
A Framework For Designing, Modeling and Analyzing
Agent Based Software Systems

Krishna M. Kavi, The University of North Texas
Mohamed Aborizka, The University of Alabama in Huntsville

and David Kung, The University of Texas at Arlington

Abstract

The agent paradigm is gaining popularity because it
brings intelligence, reasoning and autonomy to software
systems. Agents are being used in an increasingly wide
variety of applications from simple email filter programs
to complex mission control and safety systems. However
there appears to be very little work in defining practical
software architecture, modeling and analysis tools that
can be used by software engineers. This should be
contrasted with object-oriented paradigm that is
supported by models such as UML and CASE tools that
aid during the analysis, design and implementation
phases of object-oriented software systems. In our
research we are developing a framework and extensions
to UML to address this need. Our approach is rooted in
the BDI formalism, but stresses the practical software
design methods instead of reasoning about agents. In
this paper we describe our preliminary ideas

Index Terms: Agent-Oriented programming, Object-
Oriented programming, BDI, UML

1. Introduction
There appears to be very little work in defining

software architecture, modeling and analysis tools that
can be used by software engineers. This should be
contrasted with object-oriented paradigm that is
supported by modeling languages such as UML and a
variety of CASE tools that aid during the analysis,
design, implementation and validation phases of object-
oriented software systems: all of which contributed to
the universal acceptance of object-oriented paradigm.
Only recently there have been a few proposals for Agent-
oriented Software Engineering (see, [15],[17]) and
extensions to UML (e.g., AUML [2], [8]). In our
research, we are developing a framework and extensions
to UML to address this need. Our approach is rooted in
the BDI formalism, but stresses practical software design
methods instead of reasoning theories. In this paper we
describe our preliminary work on the framework and
illustrate its usefulness. Our approach, when fully
developed, can be customized to specific application

domains by modifying domain specific aspects of our
framework (specification level annotations, patterns,
templates and reasoning mechanisms). It is our hope that
our work and other related work will lead to the
codification of a systematic framework for the design of
agent-oriented software systems, just as the efforts of
Booch, Raqmbaugh and Jacobson have led to UML for
object-oriented systems.

1.1. Agents versus Objects
Agent-oriented programming draws heavily from

object-oriented paradigms, but also introduces a number of
new concepts that are alien to object-oriented
programming. We contend that agent-oriented
programming is the next expected evolution of object-
oriented programming. The reader is referred to [3], [6] or
[10] for detailed and formal definition of object-oriented
methodology.

Although there is no accepted definition of “agent-
based” or “agent-oriented” programming, there is a
generally accepted list of characteristics associated with
agents: situatedness, autonomy and flexibility [5]. The
situatedness implies that agents receive input from an
environment and perform actions that may change the
environment. Autonomy implies that the software system
should operate without the direct intervention of human
being or other agents. Agents must be flexible in the sense
that they should be both reactive and proactive. Reactivity
implies that agents must take timely actions in response to
changes in the environment. Proactivity indicates that
agents not only react, but also exhibit goal-oriented
behavior.

The autonomy of agents implies that they are created
with an autoprocess (or thread). The beliefs of an agent
may be viewed akin to object state. However, in a general
agent-oriented system, it is possible to share beliefs among
agents (via a knowledge-base or a blackboard), which is
contrary to the object encapsulation philosophy. Agents
have desires (or goals), including proactive goals, requiring
autonomous actions without any explicit method
invocations. The behavior of an agent (or the outcome of
executing a method) may be different at different times
(and may be non-deterministic)—since the proactive goals

of an agent may lead to changes in its reactive behavior.
The different behaviors may result from the current
beliefs and goals of an agent. An agent may not respond
to method invocations by other agents (or objects). Such
refusal behavior is not inherent in object-oriented
systems. Agent-oriented systems do permit inheritance,
but such inheritance must be distinguished from
inheritance in object-oriented systems. Agents may
inherit plans (or actions, which are similar to methods),
beliefs (which are similar to instance variables) or goals
(for which there is no direct counter part in OO).

1.2. BDI Formalism1.
Given the above overview of agents, we will briefly

summarize a related formalism that has been widely
accepted in the AI community. The BDI architecture
associates with agents, beliefs (typically about the
environment and other agents), desires or goals to
achieve, and intentions or plans to act upon to achieve its
desires. Although sound formalism supports the BDI, in
our research we are interested in practical modeling,
design and implementation of agent-oriented systems
using the BDI. In practical terms, beliefs can be viewed
as the state of the world (at least the state as viewed by
agents, even if this information is inaccurate or
outdated). Beliefs may be represented as simple
variables and data structures or, complex systems such as
knowledge bases. Desires (or goals) may be associated
with a value so that desires can be prioritized. Intentions
reflect the actions that must be exercised to achieve the
goal values. In our view, the BDI formalism may be used
to model intelligent, autonomous, situated agents as
shown in Figure1

1 For a more detailed and formal treatment the reader is referred to any
of the numerous publications on BDI (for example, [11-13]).

In general beliefs may be shared and modified by
other agents. This can be achieved either by direct
communication (using Knowledge Query Manipulation
Language KQML [4] messages), using shared knowledge
bases or blackboards (for example using Linda or
extensions to Linda such as LIME [7], [9]). Plans can be
proactive or reactive -- proactive plans reflect the desires or
goals of an agent. These goals may impact how an agent
reacts to external events (including the possibility of
ignoring external stimuli). Reactive plans reflect how an
agent can be situated in an environment.

2. A Framework For Agent-Oriented Software
Engineering

In this section we will outline our initial ideas on the
specification, modeling, analysis and implementation of
Agent-Oriented Software systems.

2.1. Agent Specification Language.
Utilizing the BDI framework, we propose the

following language structure2 to describe agent-oriented
systems. We use an informal BNF like notation here.
Agent ::= <agent-name> “{“ <Belief_Specification>

 <Goal_Specification> <Plan_Speceification>
 protected <active-process> “}” /* see note 8 below */

<Belief_Specification> ::= “{“ public <Beliefs_Structure>*
 private <Beliefs_Structure>* ”}”

<Goal_Specification> ::= “{“ public <Goals_Structure>*
 private <Goals_Structure>*”}”

2 There have been others who have either used the term agent-
oriented programming (AOP) [14], or defined languages for
specifying agent behavior [16]. Our intention in the project is not
define a completely new programming language, but to define a
structure that can be used to extend existing languages such as
Java. Our goal is to develop appropriate preprocessing tools so
that the agent specifications can be converted into Java programs.

Goals

Beliefs

Environment

Figure 1. A conceptual model for a multi-agent system

Goals

Beliefs

PlansPlans
KQML

Environment

Beliefs Plans

Goals

Blackboard

KQML

<Plan_Specification> ::= “{“ public <Plans_Structure>*
 private <Plans_Structure>*”}”

<Beliefs_Strucure> ::= <Belief_Body> <Beliefs_Structure> |
NULL

 <Belief_Body>::= <Belief_Name> <Belief_Spec>
/* notes 1 and 2 */

 <$annotation_name>=<string_value>*<Goals_Effected>
/* notes 3 and 4 */

<Belief_Spec>::= <Variable_Dec> | <Belief_Eval_Function> /*
note 2

<Goal_Effected>::= <Goal_Name>*
<Goals_Structure> ::= <Goal_Body> <Goals_Structure> | NULL
<Goal_Body> ::= <Goal_Name> <Goal_Spec> <Goal_Value>

 <Plans_To_Execute> /* notes 5 and 6 */
<Goal_Spec> ::= <Goal_Decl> <Goal_Eval_Function>
<Plans_Structure> ::= <Plan_Body> <Plans_Structure> | NULL
<Plan_Body> ::= <Plan_Name> <Invoke_Trigger>

 <Context_Preconditions><Sequence_Of_Statements>
<Sequence_Of_Statements> ::= <Statement>
 <Sequence_Of_ Statements> | NULL
<Statement> ::= <Simple_Statement> | <Compund_Satement>
 /* note 7 */

Notes:
1. Belief_Name is for identification and indexing
purposes. Same with Goal_Name and Plan_Name.
2. Belief_Spec is specific to a belief and defines the
necessary data structure to store the values of
observations. These structures together can be viewed as
a description of the state of the world. This structure can
be a simple variable, data structure, a database or a
knowledge base. The specification can provide a means
of obtaining the value for the belief using the evaluation
function (<Belief_Eval_Function>).
3. Annotations can be specified with beliefs for the
purpose of analysis of the specification. The actual
annotation name and value is domain specific. For
example, for a real-time system, an annotation can be
“Sampling_Frequency” and the specified value describes
how often a sensor value should be sampled. Another
example of annotation can be “Probability_of_Change”
and the value indicates the likelihood of a change of a
belief value. Such annotations can be used for feasibility
or correctness analyses of the specification. The example
annotations for real-time systems can be used for
schedulability analyses. The annotations can also be used
by runtime systems or middleware to schedule agent
plans.
4. Goals_Effected links the goals that must be updated
when the value of a belief changes.
5. Goal_Spec is specific to the goal and includes an
evaluation function that can be used to update the value
of the goal. Goal_Value is typically a real number
indicating how valuable this goal is to the overall goals
of an agent (or system). If a goal is not achievable, the
value will be either zero or negative. It is necessary to
select values to permit some selection and prioritization

among goals. Goal Specification can be similar to a
decision tree; based on the current state of the observed
values, the decision tree is traversed to obtain a goal value.
The path through the decision tree can also be viewed as
the sequence of plans needed to achieve goal value. New
goal valuations may lead to abortion of previously
scheduled plans.
6. Plans_To_Extecute links to one or a sequence of plans
that must be executed to achieve the goal (and its
associated value). Both reactive and proactive goals can be
defined using our syntax: reactive goals often receive
higher goal values than proactive such that reactive goals
will be executed in a timely manner The above syntax
implies that goals are triggered when belief values change.
The changes can be either due to external triggers,
messages from other agents or changes to a knowledge
base.
7. Compound Statements for describing a plan can include
any programming language statement. It is straightforward
to include KQML [4] messages in our language structure,
since a <Compound Statement> of a plan can be a KQML
statement. KQML represents communication among
agents. The communication is typically for one of the
following purposes (we can map these to KQML
performatives).

Assert a Belief value. This could be either because of a
previous request, a routine sensing of the state of the
world, or other reasons. This message will have the same
effect as if the agent is sampling the state of the world and
setting its belief values; which in turn may require re-
computation of goal values.

Ask for a Belief value. An agent who does not have the
responsibility of sampling for a particular state value can
request another agent for the value. The reply will contain
the value or the reply can take the form of “Assert a Belief
Value” message.

Ask for a service. An agent may execute a plan in
response to this or ignore the request.
8. Autoprocess. An agent can be designed with one or
more threads to meet the scheduling requirements. If a
single thread is used the structure of autoprocess may look
like (using ADA like choice)

autoprocess() {
 do {

Select
 (If_Reactive_Message_Queue_Not_Empty)

 Perform_Reactive_Plan
 or

Select (If_Belief_Sampling_Is_Due)
 Sample_External_State();
 Update_Goal_Values()
 Select_A_Plan_To_
 Achieve_Optimal_Goal_Value();

 or Proactive_Goal_Plan();}}

If multiple threads can be utilized, we can associate
separate threads to respond to belief changes, external
stimuli, external service requests and proactive goals.
Internal mechanisms are needed to assure proper
coordination and synchronization of concurrent threads
(e.g., using mutual exclusion).

2.2. An Example.
In order to illustrate the use of our framework for

the design of agent-oriented software systems, we
describe a portion of a complex real-time system using
our specification language (for a complete description of
the example as well as other examples see [1]). Here we
describe the use of a multi-agent based system for
controlling traffic flow along several major highways (or
beltways). The agents are responsible for detecting
traffic flows (using sensors to detect the number and rate
of flow of cars) and controlling traffic signals as well as
posting warning messages as well as suggested alternate
routes on Variable Message Panels (VMP). Figure 2
shows a block diagram of the system. Here each agent is
responsible for a section of a highway and they are
identified as Beltway1a, Beltway 1b, etc., P1, P2,.. are
VMPs. Here we outline the agent using our Agent
Specification Language.

Beliefs
Public:
 Belief_1 = (Belief_1, Sensor_1(Working),
 sampling_frequency =hour,
 probability_of_chage =0.001, Goal_2)
 Belief_2 = (Belief_2, Circulation_Regime
 (Beltway_1b, “Congested”),
 sampling_frequency =hour,
 probability_of_chage=.0.5, Goal_1)
 Belief_3 = (Belief_3,Saturation_Level
 (Beltway_1b, Critical”),
 sampling_frequency =hour,

probability_of_chage=.0.5, Goal_1)
 Belief_4 = (Belief_4, Rush_Hour(YES,
 Lunch), sampling_frequency =hour,
 probability_of_chage=.0.2, Goal_3)

Private:
 Belief_5 = (Belief_5, Traffic_Flow
 (Beltway_1a,120), sampling_frequency =1
 minute, probability_of_chage=.0.5, Goal_3)
 Belief_6 = (Belief_6, Sensor(Beltway_1,
 Sensor_1), NULL)
 Belief_7 = (Belief_7, VMP_1(“ Slow Traffic
 Ahead”), sampling_frequency =15
 minutes, probability_of_chage=.0.5,
 NULL)
 Belief_8 = (Belief_8, Traffic_Light_1
 (Green_Period = 3 min, Red_Period = 1
 min, Yellow_Period = .05 min), Goal_3)

Goals
Public:
 Goal_1 = (Goal_1, Smooth_Traffic
 (Beltway_1), 10, Identify_Problem,
 Diagnose, Configure_Singal_Plan)
 Goal_2 = (Goal_2, Fix(Sensor_1), 20,
 (Inform_Maintenance, Write_To_VMP))
Private:
 Goal_3 = (Goal_3, Traffic_Flow
 (Beltway_1a) < 80, cars/min, 15,
 Emergency, Rush_Hour, Congestion,
 Message_Consistency)

Plans
Public:
 Plan_1 = (Inform_Maintenance {

Invoke on Fix(Sensor_1)
With Context Sensor_1(Not Working)

 Do
 (tell:sender Beltway_1a :language

 prolog :content Sensor_1(NOT
 Working) :receiver Maintenance

 Person :reply-with xyz))
Private
 Plan_2 = (Configure_Signal_Plan{

Subarea1

P6

Subarea2

P2 P1

P3

P5

P4

P9

P7 P8

Highway1a

Highway2a

Highway3a

Beltway1a

Beltway1b

Beltway2a

Beltway2b

Subarea3

Figure 2. Traffic Control Example

Invoke on Traffic_Flow (Beltway_1a)
 < 80 cars/min With context …
 Do

(tell :sender Beltway_1a :language
prolog :content Congestion at Subarea
3 :receiver VMP_1 :reply-with abc))

 Private
Plan_3 = (Rush_Hour{ Invoke on Traffic_Flow

(Beltway_1a) < 80 cars/min
With context Rush_Hour(YES, Lunch)

 Do
SET Traffic_Light_1(Green_Period = 2
min, Red_Period = 2 min,
Yellow_Period = .05 min)

Autoprocess() {
 Do {
 Select (If_Reactive_Message_Queue_Not_Empty)

 Perform_Reactive_Plan
Or
Select(If_Belief_Sampling_Is_Due)

Sample_External_State(); Update_Goal_Values();
Select_A_Plan_To_Achieve_Optimal_Goal_Val;

Or
Select
 Proacative_Goal_Plan();
 } }

3. Summary and Conclusions
In this paper we outlined our preliminary ideas on a

framework for the specification, analysis and design of
agent oriented software systems. Our approach is based
on BDI – however, we use the formalism for developing
a practical software engineering framework. We have
also developed extension to UML but due to space
limitations we have not included them in this paper.

4. References
[1] M. Aborizka. An Architectural Framework for the

Specification, Analysis and Design of Intelligent Real-
Time Monitoring Agent Based Software Systems, PhD
Dissertation (in Preparation), Dept of ECE, University of
Alabama in Huntsville.

[2] B. Bauer, J. P. Muller and J. Odell. “Agent UML: A
formalism for specifying multi-agent software systems”,
First International Workshop on Agent Oriented Software
Engineering, Limerick, Ireland, June 2000, pp 91-104.

 [3] G. Booch. Object-Oriented Analysis and Design, 2nd

edition, Addison-Wesley, Reading, MA.
[4] T. Finn, Y. Labrou and J.Mayfield. “KQML as an agent

communication language”, in Software Agents, edited by
J. Bradshaw, MIT Press, Cambridge, 1977.

 [5] N. R. Jennings, K. Sycara and M. Wooldridge. “A
roadmap of agent research and development”, in
Autonomous Agents and Multi-Agent Systems, Kluwer
Academic Publishers.

[6] B.Meyer. Object-oriented software construction, 2nd
edition, Prentice-Hall, Englewood Cliffs.

[7] A. Murphy, G. Picco and G.-C. Roman. “LIME” A
middleware for physical and logical mobility”, Proceeding

of the 21st International Conference on Distributed
Computing Systems (ICDCS), April, 2001, pp 524-533.

[8] J. Odell, H. Van Dyke Parunak and B. Bauer. “Representing
Agent Interaction Protocols in UML”, First International
Workshop on Agent Oriented Software Engineering,
Limerick, Ireland, June 2000, pp 121-140.

[9] G. Picco, A. Muphy and G.-C.Roman. “LIME: Linda meets
mobility”, Proceedings of the 21st International Conference
on Software Engineering, May 1999.

[10] J. Rumbaugh, et. al. Object-Oriented Modeling and Design,
Prentice Hall, 1991.

[11] A. Rao and M. Georgeff. Modeling rational agents within a
BDI architecture. Proceedings of the Second International
Conference on Principles of Knowledge Representation and
Reasoning, Cambridge, MA, 1991, pp 473-484.

[12] A. Rao, M. Georgeff. An Abstract Architecture for Rational
Agents. Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning,
Boston, MA, 1992, pp 439-449.

[13] A. S. Rao and M.P. Georgeff. “BDI agents; From theory to
practice”, Proceedings of the first international conference
on multi-agent systems (ICMAS-95), San Francisco, pp 312-
319.

[14] Y. Shoham. “Agent-Oriented programming”, Artificial
Intelligence, (Vol 60), pp 51-92.

[15] A. Tveit. “A survey of agent-oriented software engineering”,
First CS Graduate Students Conference,
http://www.csgsc.org

[16] G.Wagner. “Agent-Oriented-Relationship Modeling”,
Proceedings of 2nd Internaitonal Symposium –From Agent
Theory to Agent Implementations, in connection swith
EMCRS 2000, April

[17] M.F. Wood M. F. and S. A. DeLoach, ``An Overview of the
Multiagent Systems Engineering Methodology,'' The First
International Workshop on Agent-Oriented Software
Engineering (AOSE-2000), 2000.

Acknowledgement. This research is supported in part by
NSF Digital Government Grant, EIA 0087076.

