Using the Agent-Object-Relationship Modeling Language to Model a Multiagent System for Supporting Decentralized Maintenance of Petrol Stations

Renata S. S. Guizzardi
Computer Science Department – University of Twente (UT)

P.O. Box 217 NL – 7500 AE – Enschede – The Netherlands

souza@cs.utwente.nl

1. Introduction

The Agent-Object-Relationship (AOR) modeling approach [1] is based on an ontological distinction between active and passive entities, that is, between agents and objects. This helps capture the semantics of complex processes involved in environments for which an agent-based information system will be developed. The agent metaphor subsumes both artificial and natural agents. This way, the users of the information system are included and also considered as agents in AOR modeling.

AOR distinguishes between agents and objects according to these two main points: 1) while the state of an object in OO programming has no generic structure, the state of an agent has a ‘mentalistic’ structure: it consists of mental components such as beliefs and commitments.
 2) while messages in object-oriented programming are coded in an application-specific ad-hoc manner, a message in Agent-Oriented Programming is coded as a ‘speech act’ according to a standard agent communication language that is application-independent
.

In AORML, an entity is either an agent, an event, an action, a claim, a commitment, or an ordinary object. Agent and object form, respectively, the active and passive entities, while actions and events are the dynamic entities of the system model. Commitments and claims establish a special type of relationship between agents. These concepts are fundamental components of social interaction processes and can explicitly help to achieve coherent behavior when these processes are semi or fully automated.

Only agents can communicate, perceive, act, make commitments and satisfy claims. Ordinary objects are passive entities with no such capabilities. Besides human and artificial agents, AOR also models institutional agents. Institutional agents are usually composed of a number of human, artificial, or other institutional agents that act on its behalf. Organizations, such as companies, government institutions and universities are modeled as institutional agents, allowing to model the rights and duties of their internal agents.

The following sections of this document uses a scenario to exemplify the use of AORML. The remaining of this document is organized as follows: section 2 presents a description of the scenario used to exemplify AORML modeling; section 3 presents a few guidelines for the use of the AORML Agent Diagram while section 4 exemplifies the interaction process modeling by the means of an AOR Interaction Sequence Diagram. The appendix brings further information about AOR models; and, finally, a few references are presented.

For another exemplification of the use of AORML, refer to [2], which presents the analysis of Help&Learn, a multi-agent system to support knowledge management in learning environments.

2. Description of the Scenario

The scenario
 modeled in this document is an agent-based system to support decentralized maintenance of petrol stations, for a company called Union Technik. Union Technik provides maintenance services to petrol stations distributed throughout Germany. Instead of hiring field service technicians for this job, Union Technik uses subcontracting companies.

When a breakdown occurs in a petrol station, the leaseholder contacts Union Technik’s call center, requesting a maintenance service. The call center will find the best available technician for the job and send him to the petrol station. The technician will fix the problem and, then, he will send an invoice to Union Technik’s controlling department, describing what the problem was, what parts were used to fix the equipment, how much time was spent for fixing the breakdown and what was the total cost. The controlling department is responsible for checking if the invoice is correct and paying the subcontractor for the service.

In order to support this process, an agent-based system will be built. This system will support: a) the leaseholder task of requesting a service; b) the call center employee’s task of finding the best technician to take care of the problem; c) the technician’s job of finding out the cause and the solution for the breakdown; and d) the financial control performed by a controlling department employee.

The remaining of this document will exemplify how to use AORML to model this scenario.

3. Domain Modeling and Analysis Cycle

Domain modeling can be useful to help the software engineer in: a) understanding why and where the domain can be automated; b) perceiving and modeling the interaction among the different actors in the domain (humans and organizations and, possibly, applications being currently used by the human actors within these organizations); c) placing the application to be developed within these interactions; and d) eliciting requirements for such application. AORML models the actors of the domain as agents that interact, accomplish goals and have a number of responsibilities in the environment.

AORML supports domain modeling and analysis using the AOR external model. This starts with the Agent Diagram (more discussions on the AOR models and diagrams refer to the appendix and to [1]). Figure 1 presents an agent diagram, depicting only the active and passive entities of the system (respectively, agents and objects). The agents can be artificial, human or institutional agents. These types of agents are differentiated in Fig. 1, using the traditional UML stereotypes on top of the rounded-box that represents each agent.

[image: image1.jpg]<<institutional>>

Petrol Station

<<human>>
Petrol station

leaseholder

<<instiutional=>

Petrol Station
Francisee

<<institutional=>
Union Technik

<<human>>
Call Center
Employes

<<aifcraE>
EY

=<atifcia>
BUISY

<<human=>
Controlling
depariment
employee

Invoice

<<institutional=>
Subcontractor

<human=>

Field sevice
technician

Spare part

Fig. 1. Agent Diagram, showing the entities of the problem domain

Table one shows a general textual description of each agent of this diagram.

Table 1. Textual Description of Domain Agents

	Agent Type
	Name
	Description

	Institutional
	Petrol Station Francisee
	Brand Organization of Petrol Station (e.g. BP, DEA, etc.). This Organization signs the contract that allows each Petrol Station to use the services from Union Technik.

	
	Petrol Station
	Each Petrol Station that uses the services of Union Technik (i.e. Union Technik’s client).

	
	UnionTechnik
	Organization responsible for Distributed Maintenance Management concerning Petrol Station Maintenance specifically.

	
	Subcontractor
	Organization subcontracted by Union Technik to deliver maintenance of incidental breakdowns.

	Human
	Petrol Station Leaseholder
	Person responsible for calling Union Technik in case of an incidental breakdown.

	
	Call Center Employee
	Person who receives the request of the PS Leaseholder and manages the breakdown maintenance. One of the managerial tasks is to submit the client’s request Field Service Technician

	
	Field Service Technician
	Person responsible for fixing the incidental breakdown in the Petrol Station where it occurred.

	
	Controlling Department Employee
	Person responsible for the financial control of each incidental breakdown maintenance. One of his tasks is checking the information contained in the invoice sent by the Subcontractor after a maintenance has been completed.

	Artificial
	SLIM
	Existing web based application used by the Call Center Employee to manage the breakdown maintenance.

	
	BUISY
	Existing IT-System used by the Controlling Department Employee, having access to the financial figures he needs for the financial control of his responsibility.

A few observations about the domain entities:

· Note that agents and objects are differentiated by their representations in the diagram: agents are rounded-rectangles while objects are angled-rectangles.

· The Union Technik agent name is underlined because this is an agent instance, while all others are agent types. By agent instance, it’s meant there is only one of such agent in the system. An agent type represents a “class” of agents.

· All human and organizations of the problem domain should be depicted here. But how to identify such actors?

· Of course, in the organization where the new test case application will be inserted, there are other processes not to be automated by the test case, but these should not be represented in the agent diagram (remember the objectives of our domain modeling – previously cited b and c).

· The chosen organization and human actors should be the ones that directly affect the test case application. These will typically be either actors who directly take part in the automated processes or those actors whose information need to be kept by the application (because this information is useful during the process). E.g. of this in Fig. 1: all agents depicted there are part of the automated process, except the Petrol Station Franchisee. This agent is there only because it is useful to keep information about this organization.

· In the case of artificial agents: previous systems such as SLIM and BUISY depicted here can be included in the model in two different ways: a) as objects, if you only want to show they exist and some human agents use it; b) as agents, if they are going to be involved in the modeling of the agents interactions (i.e. if it is important to show how the human agents interact with such systems, after the new application has been inserted). For instance: in Amadee’s case, there is going to be some reuse of parts of both SLIM and BUISY in the new application (e.g. SLIM web interface and information from SLIM server; information from BUISY server).

· In AORML, an object can be: a) real objects of the problem domain; or b) metaphorically seen as “agent beliefs”, meant as follows: in order to accomplish its goals, an agent of the system needs to have some information of its environment, and this information will be collected, represented and stored depending on its usage for a determined process.

Following, we would like to show how relationships can be included in the agent diagram of Fig. 1, depicting real relationships between the agents/objects of the domain. These relationships include all kinds of UML typical relationships, such as associations, generalizations (or specializations), aggregations and compositions. Figure 2 shows an agent diagram, depicting the agents and objects of the domain and their relationships.

[image: image2.jpg]=sinstiutional=>
Petrol Station
Francisee

=<instiutionals>
Petrol Station

<<human=>
Petrol station

leaseholder

Senice
Contract

<<institutional=>
Union Technik

<<human>>
Call Center
Employes

Breakdown
IManagemen

<=arifciar>
s

=<arifcia>
BUISY.

“<institutional=>y /" ==instifional=>

subcontractor | | Subcontractor
Cormpany Ferson

Subcontracting Contract

=<instiutional=>
Subcontractor

<human=>

Field sevice
technician

Usage in
Maintenance

Spare part

———- imvoice | Delivery
Financial
Cantral
Proafof <<human=>
Senvice Controlling Usagein | eeged Parts
department Control
employee

Maintenance ofIncidental Breakdowns

Fig. 2. Agent Diagram including relationships between the domain agents and objects

A few comments on the relationships:

· Most of the relationships shown in the diagram are UML associations, except for one specialization of the Subcontractor institutional agent. In Union Technik scenario, there are two possibilities: the subcontractor can be a company or a single person, in case of a technician who works on his own. We chose to represent this as two extra institutional agents, linked to the Subcontractor, by a generalization/specialization UML relationship. Note, though, that both types of Subcontractors have the same procedure concerning sending the invoice to Union Technik. That’s why the representation of the agents and objects involved in such procedure is still kept inside the Subcontractor institutional agent.
· Here, we still do not model the attributes of the domain’s agents and objects. Besides, the relationship cardinality is still missing.
In this scenario, new artificial agents are going to be added to the previous domain. Then, the agent diagram should be changed to incorporate such agents. Table 2 presents the description of the new agents.

Table 2 Textual Description of New Artificial Agents

	Name
	Description

	GUI Agent (GuiA)
	It accomplishes the interface between the system and the user. In other words, all user requests are made (through a web interface) to this agent, which forwards this information to the appropriate artificial agent (the one that is going to take care of this request). Similarly, the replies to user requests are forwarded back to the GuiA, which friendly presents the user with the necessary feedback to his requests.

	Authentication Agent (AutA)
	It identifies which user has logged on the system, authenticating it as a system user or not. Possible user: Field Service Technician, Petrol Station Leaseholder, Call Center Employee, Controlling Department Employee. This agent is implemented reusing the authentication mode by SLIM.

	Personal Assistant
	It keeps the user profile, maintaining their expertise/preferences. Moreover, it acts on behalf of its associated user during the automated processes.

	Help Agent
	Depending on the user, it performs some kind of problem solving support. E.g.: for the FS Technician, it provides advice regarding the maintenance of a specific breakdown, for the PS Leaseholder, it aids in the breakdown request description.

	Broker
	It appoints the most appropriate technicians to solve a determined breakdown, supporting the work of the Call Center Employee. In order to do so, it performs rankings and classifications, based on the FS Technician’s profiles, whose information the Broker gets from the Personal Assistant.

	Directory Server
	It maintains a FS Technician’s list and related expertise. It is a passive agent, when compared to the Broker.

The agent diagram of Figure 3 still shows the previous domain agents, but adds the artificial agents that are being developed to perform the test case functionalities.

[image: image3.jpg]<<institutional=>

Union Technik

==afcraEs

aifciaes

e Breskioun (~SZaGES -
coatuman> | yanagement| g Authentication | [oun agent sioker
Employes b Rgent
A unentoation foystom-use
logment i
= <=arificial=> ==arfificial=>
Persanal Directory
Agent Server
<o TR
EENEX Auhentieation <SHumaT
Platform_ Bystem omization| U
s
development I
saluion S
Subcontactor
Breckdoun < pumans~ Subcorracting Contalt
<<aar) Fnania —
A Caniol_| COrING e i
depaiiment Field service
techniian

employee

L

=aeaEs
Help Agent

=

<snstiulionai=>
Petrol Station

<<human=>
Petrol station

leaseholder

Maintenance ofIncidental Breakdown:

Fig. 3 – Agent Diagram, highlighting the AutA and the GuiA artificial agents

The agent diagram of Fig. 3 depicts the relationships between the artificial agents AutA and GuiA and the agents of the domain. The human agents of the system have been generalized as system users, by the human agent class “User”.

The AutA is responsible for authenticating these users, providing them with access to the system. The authentication mechanism is actually customized from the previous authentication system, used by both SLIM web-based application and BUISY IT-system. Both SLIM and BUISY used the authentication system provided by the EENEX platform. Refer to Fig. 3 for all the relationships regarding the system users’ authentication.

Fig. 3 depicts a relationship between GuiA and User referred to as “system-user interface”. The GuiA is responsible for providing this interface, according to the user type. The user of the system can be either a petrol station leaseholder, a field service technician, a call center employee, or a controlling department employee. Each of these user types will access a specific interface to perform their tasks. For instance, the petrol station leaseholder will access a web-based form to express his request for maintenance, given a breakdown description. As mentioned in Table 2, GuiA handles all the user’s requests to the system, providing them with friendly feedback for each action.

4. Interaction Process Modeling

There are two kinds of interaction processes to be modeled: i) reactive processes; ii) proactive processes. The reactive processes are the most common ones. They are those processes started by the user of the system, while the proactive processes are the ones started by an artificial agent. Proactive processes may involve or not the participation of the system’s user.

In the web-based application, proposed in Amadee’s scenario, there are a few proactive processes, such as: a) the profiling of the system user, triggered by the user Personal Agent (PA); and b) the disclosure of information about the user, from the PA to the Broker. These processes are modeled just like the reactive processes, using AOR Interaction Diagrams. In Figure 4, we see an example of a reactive interaction process model. This process is modeled by the means of an AOR Interaction Sequence Diagram (ISD).

[image: image4.jpg]Jan: Petral
Station
Leaseholger

StCompanies = [FHQUICK

showDataSubeontractors,

“Maintainiell

: selectPart

Far='Fump’ ¢

‘Authenticatio
nAsent

authenticateUser

Usernar;
Passwort:

iz

 rephutherticationUser
T moweoR

requestDataUserRelatedSubcontractrs

sendDataUserRelatedSubcontractors
™ LstCompanies = ['FixQuic

aintainivelr

requestDataPotentialParts

+_ alentUserLoggedin

Jan's P
Personal
Assistant

sendRemainingData

Far=" P
AddiionalDetai

Fig. 4. Interaction Sequence Diagram, showing the interaction process of the CustomerLogin

4.1. Process Description

In the UnionTechnik scenario, this process describes what exactly happens when a petrol station leaseholder (UnionTechnik client) logs in the web based application. In summary, the leaseholder logs in the system in order to make a request for Union Technik to provide maintenance to the petrol station.

First, Jan (the leaseholder) logs in the system, sending his user name and password to the GUI Agent (GuiA). This is done through a web-based interface. The GUI Agent sends such information to the Authentication Agent (AutA), so that this agent can verify the user name and password. As Jan has been authenticated as a user of the system, the AutA will, in reply, send an “ok” to the GuiA. Simultaneously, the AutA will alert Jan’s Personal Agent (PA) that Jan is logged in the system. The GuiA will, on his turn, ask the PA for the data regarding the Subcontractors related to Jan’s Petrol Station. The PA, then, sends a list of subcontractors to the GuiA, which exhibits this for Jan. It’s then Jan’s turn to choose one of the subcontractors on the list that he would prefer to contact to fix the breakdown. In our example, this Subcontractor is called “FixQuick”. After receiving Jan’s selection, the GuiA asks the PA to send all equipment parts that FixQuick is able to fix. The PA sends a list of parts to the GuiA, which, again, exhibits the information to Jan. Jan makes a new selection, now of which part should be fixed, sending it to the GuiA. At the same time, Jan also sends additional details about the request. Finally, the GuiA sends the remaining data to the PA.

4.2. Specifics of the AOR Interaction Sequence Diagram in the context of the CustomerLogin Process

This ISD of Fig. 4 depicts the interaction between all the agents involved in the process of CustomerLogin. The AOR ISD, like the UML Sequence Diagram, is used to show the flow of interaction events that happen in a prototypical process. This model presents only one type of AOR event types: messages. These messages are, typically, either user interaction to the system (always through an artificial agent) or internal agent’s interaction. For further discussion on the AOR event types, please refer to the appendix.

By prototypical process, we mean that real data from the system domain should be used to exemplify the system’s agents involved and the messages exchanged (both the message and the attribute should be named based on current terms used in the domain, and the attribute values should be chosen from real possibilities in practice).

Appendix - AOR Models

There are two basic types of AOR models: external and internal models. An external AOR model adopts the perspective of an external observer who is looking at the (prototypical) agents and their interactions in the problem domain under consideration. In an internal AOR model, we adopt the internal (first-person) view of a particular agent to be modeled.

This document is focused on the exemplification of AOR external model, which provides the means for an analysis of the application domain. Typically, it has a focus, that is an agent, or a group of agents, for which we would like to develop a state and behavior model. Figure 5 shows the elements of an AOR external model, in which the language notation can be seen.

[image: image5.png]o sends) Message Type /|
S L. S I
External Agent Type | . E
Obiect Tvpe receives
Internal Non-_Communicative
s . Object Type does Action Event Type /

- Commitment/Claim -
Type

perceives

Action Event T ; i
! ------------- 7 Non_ACtlon
perceives Event Type

Fig. 5. The core elements of AOR external models

Object types belong to one or several agents (or agent types). They define containers for beliefs. If an object type belongs exclusively to one agent or agent type, the corresponding rectangle is drawn inside this agent (type) rectangle. If an object type represents beliefs that are shared among two or more agents (or agent types), the object type rectangle is connected with the respective agent (type) rectangles by means of an UML aggregation connector.

As it can be seen in Fig. 5, there is a distinction between a communicative action event (or a message) and a non-communicative action event. Also, AOR distinguishes between action event and non-action event types. The figure also shows that a commitment/claim is usually followed by the action event that fulfills that commitment (or satisfy that claim).

An external model may comprise one or more of the following diagrams: Agent Diagrams (ADs), Interaction Sequence Diagrams (ISDs), Interaction Frame Diagrams (IFDs), and Interaction Pattern Diagrams (IPDs). For further reference, we refer to [1].

References:

1. Wagner, G. 2002 The Agent-Object-Relationship Meta-Model: Towards a Unified Conceptual View of State and Behavior. Information Systems, 2002/2003. (to appear), at: http://AOR.rezearch.info/
2. Guizzardi, R., Aroyo, L., & Wagner, G. Agent-oriented Knowledge Management in Learning Environments: A Peer-to-Peer Helpdesk Case Study. Proceedings of AAAI Spring Simposium on Agent Mediated Knowledge Management (AMKM'03), Stanford University, March/2003.

� This topic is explored in section 3, when exemplifying the use of agents and objects as the agent based application’s problem domain entities.

� This topic is detailed in section 4, which describes the interaction process modeling based on AORML.

� The scenario described in this document has been used as a test case scenario for the Agent Academy platform. Agent Academy is an European Project whose aim is to build an integrated platform to create and train agents. This document has been written in order to exemplify the use of AORML, providing some guidelines for the partners responsible for modeling the three test case scenarios of the project. More information about Agent Academy can be found in � HYPERLINK "http://agentacademy.iti.gr/" ��http://agentacademy.iti.gr/�.

PAGE
1

