
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 1

Classification of Model Transformation Approaches

Krzysztof Czarnecki and Simon Helsen
University of Waterloo, Canada

czarnecki@acm.org, shelsen@computer.org

Abstract
The Model-Driven Architecture is an initiative by the Object Management
Group to automate the generation of platform-specific models from platform-
independent models. While there exist some well-established standards for
modeling platform models, there is currently no matured foundation for
specifying transformations between such models. In this paper, we propose a
possible taxonomy for the classification of several existing and proposed
model transformation approaches. The taxonomy is described with a feature
model that makes the different design choices for model transformations
explicit. Based on our analysis, we propose a few major categories in which
most model transformation approaches fit.

1 Introduction
The Model-Driven Architecture (MDA) [MDA, Fra03] is an initiative by the Object Management
Group (OMG) to define an approach to software development based on modeling and automated
mapping of models to implementations. The basic MDA pattern involves defining a platform-
independent model (PIM) and its automated mapping to one or more platform-specific models
(PSMs).

The MDA approach promises a number of benefits including improved portability due to
separating the application knowledge from the mapping to a specific implementation technology,
increased productivity due to automating the mapping, improved quality due to reuse of well
proven patterns and best practices in the mapping, and improved maintainability due to better
separation of concerns and better consistency and traceability between models and code.

While the current OMG standards such as the Meta Object Facility (MOF) [MOF] and the UML
[UML] provide a well-established foundation for defining PIMs and PSMs, no such well-
established foundation exists for transforming PIMs into PSMs [GLR+02]. In 2002, in its effort
to change this situation, the OMG initiated a standardization process by issuing a Request for
Proposal (RFP) on Query / Views / Transformations (QVT) [QVT]. This process will eventually
lead to an OMG standard for defining model transformations, which will be of interest not only
for PIM-to-PSM transformations, but also for defining views on models and synchronization
between models. Driven by practical needs and the OMG’s request, a large number of approaches
to model transformation have recently been proposed.

In this paper, we propose a feature model to compare different model transformation approaches
and offer a survey and categorization of a number of existing approaches

• published in the literature: GreAT [AKS03], UMLX [Wil03], ATOM [ATOM], VIATRA
[VVP02], BOTL [BM03, MB03], ATL [BDJR03], and proposals based on relations
[AK02], and object-oriented logic-programming [GLR+02];

• submitted in response to the OMG’s QVT RFP in the revised submission round: [QVTP],
[CDI], [AST+], [IOPT], [CS];

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 2

• implemented in open-source MDA tools: Jamda [JAM], AndroMDA [AND], JET,
FUUT-je and GMT [FUU]); and

• implemented in commercial MDA tools: OptimalJ [OTPJ], ArcStyler [AS], XDE [XDE],
Codagen Architect [CA], b+m Generator Framework [B+M]

The feature model makes the different possible design choices for a model transformation
approach explicit, which is the main contribution of this paper. We do not give the detailed
classification data for each individual approach mainly because the details of the individual
approaches are a moving target. Instead, we give examples of approaches for each of the
discussed design choices. Furthermore, we propose a clustering of the existing approaches into a
few major categories that capture their different flavors and main design choices.

The paper is organized as follows. Section 2 presents our feature model of model transformation
approaches. Section 3 presents the major categories of existing transformation approaches.
Section 4 concludes the paper with some remarks on the practical applicability of the different
categories.

2 Design Features of Model Transformation Approaches
This section is the result of applying domain analysis to existing model transformation
approaches. Domain analysis is concerned with analyzing and modeling the variabilities and
commonalities of systems or concepts in a domain [Cza02]. We document our results using
feature diagrams [KCH+90, Cza98], which are a common notation in domain analysis. Fig. 1
shows the top-level feature diagram, where each subnode represents a major point of variation.
Further explanation of the notation is given in the legend of Fig. 2.

Fig. 1 Feature diagram representing the top-level areas of variation1

Essentially, a feature diagram defines a taxonomy. We should note that we do not aim for this
taxonomy to be normative. Unfortunately, the relatively new area of model transformations has
many overloaded terms, and many of the terms we use in our taxonomy are often used with
different meanings in the original descriptions of the different approaches. However, we provide
the definitions of the terms as we use them.

1 The feature diagrams in this paper have been created using CaptainFeature, a feature modeling tool
available from http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/captainfeature/

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 3

Each of the following subsections elaborates on one major area of variation from Fig. 1 by giving
its feature diagram, describing the different choices in the text, and providing examples of
approaches supporting a given feature. The combination of feature diagrams and the additional
information is referred to as a feature model. Please note that our feature model treats model-to-
model and model-to-code approaches uniformly. We will distinguish between these categories
later in Section 3.

2.1 Transformation Rules

Fig. 2 Features of transformation rules

A transformation rule consists of two parts: a left-hand side (LHS) and a right-hand side (RHS).2
The LHS accesses the source model, whereas the RHS expands in the target model. Both LHS
and RHS can be represented using any mixture of the following:

• Variables: Variables hold elements from the source and/or target models (or some
intermediate elements). They are sometimes referred to as metavariables to distinguish
them from variables that may be part of the transformed model (e.g., Java variables in
transformed Java programs).

• Patterns: Patterns are model fragments with zero or more variables.3 We can have string,
term, and graph patterns. String patterns are used in textual templates (see Section 3.1.2).

2 We view templates (see Section 3.1.2) as a special case of transformation rules. The LHS may be as
minimal as a parameter list, but may also contain some logic to access the source model. The RHS contains
at least a pattern, but may also include additional logic performing pattern composition.

Mandatory feature
Optional feature

Alternative features

Inclusive-or features

Legend:

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 4

Model-to-model transformations usually use term or graph patterns (see Section 3.2.2 and
3.2.3). Patterns can be represented using abstract or concrete syntax of the corresponding
source or target model language, and the syntax can be textual and/or graphical (see
Section 3.2.3).

• Logic: Logic expresses computations and constraints on model elements. Logic may be
non-executable or executable. Non-executable logic is used to specify a relationship
between models (e.g., [QVTP]). Executable logic can take a declarative or imperative
form. Examples of the declarative form include OCL-queries [OCL] to retrieve elements
from the source model (e.g., XDE) and the implicit creation of target elements through
constraints (e.g., [CDI]). Imperative logic has often the form of programming language
code calling repository APIs to manipulate models directly. For instance, the Java
Metadata Interface [JMI] provides a Java API to access models in a MOF repository. In
the context of the QVT standardization effort, the UML Action Semantic [UAS] can be
used to specify imperative logic in a form that can be automatically mapped to different
programming languages.

Both variables and patterns can be untyped, syntactically typed, or semantically typed. In the case
of syntactic typing, a variable is associated with a metamodel element whose instances it can
hold. Semantic typing allows stronger properties to be asserted. For example, the syntactic type of
a variable could be “expression,” whereas its semantic type could be “expression evaluating to an
integer value.” The latter is not available in the current model transformation languages, but is
supported in some metaprogramming languages such as MetaML and MetaOcaml [MML,
MOML]. We included semantic typing in the feature model to indicate possible future
development.

Four other aspects of transformation rules are:

• Syntactic Separation: The RHS and LHS may or may not be syntactically separated. In
other words, the rule syntax may specifically mark RHS and LHS as such (as in classical
rewrite rules), or there might be no syntactic distinction (as in a transformation rule
implemented as a Java program; see Section 3.2.1).

• Bidirectionality: A rule may be executable in both directions (see also Section 2.8).
• Rule parameterization: Transformation rules may have additional control parameters

allowing configuration and tuning.
• Intermediate structures: Some approaches (e.g., VIATRA and GreAT) require the

construction of intermediate model structures. This is particularly relevant when the
model transformation happens in-place within a model (see Section 2.3).

2.2 Rule Application Scoping

Fig. 3 Features of rule application scoping

3 Some approaches (e.g., [IOPT]) use the term pattern to denote any abstract specification of some
constellation of model elements in a model. This interpretation encompasses both patterns and declarative
logic in our terminology.

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 5

Rule application scoping allows a transformation to restrict the parts of a model that participate in
the transformation. Some approaches support flexible source model scoping (e.g. XDE and
GreAT), where a scope smaller than the entire source model can be set. The latter can be
important for performance reasons. The target scope is the scope of the target model, in which the
RHS will be expanded (e.g., XDE).

2.3 Relationship between Source and Target

Fig. 4 Features of the relationship between source and target

Some approaches mandate the creation of a new target model that has to be separate from the
source (e.g., [CDI]). In some other approaches, source and target are always the same model, i.e.,
they only support in-place update (e.g., VIATRA, GreAT). Yet other approaches (e.g., XDE)
allow the target model to be a new model or an existing one, which could be the original source
model. The latter implies in-place update. Furthermore, an approach could allow a destructive
update of the existing target or an update by extension only, i.e., where existing model elements
cannot be removed. Approaches using non-deterministic selection and fixpoint iteration
scheduling (see Section 2.5) may restrict in-place update to extension in order to ensure
termination (e.g., VIATRA).

2.4 Rule Application Strategy

Fig. 5 Features of rule application strategy

A rule needs to be applied to a specific location within its source scope. Since there may be more
than one match for a rule within a given source scope, we need an application strategy. The
strategy could be deterministic, non-deterministic or even interactive. For example, a
deterministic strategy could exploit some standard traversal strategy (such as depth-first) over the
containment hierarchy in the source. Stratego [STR] is an example of a term rewriting language
with rich mechanisms to express traversal in tree structures. Examples of non-deterministic
strategies include one-point application, where a rule is applied to one non-deterministically
selected location, and concurrent application, where one rule is applied concurrently to all

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 6

matching locations in the source (e.g., VIATRA). Sometimes, rule application is determined
interactively (e.g. XDE).

The target location for a rule is usually deterministic. In the case of in-place update, the source
location becomes the target location (e.g. VIATRA or GreAT). In an approach with separate
source and target models, traceability links can be used to determine the target (e.g. [CDI]): A
rule may follow the traceability link to some target element that was created by some other rule
and use the element as its own target.

2.5 Rule Scheduling

Fig. 6 Features of rule scheduling

Scheduling mechanisms determine the order in which individual rules are applied. The
scheduling mechanism can vary in four main areas:

• Form: The scheduling aspect can be expressed implicitly or explicitly. Implicit
scheduling implies that the user has no explicit control on the scheduling algorithm
defined by the tool (e.g., BOTL and OptimalJ). The only way a user can influence the
system-defined scheduling algorithm is by designing the patterns and logic of the rules to
guarantee certain execution orders. For example, a given rule could check for some
information that only some other rule would produce. Explicit scheduling has dedicated
constructs to explicitly control the execution order. Explicit scheduling could be internal
or external. In external scheduling, there is a clear separation between the rules and the
scheduling logic (e.g., in VIATRA, rule scheduling is provided by an external finite state
machine). In contrast, internal scheduling would be a mechanism allowing a
transformation rule to directly invoke other rules (e.g., [CDI], Jamda and most template
approaches in Section 3.1.2, which offer a way to call other templates).

• Rule selection: Rules can be selected by an explicit condition (e.g. Jamda). Some
approaches allow non-deterministic choice (e.g. BOTL). Alternatively, a conflict
resolution mechanism based on priorities could be provided (although none of the
investigated approaches implement conflict resolution). Interactive rule selection is also
possible (e.g. XDE).

• Rule iteration: Rule iteration mechanisms include recursion, looping, and fixpoint
iteration (i.e., repeated application until no changes detected).

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 7

• Phasing: The transformation process may be organized into several phases, where each
phase has a specific purpose and only certain rules can be invoked in a given phase. For
example, structure-oriented approaches such as OptimalJ and [IOPT] (see Section 3.2.4)
have a separate phase to create the containment hierarchy of the target model and a
separate phase to set the attributes and references in the target.

2.6 Rule Organization

Fig. 7 Features of rule organization

Rule organization is concerned with composing and structuring multiple transformation rules. We
consider three areas of variation in this context:

• Modularity mechanisms: Some approaches allow packaging rules into modules (e.g.,
[AST+] and VIATRA). A module can import another module to access its content.

• Reuse mechanisms: Reuse mechanisms offer a way to define a rule based on one or more
other rules. In general, scheduling mechanisms can be used to define composite
transformation rules; however, some approaches offer dedicated reuse mechanisms such
as inheritance between rules (e.g. rule inheritance in [AST+], derivation in [IOPT],
extension in [CDI], specialization in [QVTP]), inheritance between modules (e.g., unit
inheritance in [AST+]), and logical composition (e.g. [QVTP]).

• Organizational structure: Rules may be organized according to the structure of the source
language (as in attribute grammars, where actions are attached to the elements of the
source language) or the target language, or they may have their own independent
organization. An example of the organization according to the structure of the target is
[IOPT]. In this approach, there is one rule for each target element type and the rules are
nested according to the containment hierarchy in the target metamodel. For example, if
the target language has a package construct in which classes can be nested, the rule for
creating packages will contain the rule for creating classes (which will contain rules for
creating attributes and methods, etc.).

2.7 Traceability Links
Transformations may record links between their source and target elements. These links can be
useful in performing impact analysis (i.e., analyzing how changing one model would affect other
related models), synchronization between models, model-based debugging (i.e., mapping the
stepwise execution of an implementation back to its high-level model), and determining the target
of a transformation (see Section 2.4).

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 8

Fig. 8 Features of tracing

Some approaches provide dedicated support for traceability (e.g., [CDI], [IOPT]), while others
expect the user to encode traceability using the same mechanisms as for adding any other kinds of
links in models (e.g., VIATRA, GreAT). Some approaches with dedicated support for traceability
require developers to manually encode the creation of traceability links in the transformation
rules (e.g., [CDI]), while other create traceability links automatically (e.g., [IOPT]). In the case of
automated support, the approach may still provide some control over how many traceability links
get created (in order to limit the amount of traceability data). Finally, there is the choice of
location where the links are stored, e.g., in the source and/or target, or separately. A preferable
approach is to store a GUID in each model element and store the traceability information separate
from the source and target.

2.8 Directionality

Fig. 9 Directionality

Transformations may be unidirectional or bidirectional. Unidirectional transformations can be
executed in one direction only, in which case a target model is computed (or updated) based on a
source model. Bidirectional transformations can be executed in both directions, which is useful in
the context of synchronization between models. Bidirectional transformations can be achieved
using bidirectional rules or by defining two separate complementary unidirectional rules, one for
each direction.

Transformation rules are usually designed to have a functional character: given some input in the
source model, they produce a concrete result in the target model. A declarative rule (i.e., one that
only uses declarative logic and/or patterns) can often be applied in the inverse direction, too.
However, since different inputs may lead to the same output, the inverse of a rule may not be a
function. In this case, the inversion could enumerate a number of possible solutions (this could

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 9

theoretically be infinite), or just establish part of the result in a concrete way (because the part
could be the same for all solutions) and use variables, defaults, or values already present in the
output for the other parts. The invertibility of a transformation depends not only on the
invertibility of the transformation rules, but also on the invertibility of the scheduling logic.
Inverting a set of rules may fail to produce any result due to non-termination.

Most of the investigated approaches do not provide for bidirectionality. Notable exceptions are
[AK02], [CS], and [QVTP]. The latter does not provide for general bidirectionality. Instead, a
transformation can be described at different levels of abstraction, where one level is invertible
and another is not.

3 Major Categories
At the top level, we distinguish between model-to-code and model-to-model transformation
approaches. In general, we can view transforming models to code as a special case of model-to-
model transformations; we only need to provide a metamodel for the target programming
language. However, for practical reasons of reusing existing compiler technology, code is often
generated simply as text, which is then fed into a compiler. For this reason, we distinguish
between model-to-code transformation (which would be better described as model-to-text since
non-code artifacts such as XML may be generated) and model-to-model transformation. Several
tools offer both model-to-model and model-to-code transformations (e.g., Jamda, XDE, and
OptimalJ).

In the model-to-code category, we distinguish between visitor-based and template-based
approaches. In the model-to-model category, we distinguish among direct-manipulation
approaches, relational approaches, graph-transformation-based approaches, structure-driven
approaches, and hybrid approaches.

3.1 Model-To-Code Approaches

3.1.1 Visitor-Based Approaches
A very basic code generation approach consists in providing some visitor mechanism to traverse
the internal representation of a model and write code to a text stream. An example of this
approach is Jamda, which is an object-oriented framework providing a set of classes to represent
UML models, an API for manipulating models, and a visitor mechanism (so called CodeWriters)
to generate code. Jamda does not support the MOF standard to define new metamodels; however,
new model element types can be introduced by subclassing the existing Java classes that represent
the predefined model element types.

3.1.2 Template-Based Approaches
The majority of currently available MDA tools support template-based model-to-code generation,
e.g., b+m Generator Framework, JET, FUUT-je, Codagen Architect, AndroMDA, ArcStyler,
OptimalJ and XDE (the latter two also provide model-to-model transformations). AndroMDA
reuses existing open-source template-based generation technology: Velocity [VELO] and
XDoclet [XD].

A template usually consists of the target text containing splices of metacode to access information
from the source and to perform code selection and iterative expansion (see [Cle01] for an
introduction to template-based code generation). According to our terminology, the LHS uses
executable logic to access source; the RHS combines untyped, string patterns with executable
logic for code selection and iterative expansion; and there is no syntactic separation between the

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 10

LHS and RHS. Template approaches usually offer user-defined scheduling in the internal form of
calling a template from within another one.

The LHS logic accessing the source model may have different forms. The logic could be simply
Java code accessing the API provided by the internal representation of the source model (e.g.,
JMI), or it could be declarative queries (e.g., in OCL or XPath [XP]). The b+m Generator
Framework propagates the idea of separating more complex source access logic (which might
need to navigate and gather information from different places of the source model) from
templates by moving them into user-defined operations of the source-model elements.

Compared to a visitor-based transformation, the structure of a template resembles more closely
the code to be generated. Templates lend themselves to iterative development as they can be
easily derived from examples. Since the template approaches discussed in this section operate on
text, the patterns they contain are untyped and can represent syntactically or semantically
incorrect code fragments. On the other hand, textual templates are independent of the target
language and simplify the generation of any textual artifacts, including documentation.

A related technology is frame processing, which extends templates with more sophisticated
adaptation and structuring mechanisms (Bassett’s frames [Bas97], XVCL [XVCL], FPL [FPL],
XFramer [Emr03], ANGIE [ANG]). To our knowledge, FPL, XFramer, and ANGIE have been
applied to generate code from models.

3.2 Model-To-Model Approaches
Model-to-model transformations translate between source and target models, which can be
instances of the same or different metamodels. All of these approaches support syntactic typing of
variables and patterns.

Most existing MDA tools provide only model-to-code transformations, which they use for
generating PSMs (in this case being just the implementation code) from PIMs. Why are model-to-
model transformations needed? When bridging large abstraction gaps between PIMs and PSMs, it
is easier to generate intermediate models rather than go straight to the target PSM. For example,
when going from a class diagram to an EJB implementation, tools such as OptimalJ would
generate an intermediate EJB component model, which contains all the necessary information to
produce the actual Java code from it. This makes the transformations more modular and
maintainable. Also, intermediate models may be needed for optimization and tuning, or at least
for debugging purposes. In addition to PIM-to-PSM transformation, model-to-model
transformations are useful for computing different views of a system model and synchronizing
them.

3.2.1 Direct-Manipulation Approaches
These approaches offer an internal model representation plus some API to manipulate it. They are
usually implemented as an object-oriented framework, which may also provide some minimal
infrastructure to organize the transformations (e.g., abstract class for transformations). However,
users have to implement transformation rules and scheduling mostly from scratch using a
programming language such as Java. Examples of this approach include Jamda and implementing
transformations directly against some MOF-compliant API (e.g., JMI).

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 11

3.2.2 Relational Approaches
This category groups declarative approaches where the main concept is mathematical relations
(e.g., [AK02], [QVTP], [CDI], declarative approaches in [GLR+02], and mapping rules in
[AST+]).

The basic idea is to state the source and target element type of a relation and specify it using
constraints. In its pure form, such specification is non-executable (e.g., [AK02], relations in
[QVTP], and mapping rules in [AST+]). However, declarative constraints can be given
executable semantics, such as in logic programming. In fact, logic programming with its
unification-based matching, search, and backtracking seems a natural choice to implement the
relational approach, where predicates can be used to describe the relations. In [GLR+02], Gerber
et al. explore the application of logic programming (in particular Mercury, a typed dialect of
Prolog, and F-logic, an object-oriented logic paradigm) to implement transformations. The QVT
proposal in [CDI] was inspired by the F-logic approach. The approach in [QVTP] distinguishes
between relations, which in their framework are bi-directional, non-executable specifications of
transformations, and mappings, which are executable, unidirectional transformations
implementing relations.

All of the relational approaches are side-effect-free. They often support backtracking (e.g.,
[GRL+02] and [QVTP]) and, in contrast to the imperative direct manipulation approaches in
Section 3.2.1, create target elements implicitly (e.g., [GRL+02] and [CDI]). Relational
specifications (e.g. [AK02], relations in [QVTP], and mapping rules in [AST+]) can be
interpreted bi-directionally. Logic-programming-based approaches also naturally support bi-
directionality. But some approaches fix the direction for executable transformations (e.g. [CDI]
and mappings in [QVTP]). Logic-programming-based approaches (e.g., [GRL+02] and [CDI])
require strict separation between source and target models, i.e., they do not allow in-place update.

3.2.3 Graph-Transformation-Based Approaches
This category of model transformation approaches draws on the theoretical work on graph
transformations. In particular, these approaches operate on typed, attributed, labeled graphs
[AEH+96], which is a kind of graphs specifically designed to represent UML-like models.
Examples of graph-transformation approaches to model transformation include VIATRA,
ATOM, GreAT, UMLX, and BOTL.

Graph transformation rules consist of a LHS graph pattern and a RHS graph pattern. The graph
patterns can be rendered in the concrete syntax of their respective source or target language (e.g.,
in VIATRA) or in the MOF abstract syntax (e.g., in BOTL). The advantage of the concrete syntax
is that it is more familiar to developers working with a given modeling language than the abstract
syntax. Also, for complex languages like UML, patterns in a concrete syntax tend to be much
more concise than patterns in the corresponding abstract syntax (see [MB03] for examples). On
the other hand, it is easy to provide a default rendering for abstract syntax that will work for any
metamodel, which is useful when no specialized concrete syntax is available.

The LHS pattern is matched in the model being transformed and replaced by the RHS pattern in
place. The LHS often contains conditions in addition to the LHS pattern, e.g., negative
conditions. Some additional logic (e.g., in string and numeric domains) is needed in order to
compute target attribute values (such as element names). GreAT offers an extended form of
patterns with multiplicities on edges and nodes. In most approaches, scheduling has an external
form and the scheduling mechanisms include non-deterministic selection, explicit condition, and

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 12

iteration (including fixpoint iterations). Fixpoint iterations are particularly useful for computing
transitive closures.

Similar to relational approaches, graph-transformation approaches are capable of expressing
model transformation in a declarative manner. However, the provision of specialized facilities
such as graph patterns and graph pattern matching differentiates graph-transformation approaches
from the relational ones.

3.2.4 Structure-Driven Approaches
Approaches in this category have two distinct phases: the first phase is concerned with creating
the hierarchical structure of the target model, whereas the second phase sets the attributes and
references in the target. The overall framework determines the scheduling and application
strategy; users are only concerned with providing the transformation rules.

An example of the structure-driven approach is the model-to-model transformation framework
provided by OptimalJ. The framework is implemented in Java and provides so-called incremental
copiers that users have to subclass to define their own transformation rules. The basic metaphor is
the idea of copying model elements from the source to the target, which then can be adapted to
achieve the desired transformation effect. The framework uses reflection to provide a declarative
interface. A transformation rule is implemented as a method with an input parameter whose type
determines the source type of the rule, and the method returns a Java object representing the class
of the target model element. Rules are not allowed to have side effects and scheduling is
completely determined by the framework.

Another structure-driven approach is [IOPT]. A special property of this approach is the target-
oriented rule organization, where there is one rule per target element type and the nesting of the
rules corresponds to the containment hierarchy in the target metamodel. The execution of this
model can be viewed as a top-down configuration of the target model.

3.2.5 Hybrid Approaches
Hybrid approaches combine different techniques from the previous categories.

The Transformation Rule Language (TRL) [AST+] is a composition of declarative and
imperative approaches. It could be also classified in the relational category, but we decided to
classify it separately because of its stronger imperative component. Similar to [QVTP], it
distinguishes between specification and implementation. A mapping rule in TRL declares a
relationship between source and target elements that is constrained by a set of invariants. They
are similar to relations in [QVTP] and fit into the relational category (Section 3.2.2). Operational
rules in TRL represent executable transformation rules. In contrast to mapping rules, operational
rules explicitly state whether a rule creates, updates, or deletes elements. Scheduling is explicit in
internal form, where a rule explicitly calls other rules in its body. Rule inheritance is supported.
Rules can be organized into modules (called units). Inheritance between modules (with
overriding) is also supported.

The Atlas Transformation Language (ATL) [BDJR03] is also a hybrid approach, which has some
similarities to TLR. A transformation rule in ATL may be fully declarative, hybrid, or fully
imperative. The LHS of a fully declarative rule (so-called source pattern) consist of a set of
syntactically typed variables with an optional OCL constraint as a filter or navigation logic. The
RHS of a fully declarative rule (so-called target pattern) contains a set of variables and some
declarative logic to bind the values of the attributes in the target elements. In a hybrid rule, the

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 13

source and/or target pattern are complemented with a block of imperative logic, which is run after
the application of the target pattern. A fully imperative rule (so-called procedure) has a name, a
set of formal parameters, and an imperative block, but no patterns. Rules are unidirectional and
support rule inheritance. ATL strictly separates source and target models; however, in-place
transformation can be simulated thanks to an automatic copy mechanism. ATL provides both
implicit and explicit scheduling. The implicit scheduling algorithm starts with calling a rule that
was designated as an entry point, which may call further rules. After completing this first phase, it
automatically checks for matches on the source patterns and executes the corresponding rules.
Finally, it executes a designated exit point. Explicit, internal scheduling is supported by the
ability to call a rule from within the imperative block of another rule.

XDE is an example of a highly hybrid approach. XDE supports model-to-model transformation
through its pattern mechanism. The original motivation for patterns in XDE was to provide
automated application of The-Gang-of-Four design patterns [GHJV95]. Consequently, the basic
concept of the XDE pattern mechanism is a parameterized collaboration, which is the UML
mechanism to model design patterns. With general model-to-model transformations as a
subsequent goal, the basic pattern mechanism evolved into a highly hybrid and rather complex
approach. A pattern is represented as a package containing the parameterized collaboration and a
number of other models that can be automatically customized and copied and/or merged into the
target using imperative Java callouts. Upon pattern application, parameters can be bound
interactively through a wizard, or they also can be bound automatically. The automatic selection
of source elements may be achieved declaratively through OCL queries or trough imperative Java
callouts. Repeated pattern application is supported through collection-typed parameters. Each
pattern application gets recorded together with all its parameter bindings, and the record can be
used to later reapply the pattern with the original parameter bindings. XDE does not put any
constraints on the relationship between source and target, i.e., creation of a new target, in-place
update, and update of another existing target model are possible. Scheduling is supported through
pattern nesting. More sophisticated scheduling has to be programmed in Java. Patterns can be
associated with JSP-like code templates (so-called scriptlets) in order to perform model-to-code
transformation.

3.2.6 Other Model-To-Model Approaches
At least two more approaches should be mentioned for completeness: the transformation
framework defined in the OMG’s Common Warehouse Metamodel (CWM) Specification
[CWM] and transformation implemented using XSLT [XSLT].

The CWM transformation framework provides a mechanism for linking source and target
elements, but the derivation of the target elements has to be implemented in some concrete
language, which is not prescribed by CWM. Effectively, CWM gives a general model, but no
actual mechanism to implement model transformations.

Since models can be serialized as XML using the XML Metadata Interchange (XMI) [XMI],
implementing model transformations using XSLT, which is a standard technology for
transforming XML, seems very attractive. Unfortunately, this approach has severe scalability
limitations. Manual implementation of model transformations in XSLT quickly leads to non-
maintainable implementations because of the verbosity and poor readability of XMI and XSLT. A
solution to overcome this problem is to generate the XSLT rules from some more declarative rule
descriptions, as demonstrated in [PBG01, PZB00]. However, even this approach suffers from
poor efficiency because of the copying required by the pass-by-value semantics of XSLT and the
poor compactness of XMI.

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 14

4 Related Work

In their review of the different OMG QVT RFP submissions, Gardner et al. [GGKH03] propose a
unified terminology to enable a comparison of the different proposals. Since their scope of
comparison is considerably different from ours, there is not much overlap in terminology. While
Gardner et al. focus on the 8 initial QVT submissions, we discuss a wider range of approaches: in
addition to the revised QVT submissions, we also discuss other approaches published in the
literature and available in tools. Another difference is that Gardner et al. discuss model queries,
views, and transformations, whereas we focus on transformations in more detail. The terms
defined in [GGKH03] that are also relevant for our classification are model transformation,
unidirectional, bidirectional, declarative, imperative, and rules.

In addition to providing the basic unifying terminology, Gardner et al. discuss practical
requirements on model transformations such as requirements scalability, simplicity, and ease of
adoption. Among others, they discuss the need to handle transformation scenarios of different
complexities, such as transformations with different origin relationships between source and
target model elements (e.g., 1:1, 1:n, n:1, and n:m). Finally, they make some recommendations
for the final QVT standard. In particular, they recommend a hybrid approach, supporting
declarative specification of simpler transformations, but also allowing for an imperative
implementation of more complex ones.

5 Discussion
Model transformation is a relatively young area. Although it is related to and builds upon the
more established fields of program transformation and metaprogramming, the use of graphical
modeling languages and the application of object-oriented metamodeling to language definition
set a new context.

While there are satisfactory solutions for transforming models to text (such as template-based
approaches), this is not the case for transforming models to models. Many new approaches to
model-to-model transformation have been proposed over the last two years, but little experience
is available to assess their effectiveness in practical applications. In this respect, we are still at the
stage of exploring possibilities and eliciting requirements. Modeling tools available on the market
are just starting to offer some model-to-model transformation capabilities, but these are still very
limited and often ad hoc, i.e., without proper theoretical foundation. Most of these tools target the
generation of EJB applications and the model transformations they offer were specifically
developed to support that goal.

In this paper, we classified the existing model-to-model transformation approaches into direct
manipulation approaches, relational approaches, graph-transformation-based approaches,
structure-driven approaches, and hybrid approaches. In the remainder of this section, we offer
some comments on the practical applicability of the different flavors of model transformation.
These comments are based on our intuition and the application examples published together with
the approaches. Because of the lack of controlled experiments and extensive practical experience,
these comments are not fully validated, but we hope that they will stimulate discussion and
further evaluation.

• Direct manipulation is obviously the most low-level approach. It offers the user little or
no support or guidance in implementing transformations. Basically all work has to be
done by the user. In the long run, this approach will become impractical.

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 15

• The structure-driven category groups pragmatic approaches that were developed in the
context of (and seem particularly well applicable to) certain kinds of applications such as
generating EJB implementations and database schemas from UML models. These
applications require a strong support for transforming models with a 1-to-1 and 1-to-n
(and sometimes n-to-1) correspondence between source and target elements. Also, in this
application context, there is typically no need for iteration (and in particular fixpointing)
in scheduling, and the scheduling can be system-defined. It is unclear how well these
approaches can support other kinds of applications.

• Graph-transformation-based approaches are inspired by heavily theoretical work in graph
transformations. These approaches are powerful and declarative, but also the most
complex ones. The complexity stems from the non-determinism in scheduling and
application strategy, which requires careful consideration of termination of the
transformation process and the rule application ordering (including the property of
confluence). There is a large amount of theoretical work and some experience with
research prototypes. However, experience with practical applications of these approaches
is still limited. It remains to be seen how well the complexities of these approaches will
be received in practice.

• Relational approaches seem to strike a well balance between flexibility and declarative
expression. They provide flexible scheduling and good control of non-determinism.
Three of the five current QVT submissions fit into this category ([CDI], [QVTP], and
partly [AST+]).

• Hybrid approaches allow the user to mix and match different concepts and paradigms
depending on the application. Practical approaches are very likely to have the hybrid
character.

Evaluation of the different design options for a model transformation approach will require more
experiments and practical experience. Establishing of a comprehensive collection of benchmark
problems would be a valuable next step in that direction.

References

[AEH+96] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D. Kuske,

D. Plump, A. Schürr, and G. Taentzer. Graph Transformation for Specification and
Programming. Technical Report 7/96, Universität Bremen, 1996, see
http://citeseer.nj.nec.com/article/andries96graph.html

[AK02] D. H. Akehurst, S.Kent. A Relational Approach to Defining Transformations in a
Metamodel. In J.-M. Jézéquel, H. Hussmann, S. Cook (Eds.): UML 2002 - The
Unified Modeling Language 5th International Conference, Dresden, Germany,
September 30 - October 4, 2002. Proceedings, LNCS 2460, 243-258, 2002.

[AKS03] A. Agrawal, G. Karsai and F. Shi. Graph Transformations on Domain-Specific
Models. Under consideration for publication in the Journal on Software and Systems
Modeling, 2003

[AND] AndroMDA 2.0.3, July 2003, http://www.andromda.org
[ANG] Frame Processor ANGIE, Delta Software Technology,

http://www.d-s-t-g.com/neu/pages/pageseng/et/common/techn_angie_frmset.htm
[AS] ArcStyler 4.0, September 2004, http://www.arcstyler.com/
[AST+] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Corporation, et al. MOF

Query/Views/Transformations, Revised Submission. OMG Document: ad/03-08-05
[ATOM] ATOM3: A Tool for Multi-Paradigm modeling, http://atom3.cs.mcgill.ca/
[B+M] b+m ArchitectureWare, Generator Framework, http://www.architectureware.de

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 16

[Bas97] P.G. Bassett. Framing Software Reuse: Lessons from the Real World. Prentice Hall,
Inc., 1997

[BDJR03] J. Bézivin, G. Dupé, F. Jouault, and J. E. Rougui. First experiments with the ATL
model transformation language: Transforming XSLT into XQuery. In the online
proceedings of the OOPSLA’03 Workshop on Generative Techniques in the Context
of the MDA, http://www.softmetaware.com/oopsla2003/mda-workshop.html

[BM03] P. Braun and F. Marschall. The Bi-directional Object-Oriented Transformation
Language. Technical Report, Technische Universität München, TUM-I0307, May
2003

[CA] Codagen Architect 3.0, http://www.codagen.com/products/architect/default.htm
[CDI] CBOP, DSTC, and IBM. MOF Query/Views/Transformations, Revised Submission.

OMG Document: ad/03-08-03
[Cle01] C. Cleaveland. Program Generators with XML and Java. Prentice-Hall, 2001, see

http://www.craigc.com/pg/
[CS] Compuware Corporation and Sun Microsystems, MOF

Query/Views/Transformations, Revised Submission. OMG Document: ad/03-08-07
[CWM] OMG, The Common Warehouse Model 1.1., OMG Document: formal/2003-02-03,
[Cza98] K. Czarnecki. K. Czarnecki. Generative Programming: Principles and Techniques of

Software Engineering Based on Automated Configuration and Fragment-Based
Component Models. Ph.D. Thesis, Computer Science Department, Technical
University of Ilmenau, Ilmanau, Germany, 1998, http://www.prakinf.tu-
ilmenau.de/~czarn/diss/

[Cza02] K. Czarnecki. Domain Engineering. Chapter in the Wiley Software Engineering
Encyclopedia, Second Edition, John Marciniak, (Eds.), Wiley and Sons, Inc.,
February 2002, pp. 433-444

[Emr03] M. Emrich. Generative Programming Using Frame Technology. Diploma Thesis,
University of Applied Sciences Kaiserslauten, Department of Computer Science and
Micro-System Engineering, Zweibrücken 2003, see
http://www.geocities.com/mslerm/xframerf.htm

[FPL] Frame-Processing-Language, http://sourceforge.net/projects/fpl
[Fra03] D. S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.

John Wiley & Sons, 2003
[FUU] FUUT-je, hosted at the Eclipse Generative Model Transformer (GMT) project

website, http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-
home/download/index.html

[GGKH03] T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A review of OMG MOF 2.0
Query / Views / Transformations Submissions and Recommendations towards the
final Standard. OMG Document: ad/03-08-02

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995

[GLR+02] A. Gerber, M. Lawley, K. Raymond, J. Steel, A. Wood. Transformation: The
Missing Link of MDA, In A. Corradini, H. Ehrig, H.-J. Kreowski, G. Rozenberg
(Eds.): Graph Transformation: First International Conference (ICGT 2002),
Barcelona, Spain, October 7-12, 2002. Proceedings. LNCS vol. 2505, Springer-
Verlag, 2002, pp. 90 - 105

[IOPT] Interactive Objects and Project Technology, MOF Query/Views/Transformations,
Revised Submission. OMG Document: ad/03-08-11, ad/03-08-12, ad/03-08-13

[JAM] Jamda: The Java Model Driven Architecture 0.2, May 2003,
http://sourceforge.net/projects/jamda/

OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture

 17

[JET] Java Emitter Templates (JET). Part of the Eclipse Modeling Framework, see JET
Tutorial by Remko Pompa at http://eclipse.org/articles/Article-
JET2/jet_tutorial2.html

[JMI] Java Metadata Interface 1.0, July 2002, http://java.sun.com/products/jmi
[KCH+90] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
November 1990

[MB03] F. Marschall and P. Braun. Model Transformations for the MDA with BOTL. In
[Ren03], pp. 25-36

[MDA] The Model-Driven Architecture, Guide Version 1.0.1, OMG Document: omg/2003-
06-01

[MML] Meta ML, http://www.cse.ogi.edu/PacSoft/projects/metaml/
[MOF] OMG, Meta Object Facility 1.4, OMG Document: formal/02-04-03
[MOML] Meta Objective-Caml, http://www.cs.rice.edu/~taha/MetaOCaml/
[OCL] OMG, The Object Constraint Language Specification 2.0, OMG Document: ad/03-

01-07
[OPTJ] OptimalJ 3.0, User's Guide, http://www.compuware.com/products/optimalj
[PBG01] M. Peltier, J. Bézivin, and G. Guillaume. MTRANS: A general framework based on

XSLT for model transformations. In WTUML’01, Proceedings of the Workshop on
Transformations in UML, Genova, Italy, April 2001

[PZB00] M. Peltier, F. Ziserman, and J. Bézivin. On levels of model transformation. In XML
Europe 2000, Paris, France, June 2000, Graphic Communications Association, pp.
1–17

[QVT] Object Management Group, MOF 2.0 Query / Views / Transformations RFP, OMG
Document: ad/2002-04-10, revised on April 24, 2002

[QVTP] QVT-Partners. MOF Query/Views/Transformations, Revised Submission. OMG
Document: ad/2003-08-08

[Ren03] A. Rensink (Ed.) Proceedings of the Workshop on Model Driven Architecture:
Foundations and Applications, University of Twente, Enschede, The Netherlands,
June 26-27, 2003, CTIT Technical Report TR–CTIT–03–27, University of Twente,
2003, http://trese.cs.utwente.nl/mdafa2003

[STR] Strategies for Program Transformation, http://www.stratego-language.org
[UAS] Object Management Group. Action Semantics for the UML, 2001. ad/2001-08-04
[UML] Object Management Group, The Unified Modeling Language 1.5, OMG Document:

formal/03-03-01
[VELO] Velocity 1.3.1, The Apache Jakarta Project, March 2003,

http://jakarta.apache.org/velocity/
[VVP02] D. Varro, G. Varro and A. Pataricza. Designing the automatic transformation of

visual languages. Science of Computer Programming, vol. 44(2):pp. 205--227, 2002.
[Wil03] E. D. Willink. UMLX: A graphical transformation language for MDA. In [Ren03],

pp. 13-24
[XD] XDoclet - Attribute Oriented Programming, http://xdoclet.sourceforge.net/
[XDE] Rational XDE, http://www.rational.com/products/xde
[XMI] OMG, XML Metadata Interchange Specification 1.2, OMG Document: formal/02-

01-01
[XP] W3C, XML Path Language Version 1.0, November 1999,

http://www.w3.org/TR/xpath
[XSLT] W3C, XSL Transformations (XSLT) Version 1.0, November 1999,

http://www.w3.org/TR/xslt
[XVCL] XML-based Variant Configuration Language, http://fxvcl.sourceforge.net/

