
A UML Profile for External AOR Models

Gerd Wagner

Eindhoven Univ. of Technology, Faculty of Technology Management,
G.Wagner@tm.tue.nl,

http://tmitwww.tm.tue.nl/staff/gwagner

Abstract. We present a UML profile for an agent-oriented modeling
approach called Agent-Object-Relationship (AOR) modeling, where an
entity is either an agent, an event, an action, a claim, a commitment, or
an ordinary object, and where special relationships between agents and
events, actions, claims and commitments supplement the fundamental
association, aggregation/composition and generalization relationships of
UML class models.

1 Introduction

In [Wag02], we have proposed an agent-oriented modeling language for the
analysis and design of organizational information systems, called Agent-Object-
Relationship modeling language (AORML) . In the AORML, an entity is either
an agent, an event, an action, a claim, a commitment, or an ordinary object.
Special relationships between agents and events, actions, claims and commit-
ments supplement the fundamental association, generalization and aggregation
relationships of UML class models. AORML can be viewed as an extension of the
Unified Modeling Language (UML). We believe that AORML, by virtue of its
agent-oriented categorization of different classes, allows more adequate models
of organizations and organizational information systems than plain UML.

Casting the AOR metamodel as a UML profile allows AOR models to be
notated using standard UML notation. This means that most UML tools (specif-
ically the ones that support the extension mechanisms of UML, such as stereo-
types and tagged values) can be used to define AOR models. Standard practice
for defining UML profiles has been adopted. A mapping of AOR metamodel
classes to their base UML classes, with accompanying stereotypes, tagged values
and constraints is presented. An implementation of this mapping can be used,
for example, to generate XMI metadata conforming to the AOR metamodel from
models notated using the UML profile. Specialized AOR tools will more likely
directly use the AOR metamodel rather than the UML profile as a basis for
storing and manipulating models.

There are two basic types of AOR models: external and internal ones. An ex-
ternal AOR model adopts the perspective of an external observer who is observ-
ing the (prototypical) agents and their interactions in the problem domain under
consideration. In an internal AOR model, we adopt the internal (first-person)
view of a particular agent to be modeled. This distinction suggests the following

system development path: in the analysis phase, draw up an external AOR model
of the domain under consideration including one or more focus agents (this yields
a domain model); in the design phase, for each focus agent, transform the exter-
nal AOR model into an internal one according to the agent’s perspective (this
is called ”internalization”, resulting in a functional design model); then, refine
the internal AOR model of each focus agent into an implementation model for
the target language (such as SQL or Java). A complete internal AOR model is
a formal specification of a high-level state transition system, where perception,
reaction and commitment/claim handling provide the basic transition types.

The UML does not support the concept of an agent as a first class citizen.
In the UML, there is a certain ambiguity with respect to the agent concept.
Human and artificial agents, if they are ‘users’ of a system, are called actors
being involved in use cases but remaining external to the system model, while
software agents within the boundaries of the system are called ‘active objects’.
In the UML, the customers and the employees of a company would have to be
modeled as ‘objects’ in the same way as rental cars and bank accounts, while in
the AOR approach they would be modeled as institutional or human agents to
be represented in the system of that company (which itself could be modeled as
an artificial agent).

In AOR modeling, only agents can communicate, perceive, act, make commit-
ments and satisfy claims. Objects do not communicate, cannot perceive anything,
are unable to act, and do not have any commitments or claims.

2 AOR Models

While plain UML supports the design of object-oriented information systems
realized with the help of relational and object-relational database technology,
AORML is to support the high-level design of agent-oriented information sys-
tems. An AOR model consists of an External AOR Model, corresponding to a
domain analysis model, and an Internal AOR Model, corresponding to a design
model, as shown in Figure 1.

In an External AOR model, we adopt the view of an external observer who is
observing the (prototypical) agents and their interactions in the problem domain
under consideration. Typically, an External AOR model has a focus, that is an
agent, or a group of agents, for which we would like to develop a state and
behavior model.

An Internal AOR model depicts the world as it may be represented in the
mental state of the focus agent. If the focus agent is an organization, the Internal
AOR model represents its view of the world, and may be used to design its
information system. Thus, AOR modeling suggests the following development
path for organizational information systems:

1. In the domain analysis, develop an external AOR model of an organiza-
tion (or a group of organizations) and its (or their) environment from the
perspective of an external observer of the scenario.

2. Transform the external AOR model into an internal AOR model for the
focus agent for that an information system is to be developed (typically an
organization or an organizational unit). If there are several focus agents, and
for each of them an information system is to be developed, this step can be
iterated.

3. Transform the internal AOR models obtained in the previous step into
database design models (logical database schemas), e.g. for object-relational
(SQL-99) database management systems, or into sets of corresponding logi-
cal data structure definitions in a target language such as Java.

4. Refine the design models into implementation models (physical database
schemas) by taking performance and storage management issues, as well as
the specific features of the target language (such as SQL-99 or Java), into
consideration.

5. Generate the target language code.

AORModel

ExternalAORModel InternalAORModel

Fig. 1. An AORModel consists of an ExternalAORModel (corresponding to a domain
analysis model) and an InternalAORModel (corresponding to a design model).

The meta-concepts of AOR modeling that are common to both Internal and
External AOR modeling are listed as UML stereotypes in Table 1.

2.1 Object Types

Object types, such as Book or SalesOrder, are visualized as plain rectangles like
classes in standard UML class diagrams.

2.2 Agent Types

We distinguish between artificial agents, human agents and institutional agents.1

Examples of human agent types are Person, Employee, Student, Nurse, or Pa-
tient. Examples of institutional agents are organizations, such as a bank or a
1 Notice that we do not distinguish between ‘agents’ and ‘actors’. Both terms denote

the same concept. By default, we use the term ‘agent’.

Stereotype Base Class Parent Constraints

AORModel Model NA

Agent Class NA Restricted generalization.
BiologicalAgent Class Agent Restricted generalization.
HumanAgent Class BiologicalAgent Restricted generalization.
ArtificialAgent Class Agent Restricted generalization.
SoftwareAgent Class ArtificialAgent Restricted generalization.
Robot Class ArtificialAgent Restricted generalization.
EmbeddedSystem Class ArtificialAgent Restricted generalization.
InstitutionalAgent Class Agent Restricted generalization.
Organization Class InstitutionalAgent Restricted generalization.
OrganizationalUnit Class InstitutionalAgent Restricted generalization.

Object Class NA Restricted generalization.
Table 1. A summary of the stereotypes that are common to both Internal and Ex-
ternal AOR modeling. Restricted generalization means that whenever a generalization
relationship involves a class of that stereotype as either subclass or superclass, the
other class involved must also be of that stereotype.

hospital, or organizational units. An institutional agent consists of a number
of internal agents that perceive events and perform actions on behalf of it, by
playing certain roles.

In certain application domains, there may also be artificial Agent Types,
such as software agents (e.g., involved in electronic commerce transactions),
embedded systems (such as automated teller machines), or robots. For instance,
in an automated contract negotiation or in an automated purchase decision, a
legal entity may be represented by an artificial agent. Typically, an artificial
agent is owned, and is run, by a legal entity that is responsible for its actions.

In AOR diagrams, an agent class is visualized as a rectangle with rounded
corners. Icons indicating a single human, a group, or a robot may be used for
visualizing the distinction between human, institutional and artificial agent.

Agents may be related to other entities by means of ordinary domain relation-
ships (associations). In addition to the designated relationships generalization
and composition of ER/OO modeling, there are further designated relationships
relating agents with events, actions and commitments. They are discussed below.

2.3 External and Internal Agents

With respect to an institutional agent, one has to distinguish between external
and internal agents. Internal agents, by virtue of their contractual status (or
ownership status, in the case of artificial internal agents), have certain rights
and duties, and assume a certain position within the subordination hierarchy
of the institution they belong to. In the case of a hospital, examples of human
internal agents are doctors and nurses; examples of artificial internal agents are
communication-enabled information systems and agentified embedded systems,
such as patient monitoring systems.

2.4 Commitments and Claims

Representing and processing commitments and claims in information systems
explicitly helps to achieve coherent behavior in (semi-)automated interaction
processes. In [Sin99], the social dimension of coherent behavior is emphasized,
and commitments are treated as ternary relationships between two agents and
a ‘context group’ they both belong to. For simplicity, we treat commitments as
binary relationships between two agents.

Commitments to perform certain actions, or to see to it that certain condi-
tions hold, typically arise from certain communication acts. For instance, sending
a sales quotation to a customer commits the vendor to reserve adequate stocks of
the quoted item for some time. Likewise, acknowledging a sales order implies the
creation of a commitment to deliver the ordered items on or before the specified
delivery date.

Obviously, a commitment of a1 (the debtor) towards a2 (the creditor) to do
the action α is mirrored as a claim of a2 against a1 to create the action event α.

3 External AOR Models

In the external-observer-view adopted in external AOR models, the world (i.e.
the application domain) consists of various types of

1. agents,
2. communicative and non-communicative action events,
3. non-action events,
4. commitments/claims between two agent types,
5. ordinary objects,
6. various designated relationships, such as sends and does,
7. ordinary associations.

In the view of an external observer, actions are also events, and commitments
are also claims, exactly like two sides of the same coin. Therefore, an external
AOR model contains, besides the agent and object types of interest, the action
event classes and commitment/claim classes that are needed to describe the
interaction between the focus agent(s) and the other types of agents.

Object types, in an external AOR model, belong to one or several agents
(or agent types). They define containers for beliefs. If an object class belongs
exclusively to one agent or agent class (in the sense of a private belief type),
the corresponding rectangle is drawn inside this agent (type) rectangle. If an
object class represents beliefs that are shared among two or more agents (or
agent types), the object class rectangle is drawn outside the respective agent
(type) rectangles.

An external AOR model does not include any software artifacts. It rather
represents a conceptual analysis view of the problem domain and may also con-
tain elements which are merely descriptive and not executable by a computer
program (as required for enterprise modeling).

An external AOR model may comprise one or more of the following diagrams:

Agent Diagrams depicting the agent types of the domain, certain relevant
object types, and the relationships among them (an example is shown in
Figure 3).

Interaction Frame Diagrams depicting the action event classes and commit-
ment/claim classes that determine the possible interactions between two
agent types (or instances).

Interaction Sequence Diagrams depicting proto-typical instances of inter-
action processes.

Interaction Pattern Diagrams focusing on general interaction patterns ex-
pressed by means of a set of reaction rules defining an interaction process
type.

The agent diagrams, interaction frame diagrams and interaction pattern dia-
grams of a model may be merged into a single all-encompassing External AOR
Diagram (EAORD). Interaction sequence diagrams are normally not included in
such an EAORD, since they depict instances only, and are not at the type level.

Agent Type

Message Type

Non-Communicative
Action Event Type

Non-Action
Event Type

Commitment/Claim
Type

sends

does
Internal
Object Type

External
Object Type receives

perceives

perceives

Action Event Type

Fig. 2. The core elements of External AOR modeling.

Each agent has beliefs about its internal agents, about its objects, and about
all external agents and shared objects that are related to it.

3.1 Actions Are Events but Not All Events are Actions

In the external observer perspective, all actions of agents are at the same time
also events that may be perceived by other agents. The other way around, there
are many events that are created by the corresponding actions of agents. How-
ever, there are also events which are not created by actions (e.g., temporal events,
or events created by natural forces). Consequently, we make a distinction between
action events and non-action events.

CentralLibrary

LibIS

DepLibrary

Loan

BookCopy

LoanFacultyMember

LibIS

Book

isAvailable

BookCopy

Book
isAvailable

Person

1 1* *

1

*

1

0..1

1

0..1

1

*

Librarian
Librarian

Book

ISBN
Title
Author

FirstName
LastName
DateOfBirth

LibClerk

Fig. 3. An AOR agent diagram for the university libraries domain. The central library
and the department libraries are institutional agents, having librarians as human in-
ternal agents and a library information system as an artificial internal agent. Also,
FacultyMember is an agent class in this domain. Important object types are Book,
BookCopy and Loan, that is, libraries have beliefs about their books, their book copies,
and their loans. The subclass Book.isAvailable is formed by all books that satisfy
the status predicate isAvailable, that is, for which there is at least one book copy
available.

In an External AOR Diagram, an action event type is graphically rendered
by a special arrow rectangle where one side is an incoming arrow linked to the
agent (or agent class) that performs this type of action, and the other side is
an outgoing arrow linked to the agent (or agent class) that perceives this type
of event. Communicative action event rectangles have a dot-dashed line. In the
case of a non-action event, the corresponding event rectangle does not have an
outgoing arrow (see Figure 4).

requestReservation provideCar
temperature raises
above 30 degree

Fig. 4. A communicative action event, a non-communicative action event, and a non-
action event.

Stereotype Base Class Parent Constraints

Event Class NA Restricted generalization. No aggregation.

Action Event Class Event Restricted generalization. No aggregation.

Communicative
Action Event

Class Action
Event

Restricted generalization. No aggregation.

Non-
Communicative
Action Event

Class Action
Event

Restricted generalization. No aggregation.

NonActionEvent Class Event Restricted generalization. No aggregation.

CommitmentClaim Class NA Restricted generalization. No aggregation.

does Association NA The domain class must be an agent type and
the range class must be a non-communicative
action event type. Multiplicity is one-to-many.

perceives Association NA The domain class must be an agent type and
the range class must be a non-communicative
action event type or a non-action event type.
Multiplicity is one-to-many.

sends Association NA The domain class must be an agent type and
the range class must be a communicative ac-
tion event type. Multiplicity is one-to-many.

receives Association NA The domain class must be an agent type and
the range class must be a communicative ac-
tion event type. Multiplicity is one-to-many.

hasClaim Association NA The domain class must be an agent type and
the range class must be a commitment/claim
type. Multiplicity is one-to-many.

hasCommitment Association NA The domain class must be an agent type and
the range class must be a commitment/claim
type. Multiplicity is one-to-many.

Table 2. A tabular definition of the stereotypes of external AOR modeling. No aggre-
gation means that classes of that stereotype must not participate in any aggregation.

3.2 Commitments/Claims

In external AOR modeling, a commitment of agent a1 towards agent a2 to per-
form an action of a certain type (such as a commitment to deliver an item) can
also be viewed as a claim of a2 against a1 that an action event of that type
will happen. Commitments/claims are conceptually coupled with the type of ac-
tion event they refer to (such as deliverItem action events). This is graphically
rendered by an arrow rectangle with a dotted line on top of the action event
rectangle it refers to, as depicted in Figure 2.

3.3 Interaction Frame Diagrams

In an external AOR model, there are four types of designated relationships (as-
sociation stereotypes) between agents and action events: sends and receives are
associations that relate an agent with communicative action events, while does

and perceives are associations that relate an agent with non-communicative ac-
tion events. In addition, there are two types of associations between agents and
commitments/claims: hasCommitment and hasClaim. These association stereo-
types are visualized with particular connector types as depicted in Figure 5.

CentralLibrary DepLibraryrequestBook

confBookReq

deliverBook

deliverBook

returnBook

returnBook

Fig. 5. The interaction frame between the central library and the department libraries:
a department library may request a book from the central library; when such a book
request has been confirmed by the central library, then there is a commitment to deliver
the requested book (visualized by the dashed-line deliverBook arrow rectangle); nor-
mally, such a commitment leads to a corresponding action (visualized by the solid-line
deliverBook arrow rectangle); after a book has been delivered, there is a commitment
to return it in due time.

An interaction frame diagram, in an external AOR model, describes the pos-
sible interactions between two (types of) agents. It consists of various types of

1. communicative action events,
2. non-communicative action events,
3. commitments/claims (coupled with the corresponding types of action events),

and
4. non-action events.

An example of an interaction frame diagram is shown in Figure 5.

3.4 Interaction Sequence Diagrams

An interaction sequence diagram depicts (some part of) an instance of an in-
teraction process. An interaction process is a sequence of action events and
non-action events, performed and perceived by agents, and following a set of
rules (or protocol) that specifies the type of the interaction process. Agents may
interact with their inanimate environment, or they may interact with each other.

A social interaction process is a temporally ordered, coherent set of action events
and non-action events, involving at least one communicative action event, per-
formed and perceived by agents, and following a set of rules, or protocol, that
is governed by norms, and that specifies the type of the interaction process.2

An example of a social interaction process is shown in Figure 6. Social norms
imply, for instance, that after having confirmed a book request, the library is
committed to deliver the requested book.

confBookReq

GerdWagner TM-DepLibrary
requestBook

Title="UML in 3 sec"
Author="Boorumjac"

pickupBook

CentralLibrary

1 2

3

56

4

requestBook

Title="UML in 3 sec"
Author="Boorumjac"

confBookReq

deliverBook

returnBook
7

returnBook
8

Fig. 6. A social interaction process involving three agents. It is an option to display
the object types referred to in the arguments of messages and action events within the
agents that have to deal with them.

We consider a business process as a special kind of a social interaction process.
Unlike physical or chemical processes, social interaction processes are based on
communication acts that may create commitments and are governed by norms.
We distinguish between an interaction process type and a concrete interaction
process (instance), while in the literature the term ‘business process’ is ambigu-
ously used both at the type and the instance level. Social interaction process
types are modeled in Interaction Pattern Diagrams with the help of reaction
rules (see [TW01,Wag02]).

4 Internal AOR Models

In an internal AOR model, we adopt the internal view of a particular agent
to be modeled. In this first-person-view, the world (i.e. the application domain)
consists of various types of other agents, actions, commitments, events,
claims, ordinary objects, various designated relationships, such as isSentTo
and isPerceivedBy, and ordinary associations.

For space reasons, we cannot present the UML profile for intrernal AOR
models here.
2 Notice that we did not choose activities as the basic elements of a process. While an

action happens at a time instant (i.e., it is immediate), an activity is being performed
during a time interval (i.e., it has duration), and may consist of a sequence of actions.

5 Related Work

Some predefined UML ‘stereotypes’ come quite close to some of the AOR meta-
concepts:

Signals are defined as a class stereotype. They correspond to some degree to
a communicative action event (or message) type in external AOR models.
For activity diagrams, there are two signal symbols: one for sent signals, and
one for received signals, corresponding to the AOR distinction between com-
munication acts (outgoing messages) and communication events (incoming
messages). Strangely, the receipt of a signal is treated as an action that may
follow any activity (which seems to denote the special action type wait for
signal).

Active objects are another example of a class stereotype. An active object is
an object that “owns a thread and can initiate control activity” (cited from
the OMG Unified Modeling Language Specification). Thus, active objects
are rather an implementation, and not a domain, modeling concept. In a
certain sense, they form a superclass of software agents, but they do not
reflect the AOR distinction between agent and object.

The UML Profile for Business Modeling The UML 1.4 standard contains
a UML Profile for Business Modeling that defines the following class stereo-
types: ‘worker’, ‘case worker’, ‘internal worker’, and ‘entity’. A �Worker� is
“an abstraction of a human that acts within the system”. Although it is not
clear what “system” means here, the concept of a worker seems to correspond
to the AOR concept of an internal human agent. While an �Internal Worker�
does not interact with actors outside the system, a �Case Worker� does. All
other (passive) business objects are called �Entity�. In addition, the concepts
organization unit and work unit are proposed as subsystem stereotypes. An
�Organization Unit� is “a subsystem corresponding to an organization unit of
the actual business”; it “contains organization units, work units, classes (workers
and entities), and relationships”; thus, it corresponds to the AOR concept of an
internal institutional agent. A�Work Unit� is “a subsystem that contains one
or more entities”; it is “a task-oriented set of objects that form a recognizable
whole to the end user”.

The UML Profile for Business Modeling seems to be a rather ad-hoc proposal
for making a distinction between active and passive ‘business objects’ and for
resolving some of the conceptual difficulties arising from the UML definition of
an�Actor�. While it shares some of its motivations with the AOR metamodel,
it is, in many respects, quite incomplete. For instance, the only specific semantics
assigned to �Worker� (by means of well-formedness rules for associations) is
that they may �communicate� with each other and may �subscribe� to an
�Entity�. However, it is not explained, what these special associations mean.

The Eriksson-Penker Business Extensions In [EP99], Eriksson and Penker
propose an approach to business modeling with UML based on four primary con-

cepts: resources, processes, goals, and rules. In this proposal, there is no specific
treatment of agents. They are subsumed, together with “material, information,
and products” under the concept of resources. This unfortunate subsumption
of human agents under the traditional ‘resource’ metaphor prevents a proper
treatment of many agent-related concepts such as commitments, authorization,
and communication/interaction.

5.1 Agent UML

In [OvDPB00], an agent-oriented extension of UML, called Agent UML (AUML),
mainly concerning sequence diagrams and activity diagrams, has been proposed.
However, UML class diagrams are not modified, and no distinction between
agents and objects is made in AUML.

6 Conclusion

We have shown that the AOR modeling language can be viewed as a UML profile.
In fact, we need to define two profiles, one for external and one for internal AOR
models. It is, however, difficult to express the AOR behavior modeling construct
of reaction rules since these rules are not expressible as UML ‘stereotypes’. So,
we can only cast the AOR state modeling fragment as a UML profile. The
inclusion of reaction rules for AOR behavior modeling is not supported by the
UML extension mechanisms.

References

[EP99] H.E. Eriksson and M. Penker. Business Modeling with UML: Business
Patterns at Work. John Wiley & Sons, 1999.

[OvDPB00] J. Odell, H. van Dyke Parunak, and B. Bauer. Extending UML for agents.
In G. Wagner, Y. Lesperance, and E. Yu, editors, Proc. of the 2nd Int.
Workshop on Agent-Oriented Information Systems, Berlin, 2000. iCue Pub-
lishing.

[Sin99] M.P. Singh. An ontology for commitments in multiagent systems. Artificial
Intelligence and Law, 7:97–113, 1999.

[TW01] K. Taveter and G. Wagner. Agent-oriented enterprise modeling based
on business rules. In Proc. of 20th Int. Conf. on Conceptual Modeling
(ER2001), pages 527–540, Yokohama, Japan, November 2001. Springer-
Verlag. LNCS 2224.

[Wag02] G. Wagner. The Agent-Object-Relationship metamodel: Towards a uni-
fied conceptual view of state and behavior. Technical report, Eindhoven
Univ. of Technology, Fac. of Technology Management, Available from
http://AOR.rezearch.info, May 2002. To appear in Information Sys-
tems.

