of our profession.

We agree with Cusumano that the challenge for software man-
agement is to find ways to “improve organizational skills—not just
in one project but across a stream of projects. To accomplish this,
however, and still meet the demands of customers, competitors, and
the technology itself, requires firms to balance two seemingly con-
tradictory ends: efficiency and flexibility” (Cusumano 1991, p. 5).
The inherent complexities involved in developing and maintaining
software suggest that the appropriate organizational form for a
software operation is the professional bureaucracy in which profes-
sional competence is viewed as more important than standardized
procedures and advanced technologies. Software managers are
therefore advised to view the professional bureaucracy as the ideal
and dominant form while elements of the machine bureaucracy and
other organizational forms (Mintzberg 1983) should be treated as
supplements to cope with variations, to increase efficiency whenever
industrialized procedures are feasible, and to allow for greater flexi-
bility in unique situations where existing procedures and experi-
ences are insufficient. For this reason any long-term management
commitment to improve software operations should fundamentally
be based on approaches focusing on software processes, see figure 4,
and view approaches focusing on infrastructure as supplementary
strategies that can help develop environments in which processes
and professionals are better supported.

Acknowledgments
Part of this work was funded by the Danish National Center for IT
Research, the Danish Natural Science Research Council (Grant No.
9400911), and the Danish Academy of Technical Sciences (Grant no.
EF 516). We also wish to thank our colleagues Lars Bendix, Lars Bo
Eriksen, Birgitte Krogh, and Peter Axel Nielsen for valuable discus-
sions.

IMPROVING ENVIRONMENTS

432

References
Basili, V. R. (1989): The Experience Factory: Packaging Software Experi-

ence. Proceedings of the 14th Annual Software Engineering Workshop,
NASA Goddard Space Flight Center, Greenbelt MD 20771.

Basili, V. R., G. Caldiera & G. Canone (1992): A Reference Architecture for
the Component Factory. ACM Transactions on Software Engineering
and Methodology.

Basili, V. R. (1993): The Experience Factory and its Relationship to Other
Improvement Paradigms, 4th European Software Engineering Confer-
ence - ESEC ‘93. Springer-Verlag.

Bemer, R. W. (1969): Position papers for Panel Discussion: The Economics
of Program Production. In A. J. H. Morrell (Ed.): Information Processing
68. Amsterdam: North-Holland.

Cusumano, M. A. (1991): Japan’s Software Factories. Oxford University
Press.

Cusumano, M. A. (1989): The Software Factory: A Historical Interpretation.
IEEE Software, March.

Fernström, C. (1991): The Eureka Software Factory: Concepts and Accom-
plishments. In A. Lamsweerde et al. (Eds.): Proceedings of the 3rd Euro-
pean Software Engineering Conference. Lecture Notes in Computer Sci-
ence No. 550: Springer-Verlag.

Fernström, C., K-H. Närfelt & L. Ohlsson (1992): Software Factory Princi-
ples, Architecture, and Experiments. IEEE Software, March.

Fowler, P. & S. Rifkin (1990): Software Engineering Process Group Guide
(CMU/SEI-90-TR-24). Software Engineering Institute, Carnegie Mellon
University.

Hayes, W. & D. Zubrow (1995) : Moving on Up: Data and Experience Doing
CMM-Based Software Process Improvement (CMU/SEI-95-TR-008).
Software Engineering Institute, Carnegie Mellon University.

Herbsleb, J., A. Carleton et al. (1984): Benefits of CMM-Based Software
Process Improvement: Initial Results (CMU/SEI-94-TR-013). Software
Engineering Institute, Carnegie Mellon University.

Matsumoto, Y. (1981): SWB System: A Software Factory. In H. Hunke (Ed.):
Software-Engineering Environments. Amsterdam: North-Holland.

Matsumoto, Y. (1987): A Software Factory: An Overall Approach to Soft-
ware Production, In P. Freeman (Ed.): Software Reusability, IEEE.

McIlroy, M. D. (1969): Mass-Produced Software Components. In Software
Engineering: Reports on a Conference Sponsored by NATO Science
Committee. Brussels.

SOFTWARE FACTORIES

433

Mintzberg, H. (1983): Structures in Fives: Designing Effective Organiza-
tions. Prentice-Hall.

Nilsson, E. G. (1990): CASE Tools and Software Factories. In B. Steinholz et
al. (Eds.): Lecture Notes on Computer Science. Berlin: Springer-Verlag.

Paulk, M. C., B. Curtis, M. B. Chrissis & C. V. Weber (1993a): Capability
Maturity Model for Software (Version 1.1) (SEI/CMU-93-TR-24). Soft-
ware Engineering Institute, Carnegie Mellon University.

Paulk, M. C., C. V. Weber, S. M. Garcia, M. B. Chrissis & M. Bush (1993b):
Key Practices of the Capability Maturity Model, Version 1.1 (CMU/SEI-
93-TR-25). Software Engineering Institute, Carnegie Mellon University.

	star17 comment: * Published as: The Software Factory: Contributions and Illusions. I. Aaen, P. Bøttcher & L. Mathiassen. In: Proceedings of the Twentieth Information Systems Research Seminar in Scandinavia, Oslo, 1997.

