
Comparing Agent-Oriented Methodologies

Khanh Hoa Dam
kdam@cs.rmit.edu.au

Michael Winikoff
winikoff@cs.rmit.edu.au

School of Computer Science and Information Technology
RMIT University, Melbourne, Australia

ABSTRACT
Numerous methodologies for developing agent-based sys-
tems have been proposed in the literature. However, their
application is still limited due to their lack of maturity.
Evaluating methodologies’ strengths and weaknesses plays
an important role in improving them and in developing the
“next-generation” of methodologies. This paper presents a
comparison of three prominent agent-oriented methodolo-
gies: MaSE, Prometheus and Tropos. It is performed
based upon an attribute-based framework which addresses
four major areas: concepts, modelling language, process and
pragmatics. The objectivity of the comparison is increased
by including inputs from the authors of the methodologies
using a questionnaire and by conducting an experimental
evaluation of the methodologies.

1. INTRODUCTION

“One of the most fundamental obstacles to large-
scale take-up of agent technology is the lack of
mature software development methodologies for
agent-based systems.” [14, page 11].

Even though many Agent Oriented Software Engineering
(AOSE) methodologies have been proposed, few are mature
or described in sufficient detail to be of real use. We believe
that the area of agent-oriented methodologies is maturing
rapidly and that the time has come to begin drawing to-
gether the work of various research groups with the aim of
developing the “next generation” of agent-oriented software
engineering methodologies.

A crucial step is to understand the relationship between
the various key methodologies, and particularly to under-
stand each methodology’s strengths, weaknesses, and do-
mains of applicability. In this paper we perform the com-
parison on several well-known methodologies. These were
selected since they (a) were described in more detail (e.g.
journal paper rather than a conference paper); and (b) were
perceived as being significant by the agent community. An-
other important factor was whether the methodology had
been developed over an extended time period based on feed-
back from users other than the developers of the methodol-
ogy. Based on these criteria we chose the five1 methodologies

1We were limited to choosing five methodologies since we
had that many summer studentships. This prevented us

Copyright is held by the author/owner.
ACM 0-89791-88-6/97/05.

Gaia [26, 27], MESSAGE [4, 3], MaSE [8, 7], Prometheus [16,
17, 18, 19] and Tropos [1, 11]. However due to space limita-
tions only MaSE, Prometheus and Tropos are presented
in this paper2.

In section 2, we briefly introduce these methodologies.
Since it is impossible to accurately summarise a detailed
methodology in a single page we attempt to give a flavour
of each methodology, and to outline the process and nota-
tions used. We refer the reader to original sources for further
details on each methodology.

We then (section 3) describe a framework for comparing
AOSE methodologies and, in section 4, apply the framework
to compare the methodologies.

In doing this there are two key issues. Firstly, how can we
ensure that the framework is unbiased and complete (covers
all significant criteria); and secondly, how can we avoid the
comparison being affected by our biases? In particular, one
of the authors of this paper is also one of the developers of
the Prometheus methodology.

The first issue is addressed by basing the framework on
existing work in the comparison of Object-Oriented (OO)
methodologies. By including a range of issues that have been
identified as important by a range of authors we avoid bias-
ing the comparison by including only issues that we consider
important. The second issue we address by having others do
the assessment of each methodology. Specifically, for each
methodology we asked the authors of the methodology to
fill in a questionnaire assessing the methodology. We also
had students each develop designs for the same application
using different methodologies. We collected comments from
the students as they developed their application designs over
summer (Dec. 2002 – Feb. 2003) as well as asking them to
fill in the questionnaire. The aim of the questionnaire was
not to provide a statistically significant sample in order to
carry out a scientific experiment. This was not practical.
Rather, the aim was to avoid any particular bias by having
a range of viewpoints.

The experimental application was a Personal Itinerary
Planner System (PIPS). Its main goal is to assist a traveller
in finding activities. Suppose you are visiting an unfamil-
iar city and have nothing planned on a weekend or evening.
Rather than spend a day wondering aimlessly (or worse,
working in a hotel room), you access PIPS. After telling

from being able to compare all of the methodologies that
met the selection criteria.
2We did not receive questionnaire responses from the cre-
ators of Gaia which prevented us from selecting it as one of
the three methodologies covered in this paper.



PIPS where you are, when you are looking for things to do,
and what are your interests it responds with a number of
itineraries. An itinerary consists of one or more activities
such as eating at a restaurant, going to a show, visiting a lo-
cal attraction (e.g. zoo, aquarium, historic site, etc.). How-
ever it is not just a collection of activities. The itinerary
should meet constraints on time and space. Where an ac-
tivity is followed by another activity at a different location
they should be separated by a transport activity that takes
the user from the location of the first activity to the location
of the second.

2. THE METHODOLOGIES

2.1 MaSE
The goal of Multiagent Systems Engineering (MaSE) [8] is

to provide a complete-lifecycle methodology to assist system
developers to design and develop a multi-agent system. It
fully describes the process which guides a system developer
from an initial system specification to system implementa-
tion. This process consists of seven steps, divided into two
phases.

The MaSE Analysis stage includes three smaller process
steps. First, the Capturing Goals step guides the analysts
to identify goals and structure and represent them as a goal
hierarchy. The second step, Applying Use Cases, involves
extracting main scenarios from the initial system context or
copying them from it if they exist. These use cases are also
used to build a set of sequence diagrams (similar to UML
sequence diagrams). Refining Roles is the final step of the
Analysis phase where a Role Model and a Concurrent Task
Model are constructed. The Role Model describes the roles
in the system. It also depicts the goals which those roles are
responsible for, the tasks that each role performs to achieve
its goals and the communication path between the roles.
Tasks are then graphically represented in fine-grained detail
as a series of finite machine automata in the Concurrent
Task Model.

The first step of the Design Phase is called “Creat-
ing Agent Classes”. The output of this step is an Agent
Class Diagram which describes the entire multi-agent sys-
tem. The agent class diagram shows agents and the roles
they play. Links between agents show conversations and
are labelled with the conversation name. For example, in
figure 1 the agent AccountWatcher comprises two roles (Ac-
countManager and AccountVerifier) and it converses with
the UserInterface agent type. The details of the conversa-
tions are described in the second step of the design phase
(“Constructing Conversations”) using communication class
diagrams. These are a form of finite state machine. The
third step of the Design stage is Assembling Agent Classes.
During this step, we need to define the agent architecture
and the components that build up the architecture. In terms
of agent architecture, MaSE does not dictate any particu-
lar implementation platform. The fourth and final step of
the design phase is System Design. It involves building a
Deployment Diagram which specifies the locations of agents
within a system.

MaSE has extensive tool support in the form of agentTool
[7]. Its latest version 2.03 implements all seven steps of
MaSE. It also provides automated support for transforming

3http://www.cis.ksu.edu/∼sdeloach/ai/agentool.htm

Figure 1: PIPS agent class diagram (extracted from
the PIPS design documentation produced by Yenty
Frily using agentTool)

analysis models into design constructs.

2.2 Prometheus
The Prometheus [16, 17, 18, 19] methodology is a detailed

AOSE methodology that is aimed at non-experts. It has
been successfully taught to and used by undergraduate stu-
dents. Prometheus consists of three phases: system specifi-
cation, architectural design and detailed design.

The first phase of Prometheus, the system specification
phase, involves two activities: determining the system’s en-
vironment, and determining the goals and functionality of
the system. The system’s environment is defined in terms of
percepts (incoming information from the environment) and
actions (the means by which an agent affects its environ-
ment). In addition external data is defined. Defining the
system’s functionality is done by identifying goals, identify-
ing functionalities that achieve these goals, and by defining
use case scenarios. Use case scenarios describe examples of
the system in operation. A typical scenario includes a se-
quence of steps depicting incoming percepts, messages sent
and the activities and actions. The development of goals,
functionalities and use case scenarios is usually iterative.
Each of the concepts is captured using a descriptor form.

The second stage, architectural design, involves three
activities: defining agent types, designing the overall sys-
tem structure, and defining the interactions between agents.
Agent types are derived by grouping functionalities. The
choice of grouping is guided by consideration of coupling
and cohesion which are identified with the aid of the data
coupling diagram and agent acquaintance diagram. Each
identified agent type is described using an agent descriptor
which describes the lifecycle of this agent type (how and
when it is initialized and destroyed), its functionalities, the
data it uses and produces, its goals, the events it should
respond to, its actions and the other agent types that it in-
teracts with. The system’s structure is captured in a system
overview diagram, arguably the single most important de-
sign artifact in Prometheus. The system overview diagram
provides the designers and implementers a general picture
of how the system as a whole will function. It shows the
agent types, the communication links between them, and



ActivityFinder

FindActivityActivityFound

ActivitiesDB

ItineraryPlanner

RequestItinerary

TripPlanned

ItineraryPlanned

PlanTrip

UserDB

LocationTracker

TrackEndLocation

TrackStartLocation
EndLocationTracked

StartLocationTracked

LocationDB

ServiceAssistant

ChangePassword

CreateProfile

DeleteProfile

Login

Logout

SelectItinerary

SubmitRequest

UpdateInterest

DisplayFarewell

DisplayItinerarySet

DisplayItinerary DisplayMainMenu

InformAccessDenied

InformInvalidPassword

InformUnmatchedPassword

NotifyExistingID

NotifyProfileCreated

NotifyProfileDeleted

NotifyUnknownUser
UsersList

TripPlanner TripDB

Figure 2: PIPS System Overview (extracted from
the PIPS design documentation produced by Robert
Tanaman using the Prometheus Design Tool (PDT))

data. It also shows the system’s boundary and its environ-
ment (actions, percepts, and external data). An example
of PIPS’s system overview diagram is shown in Figure 2.
Whereas the system overview diagram captures the static
structure of the system, interaction protocols capture the
dynamic behaviour of the system by defining the intended
valid sequences of messages between agents. The interaction
protocols are developed from interaction diagrams which in
turn are based on the scenarios.

The internals of each agent and how it will accomplish
its tasks within the overall system are addressed in the de-
tailed design phase. It focuses on defining capabilities,
internal events, plans and detailed data structure for each
agent type identified in the previous step. Firstly, an agent’s
capabilities are depicted via a capability descriptor which
contains information such as which events are generated and
which events are received. The capability descriptor also in-
cludes a description of the capability, details involving inter-
actions with other capabilities and references to data read
and written by the capability. Secondly, at a lower level of
detail, there are other types of descriptors: individual plan
descriptors, event descriptors, and data descriptors. These
descriptors provide the details so that they can be used in
the implementation phase. The detailed design phase also
involves constructing agent overview diagrams. These are
very similar to the system overview diagram in terms of
style but give the top level view of each agent’s internals
rather than the system as a whole. Agent overview dia-
grams, together with the capability descriptors, provides a
high level view of the components within the agent internal
architecture as well as the their connectors (interactions).
They show the top level capabilities of the agent, the flow
of tasks between these capabilities and data internal to the
agent.

Prometheus is supported by two tools. The JACK Devel-
opment Environment (JDE), developed by Agent Oriented
Software (www.agent-software.com) includes a design tool
that allows overview diagrams to be drawn. These are linked

with the underlying model so that changes made to dia-
grams, for example adding a link from a plan to an event,
are reflected in the model and in the corresponding JACK
code. The Prometheus Design Tool (PDT) provides forms
to enter design entities. It performs cross checking to help
ensure consistency and generates a design document along
with overview diagrams. Neither PDT nor the JDE cur-
rently support the system specification phase.

2.3 Tropos
Tropos [1, 11] is an agent-oriented software development

methodology created by a group of authors from various
universities in Canada and Italy. One of the significant dif-
ferences between Tropos and the other methodologies is its
strong focus on early requirements analysis where the do-
main stake-holders and their intentions are identified and
analysed. This analysis process allows the reason for devel-
oping the software to be captured. The software develop-
ment process of Tropos consists of five phases: Early Re-
quirements, Late Requirements, Architectural Design, De-
tailed Design and Implementation.

Early Requirements: The requirements phase of Tro-
pos is influenced by Eric Yu’s i* modelling framework [28].
Tropos uses the concept of actor and goals to model the
stake-holders in the target domain and their intentions re-
spectively. Tropos divides goals into two different types.
Hardgoals eventually lead to functional requirements whilst
softgoals4 relate to non-functional requirements. There are
two models that represent goals and actors at this point in
the methodology. First, the actor diagram depicts the stake-
holders and their relationship in the domain. The latter are
called “social dependencies” that reflect how actors depend
on one another for goals to be accomplished, plans to be
executed, and resources to be supplied. Second, the goal
diagram shows the analysis of goals and plans with regard
to a specific actor who has the responsibility of achieving
them. Goals and plans are analysed based upon several rea-
soning techniques as proposed by the methodology such as:
means-end analysis, AND/OR decomposition, and contribu-
tion analysis. These techniques help the analysts structure
the system’s goals, identify softgoals, plans and resources
providing the means for accomplishing a goal, and capture
goals that promote or interfere with the fulfilment of other
goals.

Late Requirements: This phase involves extending the
models which were created in the previous step. The im-
portance of this stage is the modelling of the target system
within its environment. The system-to-be is modelled as one
or more actors. Its interdependencies with other actors in
the models contribute to the accomplishment of stake-holder
goals. Therefore, these dependencies define the target sys-
tem’s functional and non-functional requirements. Figure 3
show the dependency of Tourism Commission on PIPS to
provide information (hard goal). It also requires a usable
PIPS (softgoal). These goals are then decomposed into sub-
goals. For instance, the goal “provide information” is ful-
filled by the composite achievement of two sub-goals “search
information” and “generate output”. The subgoal “search
information” in turn has several sub-goals such as “access to
tourism database”, and “access to user’s records”. Addition-
ally, the positive contribution of other goals to the softgoal

4Softgoals are goals whose satisfaction conditions cannot be
precisely defined.



Tourism
Commission

PIPS

Easy to use

Provide
Information

PIPS Usable

Provide
Guidelines

Form
Practical
Itinerary

User-friendly
Interface

Simplicity

Form
Coherent

Plan

+

++
+

Access to
Tourism
Database

Access to
Transportation

Database

Access to
Weather
Database

Access to
User's Record

Search
Information Generate

Output

Figure 3: Goal Diagram – PIPS in connection with
Tourism Commission (re-drawn based on the PIPS
design documentation produced by Sindawati Hoe-
tomo)

“easy to use” is also shown. A “user-friendly interface” that
offers “simplicity” and provides guidelines promotes the ful-
filment of the goal “easy to use”.

Architectural Design: Tropos defines three steps which
system designers can apply to proceed through this phase.
At the first step, new actors are included and described by
an extended actor diagram. These new actors are derived
based on the choice of architectural style. They may exist
to fulfil non-functional requirements or to support sub-goals
decomposed in the previous steps. The second and third
steps respectively identify the capabilities and group them
to form agent types, where each agent types is formed by
joining some number of capabilities.

Detailed Design: The Tropos detailed design phase in-
volves defining the specification of agents at the micro level.
There are three different types of diagrams which the de-
signers need to produce to depict the capabilities, the plans
of agents and the interactions between them. Tropos uses
UML activity diagrams to represent capabilities and plans
at the detailed level. Plan diagrams are fine-grained rep-
resentations of each plan node in the capability diagrams.
The interaction between agents in the system is represented
by agent interaction diagrams. They are in fact AUML in-
teraction diagrams.

Implementation: Having finished the detailed design
stage, we can now move to the final step of Tropos, the Im-
plementation phase. Tropos chooses a BDI platform, specif-

ically JACK Intelligent Agents(TM) [2], for the implemen-
tation of agents. JACK provides five main language con-
structs: agents, capabilities, database relations, events and
plans. At this stage, developers need to map each concepts
in the design phase to the five constructs in JACK. Tropos
provides several guidelines and heuristics for mapping Tro-
pos concepts to BDI concepts and BDI concepts to JACK
constructs.

3. A COMPARISON FRAMEWORK
In this section, we briefly describe a methodology evalua-

tion framework within which the methodology comparison is
conducted. The framework consists of a set of criteria which
addresses not only classical software engineering attributes
but also properties which are uniquely found in AOSE. In
order to avoid using an inappropriate comparison framework
the properties in our framework are derived from a survey of
work on comparing AOSE methodologies [5, 15, 23, 24], and
more importantly on comparing OO methodologies [9, 10,
12, 21, 22, 25]. The comparison framework covers four ma-
jor aspects of each AOSE methodology: Concepts, Mod-
elling language, Process and Pragmatics. This frame-
work is adapted from a framework proposed in [9] for com-
paring Object-Oriented Methodologies. In addition to the
four above components, that framework considers two more
areas: Support for Software Engineering and Marketability.
For our framework, we have decided to address “Support
for Software Engineering” criteria in various places in the
above four major aspects. With regard to “Marketability”
issues, since all of our compared AOSE methodologies are
still being researched and developed we do not believe that
marketability criteria are applicable.

Concepts: Agent-oriented concepts are of great impor-
tance for agent-oriented methodologies in general and for
agent-oriented modelling languages in particular. Based
on the literature research, we have found a set of signifi-
cant agent-oriented concepts that are commonly addressed.
These include the definition of agents, their characteristics
such as autonomy, adaptability, mental notions (such as be-
liefs, desires and intention), the relationship and commu-
nication between agents, and other concepts such as goals,
agent roles and capabilities, as well as percepts, actions and
events. When reviewing each AOSE methodology’s defini-
tion of those agent-oriented concepts, we essentially look at
the extent to which the methodology supports the concept
or to which it supports the construction of agents that posses
the attribute.

Modelling language: If agent-oriented concepts are the
basis for any AOSE methodology, then the modelling lan-
guage for representing designs in terms of those concepts
is generally the core component of any software engineering
methodology. A typical modelling language consists of three
main components [10]: symbols (either graphical or textual
representation of the concepts), syntax and semantics. It
is important that the modelling language allows the system
under development to be modelled from different views such
as behavioural, functional and structural views [25]. As a re-
sult, by having a good modelling notation the methodology
effectively eases the complex tasks of requirement analysis,
specification analysis and design. Therefore, measuring the
quality of the modelling language of an AOSE methodology
plays an important part in our evaluation.

The criteria which assess the modelling language of each
methodology are categorised into two groups. Usability cri-
teria reflect usage requirements of a modelling language in
terms of providing a means for software developers to ex-
change their thoughts and ideas. These criteria basically
address the question of how easy the notation and the mod-
els are to understand and to use [21, 22]. They address
the complexity, clarity and understandability of a modelling
language. In addition we also assess whether the modelling
notation is adequate for expressing all the necessary con-
cepts and whether it is expressive, that is whether these
concepts are expressed in a natural and direct way.



The second group of criteria to assess a modelling lan-
guage is technical criteria. They involve the unambiguity
and consistency of a modelling language. Unambiguity
means that a constructed model can be interpreted unam-
biguously whereas consistency is a technical quality relat-
ing to the assistance of a modelling technique to the soft-
ware designer in guaranteeing that between representations,
no set of individual requirements is in conflict [25]. The
technical qualities of a modelling language also concern its
ability to support traceability. This is the ability to track
dependencies between different models and between models
and code.

Process: As discussed above, the modelling language is
considered as a mandatory part of any software engineer-
ing methodology. However, in constructing a software sys-
tem, software engineering also emphasizes the series of ac-
tivities and steps performed as part of the software life cy-
cle [9, 12, 25]. These activities and steps form the process
which assists system analysts, developers and managers in
developing software. According to [9], an ideal methodol-
ogy should cover six stages, which are enterprise modelling,
domain analysis, requirements analysis, design, implemen-
tation and testing. Methodologies which cover all aspects of
the system development are more likely to be chosen because
of the consistency and completeness they provide.

An important aspect in evaluating whether a methodol-
ogy covers a particular process step is the degree of detail
provided. It is one thing to mention a step (“at this point
the designer should do X”) and another thing to provide
a detailed description of how to perform X. Since design is
inherently about tradeoffs, detailed descriptions are usually
expressed using heuristics rather than algorithms, as well
as examples. Thus, in assessing support for process steps
we identify whether the step is mentioned, whether a pro-
cess for performing the step is given, whether examples are
provided, and whether heuristics are given. In addition,
it is necessary to consider which development contexts are
supported by the methodology. In particular, we need to
examine whether a particular AOSE methodology supports
legacy system integration. This criterion is important, espe-
cially for AOSE because, as emphasized in [13], one of the
key pragmatic issues which determine whether the agent-
oriented paradigm can be popular as a software engineering
paradigm is the degree to which existing software can be in-
tegrated with agents. In addition to heuristics, the availabil-
ity of estimating guidelines is essential in aiding the project
planning tasks. Hence, we also investigate whether the as-
sessed methodology provides estimating guidelines such as:
the estimating the costs, schedule, etc. of the developed
system.

Pragmatics: In addition to issues relating to notation
and process, the choice of an AOSE methodology depends
on the pragmatics of the methodology. This can be as-
sessed based on two aspects [15]: management and techni-
cal issues. Management criteria should consider the support
that a methodology provides to management when adopt-
ing it. They include the cost involved in selecting the new
methodology, its maturity and its effects on the current or-
ganization business practices [9, 15, 25]. There are differ-
ent types of cost associated with adopting the methodology
such as the cost of acquiring methodology and tool support,
and the required training to fully exploit the methodology.
The methodology maturity, on the other hand, concerns

the resources available to support the methodology (e.g.
documentation, training, consulting services, etc.), and the
availability of automated tools. In addition, the history of
the methodology’s use is considered so that a methodology
that has been used to create industrial strength applications
should be preferred over ones that have only been used to
develop small demonstration projects.

Differing from management issues, technical criteria look
at a methodology from another angle. They consider whether
the methodology is targeted at a specific type of software
domain such as information systems, real time systems or
component-based systems [15]. With regard to this issue,
the methodology that is applicable to a wide range of soft-
ware domains tends to be more preferred. Additionally,
technical evaluation considerations measure the methodol-
ogy’s support for designing systems that are scalable. It
means that the system should allow the incorporation of
additional resources and software components with minimal
user disruption.

4. COMPARING METHODOLOGIES
Based on the above comparison framework, we have devel-

oped a questionnaire5 which consists of around 60 questions
addressing the concepts, modelling language, process and
pragmatics of a methodology. The questionnaire was dis-
tributed to the authors of each AOSE methodology which
we have selected to compare (MESSAGE, Gaia, MaSE, Tro-
pos, and Prometheus). 12 responses (out of 16) have been
received.

In addition to obtaining evaluations from the authors of
the methodologies, we also had a number of students who,
over the summer, designed an agent application, each using
a different methodology. Each student gave us feedback on
their experience in understanding and using the methodol-
ogy, and also completed the questionnaire at the end of their
work. For each of the three methodologies both the creators
of the methodology responded to the questionnaire as did
the users (summer students). The results are summarised
in figure 4 and are discussed below.

Concepts: With regard to agent-oriented concepts, the
level of support for autonomy of all of the methodologies is
overall good (ranging from medium to high). Prometheus
& Tropos support very well the use of mental attitudes
(such as beliefs, desires, intentions) in modelling agents’ in-
ternals (medium to high) whereas MaSE provides weaker
support. The questionnaire also addresses the support for
pro-activeness and reactiveness, however it seems that these
two attributes are difficult to measure even though they
seem to be fairly well supported by all three methodolo-
gies (medium-high for MaSE and Prometheus, mostly high
for Tropos). In terms of support for concurrency, although
the ratings are mostly medium-high and varied consider-
ably, MaSE is probably best with its protocol analyser, and
Prometheus was rated as being one of the weakest6. Al-
though the methodologies all support cooperating agents,
none of them support teams of agents in the specific sense

5The questionnaire can be found at
http://yallara.cs.rmit.edu.au/∼kdam/Questionnaire/Quest-
ionnaire.html
6Although we should note that the handling of protocols
in Prometheus has been developed since the time of the
questionnaire.



MaSE Prometheus Tropos

Concepts &

Properties

Autonomy H/M/DK H/NA/H H/M/M
Mental attitudes L/M/H H/M/H H
Proactive H/M/H H/M/DK H
Reactive M H/M/DK H/L/DK
Concurrency H/M/H M/L/DK H/M/H
Teamwork H/M/H N/L/NA H/H/M
Protocols H M/H/M NA/M/M
Situated M/L/H H H
Clear concepts SA/A/A A/A/DA SA/A/N
Concepts A/N/SA N SDA/N/DA
overloaded
Agent-oriented SA/A/A SA SA/A/SA
Modelling &

Notation

Static+Dynamic SA/A/A SA/A/A N/A/A
Syntax defined A/A/SA SA/A/A SA/N/A
Semantics A/SA/SA A SA/A/A
defined
Clear notation A SA/A/A SA/A/N
Easy to use SA/A/A A/N/A SA/A/N
Easy to learn N/N/A SA/NA/SA SA/N/A
Different views N/N/A A/A/SA SA/A/N
Language SA/N/N A SA/A/N
adequate
& expressive
Traceability A/SA/SA A A/N/A
Consistency SA/A/SA SA/A/A /A/DA
check
Refinement SA/A/A SA SA/A/DA
Modularity SA/A/A SA/SA/A SA/A/N
Reuse N/SA/A N/A/N /A/DA
Hierarchical N/A/A SA/A/A SA/A/DA
modelling
Process

Requirements SPEH SPEH SPE
Architectural SPEH SPEH SPE
design
Detailed design SPEH SPEH SPE
Implementation SEH/SPE/S SPEH/S/n SE/SPE/SPEH
Testing & SPE/n/n SPEH/S/n n
Debugging
Deployment SE/SPE/SPEH n n
Maintenance n/SPE/n n n
Pragmatics

Quality N/DA/A A/N/N DA/A/
Cost estimation /DA/SA DA/DA/N DA/N/
Management /DA/SA SDA/N/ SA/A/
decision
apps 21+ 6-20 1-5
Real apps no no no
Used by yes yes yes/no/no
non-creators
Domain specific no no yes/no/no
Scalable /N/N N/A/N N/N/
Distributed /SA/SA SA/A/N N/A/

Figure 4: Comparing methodology’s properties, at-
tributes, process and pragmatics. Notation: L for
Low, M for medium, H for High, DK for Don’t
Know, SDA for Strongly Disagree, DA for Disagree,
NA for Not Applicable, N for Neutral, A for Agree,
SA for Strongly Agree, for no response. S for
Stage mentioned, P for Process given, E for Exam-
ples given, H for Heuristics given, n for none. The
first two entries in each column are the developers of
the methodology, the third is the student. A single
entry in the column indicates that all three answers
agreed.

of [6]. Both MaSE and Prometheus model the dynamic as-
pects of the system and handle protocols well. Tropos does
not provide strong support for protocols, or for modelling
the dynamics of the system except for some support at the
detailed design level. According to the questionnaire, the
concepts used in the methodologies tend to be clearly ex-
plained and understandable. However, the student who used
Prometheus responded that there was some confusing ter-
minology such as the distinction between percept, incident,
trigger, and event. All three methodologies were perceived
as being clearly agent-oriented.

Modelling Language: Overall, the responders felt that
the methodologies’ notations were clear and reasonably well
defined (syntax/semantics) and fairly easy to use. Tropos
was an interesting case: there was disagreement on whether
the concepts were clear, and whether the notation was clear
and easy to use; furthermore, there was disagreement on
whether the syntax was defined, but oddly, there was con-
sensus that the semantics were defined. Although one re-
spondent felt strongly that MaSE’s notation was adequate
and expressive, the other two respondents disagreed (neu-
tral). MaSE also does not claim to support different views
(neutral from both creators). To some extent, the modelling
language of all the methodologies supports traceability, i.e.
the ability to track dependencies between different models.
In terms of consistency checking, the level of support differs
between methodologies. MaSE and Prometheus support it
well whereas Tropos does not appear to support it. Refine-
ment, modularity, and hierarchical modelling are generally
well-supported (although there was disagreement from the
student using Tropos) however reuse is not well handled by
any of the methodologies.

Overall, the students had a very good impression of the
notation of all the methodologies. For instance, Prometheus
was highly appreciated, and the system overview diagram
in particular was found to be useful. The students also
reported some minor issues. For example, the Capability
Diagram in Tropos is hard to draw since it is presented dif-
ferently in [1] and [11]. There are some cases where the
amount of text on arcs in the MaSE’s concurrent diagrams
makes them hard to read.

Process: From the software development life-cycle point
of view, all of the methodologies cover the requirements,
architectural design and detailed design. The students’ re-
sponses to these phases of the three methodologies are also
positive. They all said that the analysis stage of the method-
ology they had used was well described and provided useful
examples with heuristics. This helped them to shift from
object-oriented thinking to agent-oriented. The implemen-
tation phase is, surprisingly, not well supported; for ex-
ample Tropos briefly explains that the concepts developed
during design map to JACK constructs but does not pro-
vide a detailed process, heuristics, examples, or a discussion
of the issues. Only MaSE and Prometheus mention test-
ing/debugging. It is unclear to what extent MaSE supports
it, while Prometheus’ support is part of a research project
[20] not yet integrated into tools for use by developers. Only
MaSE discusses deployment and the level of support is un-
clear. Only one respondent (for MaSE) indicated any sup-
port for maintenance.

Pragmatics: As we have mentioned earlier, the pragmat-
ics of a methodology plays a very important role in deter-
mining its applicability in industry as well as in academia.



In the questionnaire we asked the authors who the intended
audiences for the methodology are. MaSE and Prometheus
target undergraduate and industry programmers, whereas
Tropos is aimed at experts. Furthermore, to measure how
complex a methodology is to users, we used UML (Uni-
fied Modelling Language) and RUP (Rational Unified Pro-
cess) as a benchmark. However, it is not clear that there
is a consensus on the perceived complexity of UML+RUP,
and so the answers to this question didn’t allow any strong
conclusions to be drawn. Regarding the availability of re-
sources supporting the methodologies, most of them are in
the form of conference papers, and journal papers or tuto-
rial notes. None of the methodologies are published as text
books. None of the methodologies seem to address issues
such as quality assurance, or cost estimating guidelines. Al-
though one respondent indicated that Tropos provides some
support for decision making by management, e.g. when to
move between phases, we do not agree with this assessment.

The availability of tool support also varies. MaSE and
Prometheus are well supported with agentTool (MaSE) and
JDE and PDT (Prometheus). Despite some minor issues,
the use of agentTool really helped the student in drawing
diagrams, checking model consistency and especially semi-
automatically transforming analysis models to design con-
structs. PDT was also described by the student using it as
being quite useful. Tropos has only weak tool support (a
diagram editor). Although we attempted to determine how
much “real” use (as opposed to student projects, demonstra-
tors etc.) had been made of each methodology, it was not
clear from the responses to what extent each methodology
had been used, who had used the methodology, and what it
had been used for.

5. CONCLUSION
We presented a comparison of three prominent method-

ologies. Overall, all three methodologies provide a reason-
able support for basic agent-oriented concepts such as au-
tonomy, mental attitudes, pro-activeness, reactiveness, etc.
They all are also regarded by their developers and the stu-
dents as clearly agent-oriented. In addition, the notation of
the three methodologies is generally good. Regarding the
process, all the methodologies provide examples and heuris-
tics to assist developers from requirements gathering to de-
tailed design. Implementation was supported to some de-
gree by all methodologies whereas testing/debugging and
maintenance are not clearly well-supported by any method-
ology. Additionally, some important software engineering
issues such as quality assurance, estimating guidelines, and
supporting management decisions are not supported by any
of the methodologies.

5.1 Related Work
There has not been much work in comparing agent-oriented

methodologies. Onn Shehory and Arnon Sturm [23] per-
formed a feature-based evaluation of several AOSE method-
ologies. Their criteria included software engineering related
criteria and criteria relating to agent concepts. In another
paper [24] they used the same techniques in addition to a
small experimental evaluation to perform an evaluation of
their own Agent Oriented Modelling Techniques (AOMT).
This work suffers from subjectivity in that the criteria they
identified are those that they see as important and, natu-
rally, AOMT focuses on addressing these criteria.

A framework to carry out an evaluation of agent-oriented
analysis and design modelling methods has been proposed
by Cernuzzi and Rossi [5]. The proposal makes use of feature-
based evaluation techniques but metrics and quantitative
evaluations are also introduced. The significance of the
framework is the construction of an attribute tree, where
each node of the tree represents a software engineering cri-
terion or a characteristic of agent-based system. Each at-
tribute is assigned with a score and the score of attributes
on the node is calculated based on those of their children.
They have applied that framework to evaluate and compare
two AOSE methodologies: the Agent Modelling Techniques
for Systems of BDI (Belief, Desire and Intention) Agents
and MAS-CommonKADS.

In [15] O’Malley and DeLoach propose a number of crite-
ria for evaluating methodologies with a view to allowing or-
ganisations to decide whether to adopt AOSE methodologies
or use existing OO methodologies. Although they performed
a survey to validate their criteria, they do not provide de-
tailed guidelines or a method for assessing methodologies
against their criteria. Their example comparison (between
MaSE and Booch) gives ratings against the criteria without
justifying them. Their work is useful in that it provides a
systematic method of taking a set of criteria, weightings for
these criteria (determined on a case by case basis), and an
assessment of a number of methodologies and determining
an overall ranking and an indication of which criteria are
critical to the result.

5.2 Further Work
So far, the three methodologies have been compared based

on the set of properties or attributes regarding concepts, no-
tation, process and pragmatics. In addition to this, we in-
tend to perform a structural comparison of the methodolo-
gies. This will involve examining their processes and models
in detail and looking at commonalities and differences. For
example, capturing goals and use cases is a feature of the
requirements phase of a number of methodologies and this
suggests that they are a useful activity. These and other
issues if evaluated in detail may contribute another step to-
wards developing the “next generation” of agent-oriented
methodologies.

Acknowledgements
We would like to thank Hiten Bharatbhai Ravani, Robert
Tanaman, Sindawati Hoetomo, Sheilina Geerdharry, and
Yenty Frily for their work over the summer with the dif-
ferent methodologies. We would like to thank Lin Padgham
for comments on a draft of this paper. We would also like
to acknowledge the support of Agent Oriented Software Pty.
Ltd. and of the Australian Research Council (ARC) under
grant CO0106934.

6. REFERENCES
[1] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia,

John Mylopoulos, and Anna Perini. Troops: An
agent-oriented software development methodology.
Technical Report DIT-02-0015, University of Trento,
Department of Information and Communication
Technology, 2002.

[2] Paolo Busetta, Ralph Rönnquist, Andrew Hodgson,
and Andrew Lucas. JACK Intelligent Agents -
Components for Intelligent Agents in Java. Technical



report, Agent Oriented Software Pty. Ltd, Melbourne,
Australia, 1998.

[3] G. Caire, F. Leal, P. Chainho, R. Evans, F.G. Jorge,
G. Juan Pavon, P. Kearney, J. Stark, and P Massonet.
Project p907, deliverable 3: Methodology for
agent-oriented software neginnering. Technical
Information Final version, European Institute for
Research and Strategic Studies in Telecommunications
(EURESCOM), 09 2001.

[4] Giovanni Caire, Francisco Leal, Paulo Chainho,
Richard Evans, Francisco Garijo, Jorge Gomez, Juan
Pavon, Paul Kearney, Jamie Stark, and Philippe
Massonet. Agent oriented analysis using
MESSAGE/UML. In Michael Wooldridge, Paolo
Ciancarini, and Gerhard Weiss, editors, Second
International Workshop on Agent-Oriented Software
Engineering (AOSE-2001), pages 101–108, 2001.

[5] L. Cernuzzi and G. Rossi. On the evaluation of agent
oriented modeling methods. In Proceedings of Agent
Oriented Methodology Workshop, Seattle, November
2002.

[6] P. R. Cohen and H. J. Levesque. Teamwork. Nous,
25(4):487–512, 1991.

[7] Scott A. DeLoach. Analysis and design using MaSE
and agentTool. In Proceedings of the 12th Midwest
Artificial Intelligence and Cognitive Science
Conference (MAICS 2001), 2001.

[8] Scott A. DeLoach, Mark F. Wood, and Clint H.
Sparkman. Multiagent systems engineering.
International Journal of Software Engineering and
Knowledge Engineering, 11(3):231–258, 2001.

[9] Berard E.V. A comparison of object-oriented
methodologies. Technical report, Object Agency Inc.,
1995.

[10] U. Frank. Evaluating modelling languages: relevant
issues, epistemological challenges and a preliminary
research framework. Technical Report 15,
Arbetsberichte des Instituts fuer Wirtshaftsinformatik
(Universitt Koblenz-Landau), 1998.

[11] Fausto Giunchiglia, John Mylopoulos, and Anna
Perini. The Tropos software development
methodology: Processes, Models and Diagrams. In
Third International Workshop on Agent-Oriented
Software Engineering, July 2002.

[12] S. Hong, G. Van den Goor, and S. Brinkkemper. A
formal approach to the comparison of object-oriented
analysis and design methodologies. In The
Twenty-Sixth Annual Hawaii International Conference
on System Sciences, pages 689–699, Hawaii, 1993.

[13] N. R. Jennings. An agent-based approach for building
complex software systems. Communications of the
ACM, 44(4):35–41, 2001.

[14] Michael Luck, Peter McBurney, and Chris Preist.
Agent technology: Enabling next generation
computing: A roadmap for agent-based computing.
AgentLink report, available from
www.agentlink.org/roadmap., 2003.

[15] S. A. O’Malley and S. A. DeLoach. Determining when
to use an agent-oriented software engineering. In
Proceedings of the Second International Workshop On
Agent-Oriented Software Engineering (AOSE-2001),
pages 188–205, Montreal, May 2001.

[16] Lin Padgham and Michael Winikoff. Prometheus: A
methodology for developing intelligent agents. In
Third International Workshop on Agent-Oriented
Software Engineering, July 2002.

[17] Lin Padgham and Michael Winikoff. Prometheus: A
pragmatic methodology for engineering intelligent
agents. In Proceedings of the OOPSLA 2002 Workshop
on Agent-Oriented Methodologies, pages 97–108,
Seattle, November 2002.

[18] Lin Padgham and Michael Winikoff. Prometheus:
Engineering intelligent agents. Tutorial notes,
available from the authors, October 2002.

[19] Lin Padgham and Michael Winikoff. Prometheus: A
brief summary. Technical note, available from the
authors, January 2003.

[20] David Poutakidis, Lin Padgham, and Michael
Winikoff. Debugging multi-agent systems using design
artifacts: The case of interaction protocols. In
Proceedings of the First International Joint
Conference on Autonomous Agents and Multi Agent
Systems (AAMAS’02), 2002.

[21] Michael Prasse. Evaluation of object-oriented
modelling languages: A comparison between OML
and UML. In Martin Schader and Axel Korthaus,
editors, The Unified Modeling Language – Technical
Aspects and Applications, pages 58–75.
Physica-Verlag, Heidelberg, 1998.

[22] J. Rumbaugh. Notation notes: Principles for choosing
notation. Journal of Object-Oriented Programming
(JOOP), 8(10):11–14, May 1996.

[23] Onn Shehory and Arnon Sturm. Evaluation of
modeling techniques for agent-based systems. In
Jörg P. Müller, Elisabeth Andre, Sandip Sen, and
Claude Frasson, editors, Proceedings of the Fifth
International Conference on Autonomous Agents,
pages 624–631. ACM Press, May 2001.

[24] A. Sturm and O. Shehory. Towards industrially
applicable modeling technique for agent-based systems
(poster). In Proceedings of International Conference
on Autonomous Agents and Multi-Agent Systems,
Bologna, July 2002.

[25] B. Wood, R. Pethia, L.R. Gold, and R Firth. A guide
to the assessment of software development methods.
Technical Report 88-TR-8, Software Engineering
Institute, Carnegie-Mellon University, Pittsburgh, PA,
1988.

[26] M. Wooldridge, N.R. Jennings, and D. Kinny. A
methodology for agent-oriented analysis and design. In
Proceedings of the third international conference on
Autonomous Agents (Agents-99), Seattle, WA, May
1999. ACM.

[27] M. Wooldridge, N.R. Jennings, and D. Kinny. The
Gaia methodology for agent-oriented analysis and
design. Autonomous Agents and Multi-Agent Systems,
3(3), 2000.

[28] E. Yu. Modelling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto,
Department of Computer Science, 1995.


