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Abstract 
The Model-Driven Architecture is an initiative by the Object Management 
Group to automate the generation of platform-specific models from platform-
independent models. While there exist some well-established standards for 
modeling platform models, there is currently no matured foundation for 
specifying transformations between such models. In this paper, we propose a 
possible taxonomy for the classification of several existing and proposed 
model transformation approaches. The taxonomy is described with a feature 
model that makes the different design choices for model transformations 
explicit. Based on our analysis, we propose a few major categories in which 
most model transformation approaches fit.  

1 Introduction 
The Model-Driven Architecture (MDA) [MDA, Fra03] is an initiative by the Object Management 
Group (OMG) to define an approach to software development based on modeling and automated 
mapping of models to implementations. The basic MDA pattern involves defining a platform-
independent model (PIM) and its automated mapping to one or more platform-specific models 
(PSMs). 
 
The MDA approach promises a number of benefits including improved portability due to 
separating the application knowledge from the mapping to a specific implementation technology, 
increased productivity due to automating the mapping, improved quality due to reuse of well 
proven patterns and best practices in the mapping, and improved maintainability due to better 
separation of concerns and better consistency and traceability between models and code. 
 
While the current OMG standards such as the Meta Object Facility (MOF) [MOF] and the UML 
[UML] provide a well-established foundation for defining PIMs and PSMs, no such well-
established foundation exists for transforming PIMs into PSMs [GLR+02]. In 2002, in its effort 
to change this situation, the OMG initiated a standardization process by issuing a Request for 
Proposal (RFP) on Query / Views / Transformations (QVT) [QVT]. This process will eventually 
lead to an OMG standard for defining model transformations, which will be of interest not only 
for PIM-to-PSM transformations, but also for defining views on models and synchronization 
between models. Driven by practical needs and the OMG’s request, a large number of approaches 
to model transformation have recently been proposed. 
 
In this paper, we propose a feature model to compare different model transformation approaches 
and offer a survey and categorization of a number of existing approaches 

• published in the literature: GreAT [AKS03], UMLX [Wil03], ATOM [ATOM], VIATRA 
[VVP02], BOTL [BM03, MB03], ATL [BDJR03], and proposals based on relations 
[AK02], and object-oriented logic-programming [GLR+02]; 

• submitted in response to the OMG’s QVT RFP in the revised submission round: [QVTP], 
[CDI], [AST+], [IOPT], [CS]; 
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• implemented in open-source MDA tools: Jamda [JAM], AndroMDA [AND], JET, 
FUUT-je and GMT [FUU]); and 

• implemented in commercial MDA tools: OptimalJ [OTPJ], ArcStyler [AS], XDE [XDE], 
Codagen Architect [CA], b+m Generator Framework [B+M] 

 
The feature model makes the different possible design choices for a model transformation 
approach explicit, which is the main contribution of this paper. We do not give the detailed 
classification data for each individual approach mainly because the details of the individual 
approaches are a moving target. Instead, we give examples of approaches for each of the 
discussed design choices. Furthermore, we propose a clustering of the existing approaches into a 
few major categories that capture their different flavors and main design choices. 
 
The paper is organized as follows. Section 2 presents our feature model of model transformation 
approaches. Section 3 presents the major categories of existing transformation approaches. 
Section 4 concludes the paper with some remarks on the practical applicability of the different 
categories. 

2 Design Features of Model Transformation Approaches 
This section is the result of applying domain analysis to existing model transformation 
approaches. Domain analysis is concerned with analyzing and modeling the variabilities and 
commonalities of systems or concepts in a domain [Cza02]. We document our results using 
feature diagrams [KCH+90, Cza98], which are a common notation in domain analysis. Fig. 1 
shows the top-level feature diagram, where each subnode represents a major point of variation. 
Further explanation of the notation is given in the legend of Fig. 2. 
 
 

 
Fig. 1  Feature diagram representing the top-level areas of variation1 

 
Essentially, a feature diagram defines a taxonomy. We should note that we do not aim for this 
taxonomy to be normative. Unfortunately, the relatively new area of model transformations has 
many overloaded terms, and many of the terms we use in our taxonomy are often used with 
different meanings in the original descriptions of the different approaches. However, we provide 
the definitions of the terms as we use them. 
 
                                                 
1 The feature diagrams in this paper have been created using CaptainFeature, a feature modeling tool 
available from http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/captainfeature/ 
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Each of the following subsections elaborates on one major area of variation from Fig. 1 by giving 
its feature diagram, describing the different choices in the text, and providing examples of 
approaches supporting a given feature. The combination of feature diagrams and the additional 
information is referred to as a feature model. Please note that our feature model treats model-to-
model and model-to-code approaches uniformly. We will distinguish between these categories 
later in Section 3. 

2.1 Transformation Rules 
 

  
Fig. 2   Features of transformation rules 

 
A transformation rule consists of two parts: a left-hand side (LHS) and a right-hand side (RHS).2 
The LHS accesses the source model, whereas the RHS expands in the target model. Both LHS 
and RHS can be represented using any mixture of the following: 

• Variables: Variables hold elements from the source and/or target models (or some 
intermediate elements). They are sometimes referred to as metavariables to distinguish 
them from variables that may be part of the transformed model (e.g., Java variables in 
transformed Java programs). 

• Patterns: Patterns are model fragments with zero or more variables.3 We can have string, 
term, and graph patterns. String patterns are used in textual templates (see Section 3.1.2). 

                                                 
2 We view templates (see Section 3.1.2) as a special case of transformation rules. The LHS may be as 
minimal as a parameter list, but may also contain some logic to access the source model. The RHS contains 
at least a pattern, but may also include additional logic performing pattern composition. 

Mandatory feature 
Optional feature 

Alternative features 

Inclusive-or features 

Legend: 
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Model-to-model transformations usually use term or graph patterns (see Section 3.2.2 and 
3.2.3). Patterns can be represented using abstract or concrete syntax of the corresponding 
source or target model language, and the syntax can be textual and/or graphical (see 
Section 3.2.3). 

• Logic: Logic expresses computations and constraints on model elements. Logic may be 
non-executable or executable. Non-executable logic is used to specify a relationship 
between models (e.g., [QVTP]). Executable logic can take a declarative or imperative 
form. Examples of the declarative form include OCL-queries [OCL] to retrieve elements 
from the source model (e.g., XDE) and the implicit creation of target elements through 
constraints (e.g., [CDI]). Imperative logic has often the form of programming language 
code calling repository APIs to manipulate models directly. For instance, the Java 
Metadata Interface [JMI] provides a Java API to access models in a MOF repository. In 
the context of the QVT standardization effort, the UML Action Semantic [UAS] can be 
used to specify imperative logic in a form that can be automatically mapped to different 
programming languages. 

 
Both variables and patterns can be untyped, syntactically typed, or semantically typed. In the case 
of syntactic typing, a variable is associated with a metamodel element whose instances it can 
hold. Semantic typing allows stronger properties to be asserted. For example, the syntactic type of 
a variable could be “expression,” whereas its semantic type could be “expression evaluating to an 
integer value.” The latter is not available in the current model transformation languages, but is 
supported in some metaprogramming languages such as MetaML and MetaOcaml [MML, 
MOML]. We included semantic typing in the feature model to indicate possible future 
development.  
 
Four other aspects of transformation rules are: 

• Syntactic Separation: The RHS and LHS may or may not be syntactically separated. In 
other words, the rule syntax may specifically mark RHS and LHS as such (as in classical 
rewrite rules), or there might be no syntactic distinction (as in a transformation rule 
implemented as a Java program; see Section 3.2.1). 

• Bidirectionality: A rule may be executable in both directions (see also Section 2.8). 
• Rule parameterization: Transformation rules may have additional control parameters 

allowing configuration and tuning. 
• Intermediate structures: Some approaches (e.g., VIATRA and GreAT) require the 

construction of intermediate model structures. This is particularly relevant when the 
model transformation happens in-place within a model (see Section 2.3). 

2.2 Rule Application Scoping 
 

 
Fig. 3   Features of rule application scoping 

                                                                                                                                                 
3 Some approaches (e.g., [IOPT]) use the term pattern to denote any abstract specification of some 
constellation of model elements in a model. This interpretation encompasses both patterns and declarative 
logic in our terminology. 
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Rule application scoping allows a transformation to restrict the parts of a model that participate in 
the transformation. Some approaches support flexible source model scoping (e.g. XDE and 
GreAT), where a scope smaller than the entire source model can be set. The latter can be 
important for performance reasons. The target scope is the scope of the target model, in which the 
RHS will be expanded (e.g., XDE). 

2.3 Relationship between Source and Target 
 

 
Fig. 4   Features of the relationship between source and target 

Some approaches mandate the creation of a new target model that has to be separate from the 
source (e.g., [CDI]). In some other approaches, source and target are always the same model, i.e., 
they only support in-place update (e.g., VIATRA, GreAT). Yet other approaches (e.g., XDE) 
allow the target model to be a new model or an existing one, which could be the original source 
model. The latter implies in-place update. Furthermore, an approach could allow a destructive 
update of the existing target or an update by extension only, i.e., where existing model elements 
cannot be removed. Approaches using non-deterministic selection and fixpoint iteration 
scheduling (see Section 2.5) may restrict in-place update to extension in order to ensure 
termination (e.g., VIATRA). 

2.4 Rule Application Strategy 

 
Fig. 5   Features of rule application strategy 

A rule needs to be applied to a specific location within its source scope. Since there may be more 
than one match for a rule within a given source scope, we need an application strategy. The 
strategy could be deterministic, non-deterministic or even interactive. For example, a 
deterministic strategy could exploit some standard traversal strategy (such as depth-first) over the 
containment hierarchy in the source. Stratego [STR] is an example of a term rewriting language 
with rich mechanisms to express traversal in tree structures. Examples of non-deterministic 
strategies include one-point application, where a rule is applied to one non-deterministically 
selected location, and concurrent application, where one rule is applied concurrently to all 
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matching locations in the source (e.g., VIATRA). Sometimes, rule application is determined 
interactively (e.g. XDE).  
 
The target location for a rule is usually deterministic. In the case of in-place update, the source 
location becomes the target location (e.g. VIATRA or GreAT). In an approach with separate 
source and target models, traceability links can be used to determine the target (e.g. [CDI]): A 
rule may follow the traceability link to some target element that was created by some other rule 
and use the element as its own target.  

2.5 Rule Scheduling 
 

  
Fig. 6   Features of rule scheduling 

Scheduling mechanisms determine the order in which individual rules are applied. The 
scheduling mechanism can vary in four main areas: 

• Form: The scheduling aspect can be expressed implicitly or explicitly. Implicit 
scheduling implies that the user has no explicit control on the scheduling algorithm 
defined by the tool (e.g., BOTL and OptimalJ). The only way a user can influence the 
system-defined scheduling algorithm is by designing the patterns and logic of the rules to 
guarantee certain execution orders. For example, a given rule could check for some 
information that only some other rule would produce. Explicit scheduling has dedicated 
constructs to explicitly control the execution order. Explicit scheduling could be internal 
or external. In external scheduling, there is a clear separation between the rules and the 
scheduling logic (e.g., in VIATRA, rule scheduling is provided by an external finite state 
machine). In contrast, internal scheduling would be a mechanism allowing a 
transformation rule to directly invoke other rules (e.g., [CDI], Jamda and most template 
approaches in Section 3.1.2, which offer a way to call other templates).  

• Rule selection: Rules can be selected by an explicit condition (e.g. Jamda). Some 
approaches allow non-deterministic choice (e.g. BOTL). Alternatively, a conflict 
resolution mechanism based on priorities could be provided (although none of the 
investigated approaches implement conflict resolution). Interactive rule selection is also 
possible (e.g. XDE). 

• Rule iteration: Rule iteration mechanisms include recursion, looping, and fixpoint 
iteration (i.e., repeated application until no changes detected).  
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• Phasing: The transformation process may be organized into several phases, where each 
phase has a specific purpose and only certain rules can be invoked in a given phase. For 
example, structure-oriented approaches such as OptimalJ and [IOPT] (see Section 3.2.4) 
have a separate phase to create the containment hierarchy of the target model and a 
separate phase to set the attributes and references in the target. 

 

2.6 Rule Organization 
 

 
Fig. 7   Features of rule organization 

Rule organization is concerned with composing and structuring multiple transformation rules. We 
consider three areas of variation in this context: 

• Modularity mechanisms: Some approaches allow packaging rules into modules (e.g., 
[AST+] and VIATRA). A module can import another module to access its content. 

• Reuse mechanisms: Reuse mechanisms offer a way to define a rule based on one or more 
other rules. In general, scheduling mechanisms can be used to define composite 
transformation rules; however, some approaches offer dedicated reuse mechanisms such 
as inheritance between rules (e.g. rule inheritance in [AST+], derivation in [IOPT], 
extension in [CDI], specialization in [QVTP]), inheritance between modules (e.g., unit 
inheritance in [AST+]), and logical composition (e.g. [QVTP]). 

• Organizational structure: Rules may be organized according to the structure of the source 
language (as in attribute grammars, where actions are attached to the elements of the 
source language) or the target language, or they may have their own independent 
organization. An example of the organization according to the structure of the target is 
[IOPT]. In this approach, there is one rule for each target element type and the rules are 
nested according to the containment hierarchy in the target metamodel. For example, if 
the target language has a package construct in which classes can be nested, the rule for 
creating packages will contain the rule for creating classes (which will contain rules for 
creating attributes and methods, etc.).   

 

2.7 Traceability Links 
Transformations may record links between their source and target elements. These links can be 
useful in performing impact analysis (i.e., analyzing how changing one model would affect other 
related models), synchronization between models, model-based debugging (i.e., mapping the 
stepwise execution of an implementation back to its high-level model), and determining the target 
of a transformation (see Section 2.4).  
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Fig. 8   Features of tracing 

Some approaches provide dedicated support for traceability (e.g., [CDI], [IOPT]), while others 
expect the user to encode traceability using the same mechanisms as for adding any other kinds of 
links in models (e.g., VIATRA, GreAT). Some approaches with dedicated support for traceability 
require developers to manually encode the creation of traceability links in the transformation 
rules (e.g., [CDI]), while other create traceability links automatically (e.g., [IOPT]). In the case of 
automated support, the approach may still provide some control over how many traceability links 
get created (in order to limit the amount of traceability data). Finally, there is the choice of 
location where the links are stored, e.g., in the source and/or target, or separately. A preferable 
approach is to store a GUID in each model element and store the traceability information separate 
from the source and target. 

2.8 Directionality 
 

 
Fig. 9 Directionality 

Transformations may be unidirectional or bidirectional. Unidirectional transformations can be 
executed in one direction only, in which case a target model is computed (or updated) based on a 
source model. Bidirectional transformations can be executed in both directions, which is useful in 
the context of synchronization between models. Bidirectional transformations can be achieved 
using bidirectional rules or by defining two separate complementary unidirectional rules, one for 
each direction. 
 
Transformation rules are usually designed to have a functional character: given some input in the 
source model, they produce a concrete result in the target model. A declarative rule (i.e., one that 
only uses declarative logic and/or patterns) can often be applied in the inverse direction, too. 
However, since different inputs may lead to the same output, the inverse of a rule may not be a 
function. In this case, the inversion could enumerate a number of possible solutions (this could 
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theoretically be infinite), or just establish part of the result in a concrete way (because the part 
could be the same for all solutions) and use variables, defaults, or values already present in the 
output for the other parts. The invertibility of a transformation depends not only on the 
invertibility of the transformation rules, but also on the invertibility of the scheduling logic. 
Inverting a set of rules may fail to produce any result due to non-termination. 
 
Most of the investigated approaches do not provide for bidirectionality. Notable exceptions are 
[AK02], [CS], and [QVTP]. The latter does not provide for general bidirectionality. Instead, a 
transformation can be described at different levels of abstraction, where one level is invertible 
and another is not. 

3 Major Categories 
At the top level, we distinguish between model-to-code and model-to-model transformation 
approaches. In general, we can view transforming models to code as a special case of model-to-
model transformations; we only need to provide a metamodel for the target programming 
language. However, for practical reasons of reusing existing compiler technology, code is often 
generated simply as text, which is then fed into a compiler. For this reason, we distinguish 
between model-to-code transformation (which would be better described as model-to-text since 
non-code artifacts such as XML may be generated) and model-to-model transformation. Several 
tools offer both model-to-model and model-to-code transformations (e.g., Jamda, XDE, and 
OptimalJ). 
 
In the model-to-code category, we distinguish between visitor-based and template-based 
approaches. In the model-to-model category, we distinguish among direct-manipulation 
approaches, relational approaches, graph-transformation-based approaches, structure-driven 
approaches, and hybrid approaches. 

3.1 Model-To-Code Approaches 

3.1.1 Visitor-Based Approaches 
A very basic code generation approach consists in providing some visitor mechanism to traverse 
the internal representation of a model and write code to a text stream. An example of this 
approach is Jamda, which is an object-oriented framework providing a set of classes to represent 
UML models, an API for manipulating models, and a visitor mechanism (so called CodeWriters) 
to generate code. Jamda does not support the MOF standard to define new metamodels; however, 
new model element types can be introduced by subclassing the existing Java classes that represent 
the predefined model element types. 

3.1.2 Template-Based Approaches 
The majority of currently available MDA tools support template-based model-to-code generation, 
e.g., b+m Generator Framework, JET, FUUT-je, Codagen Architect, AndroMDA, ArcStyler, 
OptimalJ and XDE (the latter two also provide model-to-model transformations). AndroMDA 
reuses existing open-source template-based generation technology: Velocity [VELO] and 
XDoclet [XD]. 
 
A template usually consists of the target text containing splices of metacode to access information 
from the source and to perform code selection and iterative expansion (see [Cle01] for an 
introduction to template-based code generation). According to our terminology, the LHS uses 
executable logic to access source; the RHS combines untyped, string patterns with executable 
logic for code selection and iterative expansion; and there is no syntactic separation between the 



OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture 
 

 10

LHS and RHS. Template approaches usually offer user-defined scheduling in the internal form of 
calling a template from within another one. 
 
The LHS logic accessing the source model may have different forms. The logic could be simply 
Java code accessing the API provided by the internal representation of the source model (e.g., 
JMI), or it could be declarative queries (e.g., in OCL or XPath [XP]). The b+m Generator 
Framework propagates the idea of separating more complex source access logic (which might 
need to navigate and gather information from different places of the source model) from 
templates by moving them into user-defined operations of the source-model elements. 
 
Compared to a visitor-based transformation, the structure of a template resembles more closely 
the code to be generated. Templates lend themselves to iterative development as they can be 
easily derived from examples. Since the template approaches discussed in this section operate on 
text, the patterns they contain are untyped and can represent syntactically or semantically 
incorrect code fragments. On the other hand, textual templates are independent of the target 
language and simplify the generation of any textual artifacts, including documentation. 
 
A related technology is frame processing, which extends templates with more sophisticated 
adaptation and structuring mechanisms (Bassett’s frames [Bas97], XVCL [XVCL], FPL [FPL], 
XFramer [Emr03], ANGIE [ANG]). To our knowledge, FPL, XFramer, and ANGIE have been 
applied to generate code from models. 

3.2 Model-To-Model Approaches 
Model-to-model transformations translate between source and target models, which can be 
instances of the same or different metamodels. All of these approaches support syntactic typing of 
variables and patterns. 
 
Most existing MDA tools provide only model-to-code transformations, which they use for 
generating PSMs (in this case being just the implementation code) from PIMs. Why are model-to-
model transformations needed? When bridging large abstraction gaps between PIMs and PSMs, it 
is easier to generate intermediate models rather than go straight to the target PSM. For example, 
when going from a class diagram to an EJB implementation, tools such as OptimalJ would 
generate an intermediate EJB component model, which contains all the necessary information to 
produce the actual Java code from it. This makes the transformations more modular and 
maintainable. Also, intermediate models may be needed for optimization and tuning, or at least 
for debugging purposes. In addition to PIM-to-PSM transformation, model-to-model 
transformations are useful for computing different views of a system model and synchronizing 
them. 

3.2.1 Direct-Manipulation Approaches 
These approaches offer an internal model representation plus some API to manipulate it. They are 
usually implemented as an object-oriented framework, which may also provide some minimal 
infrastructure to organize the transformations (e.g., abstract class for transformations). However, 
users have to implement transformation rules and scheduling mostly from scratch using a 
programming language such as Java. Examples of this approach include Jamda and implementing 
transformations directly against some MOF-compliant API (e.g., JMI). 
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3.2.2 Relational Approaches 
This category groups declarative approaches where the main concept is mathematical relations 
(e.g., [AK02], [QVTP], [CDI], declarative approaches in [GLR+02], and mapping rules in 
[AST+]). 
 
The basic idea is to state the source and target element type of a relation and specify it using 
constraints. In its pure form, such specification is non-executable (e.g., [AK02], relations in 
[QVTP], and mapping rules in [AST+]). However, declarative constraints can be given 
executable semantics, such as in logic programming. In fact, logic programming with its 
unification-based matching, search, and backtracking seems a natural choice to implement the 
relational approach, where predicates can be used to describe the relations. In [GLR+02], Gerber 
et al. explore the application of logic programming (in particular Mercury, a typed dialect of 
Prolog, and F-logic, an object-oriented logic paradigm) to implement transformations. The QVT 
proposal in [CDI] was inspired by the F-logic approach. The approach in [QVTP] distinguishes 
between relations, which in their framework are bi-directional, non-executable specifications of 
transformations, and mappings, which are executable, unidirectional transformations 
implementing relations. 
 
All of the relational approaches are side-effect-free. They often support backtracking (e.g., 
[GRL+02] and [QVTP]) and, in contrast to the imperative direct manipulation approaches in 
Section 3.2.1, create target elements implicitly (e.g., [GRL+02] and [CDI]). Relational 
specifications (e.g. [AK02], relations in [QVTP], and mapping rules in [AST+]) can be 
interpreted bi-directionally. Logic-programming-based approaches also naturally support bi-
directionality. But some approaches fix the direction for executable transformations (e.g. [CDI] 
and mappings in [QVTP]). Logic-programming-based approaches (e.g., [GRL+02] and [CDI]) 
require strict separation between source and target models, i.e., they do not allow in-place update. 

3.2.3 Graph-Transformation-Based Approaches 
This category of model transformation approaches draws on the theoretical work on graph 
transformations. In particular, these approaches operate on typed, attributed, labeled graphs 
[AEH+96], which is a kind of graphs specifically designed to represent UML-like models. 
Examples of graph-transformation approaches to model transformation include VIATRA, 
ATOM, GreAT, UMLX, and BOTL. 
 
Graph transformation rules consist of a LHS graph pattern and a RHS graph pattern. The graph 
patterns can be rendered in the concrete syntax of their respective source or target language (e.g., 
in VIATRA) or in the MOF abstract syntax (e.g., in BOTL). The advantage of the concrete syntax 
is that it is more familiar to developers working with a given modeling language than the abstract 
syntax. Also, for complex languages like UML, patterns in a concrete syntax tend to be much 
more concise than patterns in the corresponding abstract syntax (see [MB03] for examples). On 
the other hand, it is easy to provide a default rendering for abstract syntax that will work for any 
metamodel, which is useful when no specialized concrete syntax is available. 
 
The LHS pattern is matched in the model being transformed and replaced by the RHS pattern in 
place. The LHS often contains conditions in addition to the LHS pattern, e.g., negative 
conditions. Some additional logic (e.g., in string and numeric domains) is needed in order to 
compute target attribute values (such as element names). GreAT offers an extended form of 
patterns with multiplicities on edges and nodes. In most approaches, scheduling has an external 
form and the scheduling mechanisms include non-deterministic selection, explicit condition, and 



OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture 
 

 12

iteration (including fixpoint iterations). Fixpoint iterations are particularly useful for computing 
transitive closures. 
 
Similar to relational approaches, graph-transformation approaches are capable of expressing 
model transformation in a declarative manner. However, the provision of specialized facilities 
such as graph patterns and graph pattern matching differentiates graph-transformation approaches 
from the relational ones. 

3.2.4 Structure-Driven Approaches 
Approaches in this category have two distinct phases: the first phase is concerned with creating 
the hierarchical structure of the target model, whereas the second phase sets the attributes and 
references in the target. The overall framework determines the scheduling and application 
strategy; users are only concerned with providing the transformation rules. 
 
An example of the structure-driven approach is the model-to-model transformation framework 
provided by OptimalJ. The framework is implemented in Java and provides so-called incremental 
copiers that users have to subclass to define their own transformation rules. The basic metaphor is 
the idea of copying model elements from the source to the target, which then can be adapted to 
achieve the desired transformation effect. The framework uses reflection to provide a declarative 
interface. A transformation rule is implemented as a method with an input parameter whose type 
determines the source type of the rule, and the method returns a Java object representing the class 
of the target model element. Rules are not allowed to have side effects and scheduling is 
completely determined by the framework. 
 
Another structure-driven approach is [IOPT]. A special property of this approach is the target-
oriented rule organization, where there is one rule per target element type and the nesting of the 
rules corresponds to the containment hierarchy in the target metamodel. The execution of this 
model can be viewed as a top-down configuration of the target model. 

3.2.5 Hybrid Approaches 
Hybrid approaches combine different techniques from the previous categories. 
 
The Transformation Rule Language (TRL) [AST+] is a composition of declarative and 
imperative approaches. It could be also classified in the relational category, but we decided to 
classify it separately because of its stronger imperative component. Similar to [QVTP], it 
distinguishes between specification and implementation. A mapping rule in TRL declares a 
relationship between source and target elements that is constrained by a set of invariants. They 
are similar to relations in [QVTP] and fit into the relational category (Section 3.2.2). Operational 
rules in TRL represent executable transformation rules. In contrast to mapping rules, operational 
rules explicitly state whether a rule creates, updates, or deletes elements. Scheduling is explicit in 
internal form, where a rule explicitly calls other rules in its body. Rule inheritance is supported. 
Rules can be organized into modules (called units). Inheritance between modules (with 
overriding) is also supported. 
 
The Atlas Transformation Language (ATL) [BDJR03] is also a hybrid approach, which has some 
similarities to TLR. A transformation rule in ATL may be fully declarative, hybrid, or fully 
imperative. The LHS of a fully declarative rule (so-called source pattern) consist of a set of 
syntactically typed variables with an optional OCL constraint as a filter or navigation logic. The 
RHS of a fully declarative rule (so-called target pattern) contains a set of variables and some 
declarative logic to bind the values of the attributes in the target elements. In a hybrid rule, the 
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source and/or target pattern are complemented with a block of imperative logic, which is run after 
the application of the target pattern. A fully imperative rule (so-called procedure) has a name, a 
set of formal parameters, and an imperative block, but no patterns. Rules are unidirectional and 
support rule inheritance. ATL strictly separates source and target models; however, in-place 
transformation can be simulated thanks to an automatic copy mechanism. ATL provides both 
implicit and explicit scheduling. The implicit scheduling algorithm starts with calling a rule that 
was designated as an entry point, which may call further rules. After completing this first phase, it 
automatically checks for matches on the source patterns and executes the corresponding rules. 
Finally, it executes a designated exit point. Explicit, internal scheduling is supported by the 
ability to call a rule from within the imperative block of another rule. 
 
XDE is an example of a highly hybrid approach. XDE supports model-to-model transformation 
through its pattern mechanism. The original motivation for patterns in XDE was to provide 
automated application of The-Gang-of-Four design patterns [GHJV95]. Consequently, the basic 
concept of the XDE pattern mechanism is a parameterized collaboration, which is the UML 
mechanism to model design patterns. With general model-to-model transformations as a 
subsequent goal, the basic pattern mechanism evolved into a highly hybrid and rather complex 
approach. A pattern is represented as a package containing the parameterized collaboration and a 
number of other models that can be automatically customized and copied and/or merged into the 
target using imperative Java callouts. Upon pattern application, parameters can be bound 
interactively through a wizard, or they also can be bound automatically. The automatic selection 
of source elements may be achieved declaratively through OCL queries or trough imperative Java 
callouts. Repeated pattern application is supported through collection-typed parameters. Each 
pattern application gets recorded together with all its parameter bindings, and the record can be 
used to later reapply the pattern with the original parameter bindings. XDE does not put any 
constraints on the relationship between source and target, i.e., creation of a new target, in-place 
update, and update of another existing target model are possible. Scheduling is supported through 
pattern nesting. More sophisticated scheduling has to be programmed in Java. Patterns can be 
associated with JSP-like code templates (so-called scriptlets) in order to perform model-to-code 
transformation. 

3.2.6 Other Model-To-Model Approaches 
At least two more approaches should be mentioned for completeness: the transformation 
framework defined in the OMG’s Common Warehouse Metamodel (CWM) Specification 
[CWM] and transformation implemented using XSLT [XSLT]. 
 
The CWM transformation framework provides a mechanism for linking source and target 
elements, but the derivation of the target elements has to be implemented in some concrete 
language, which is not prescribed by CWM. Effectively, CWM gives a general model, but no 
actual mechanism to implement model transformations. 
 
Since models can be serialized as XML using the XML Metadata Interchange (XMI) [XMI], 
implementing model transformations using XSLT, which is a standard technology for 
transforming XML, seems very attractive. Unfortunately, this approach has severe scalability 
limitations. Manual implementation of model transformations in XSLT quickly leads to non-
maintainable implementations because of the verbosity and poor readability of XMI and XSLT. A 
solution to overcome this problem is to generate the XSLT rules from some more declarative rule 
descriptions, as demonstrated in [PBG01, PZB00]. However, even this approach suffers from 
poor efficiency because of the copying required by the pass-by-value semantics of XSLT and the 
poor compactness of XMI. 
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4 Related Work 
 
In their review of the different OMG QVT RFP submissions, Gardner et al. [GGKH03] propose a 
unified terminology to enable a comparison of the different proposals. Since their scope of 
comparison is considerably different from ours, there is not much overlap in terminology. While 
Gardner et al. focus on the 8 initial QVT submissions, we discuss a wider range of approaches: in 
addition to the revised QVT submissions, we also discuss other approaches published in the 
literature and available in tools. Another difference is that Gardner et al. discuss model queries, 
views, and transformations, whereas we focus on transformations in more detail. The terms 
defined in [GGKH03] that are also relevant for our classification are model transformation, 
unidirectional, bidirectional, declarative, imperative, and rules. 
 
In addition to providing the basic unifying terminology, Gardner et al. discuss practical 
requirements on model transformations such as requirements scalability, simplicity, and ease of 
adoption. Among others, they discuss the need to handle transformation scenarios of different 
complexities, such as transformations with different origin relationships between source and 
target model elements (e.g., 1:1, 1:n, n:1, and n:m). Finally, they make some recommendations 
for the final QVT standard. In particular, they recommend a hybrid approach, supporting 
declarative specification of simpler transformations, but also allowing for an imperative 
implementation of more complex ones. 

5 Discussion 
Model transformation is a relatively young area. Although it is related to and builds upon the 
more established fields of program transformation and metaprogramming, the use of graphical 
modeling languages and the application of object-oriented metamodeling to language definition 
set a new context. 
 
While there are satisfactory solutions for transforming models to text (such as template-based 
approaches), this is not the case for transforming models to models. Many new approaches to 
model-to-model transformation have been proposed over the last two years, but little experience 
is available to assess their effectiveness in practical applications. In this respect, we are still at the 
stage of exploring possibilities and eliciting requirements. Modeling tools available on the market 
are just starting to offer some model-to-model transformation capabilities, but these are still very 
limited and often ad hoc, i.e., without proper theoretical foundation. Most of these tools target the 
generation of EJB applications and the model transformations they offer were specifically 
developed to support that goal. 
 
In this paper, we classified the existing model-to-model transformation approaches into direct 
manipulation approaches, relational approaches, graph-transformation-based approaches, 
structure-driven approaches, and hybrid approaches. In the remainder of this section, we offer 
some comments on the practical applicability of the different flavors of model transformation. 
These comments are based on our intuition and the application examples published together with 
the approaches. Because of the lack of controlled experiments and extensive practical experience, 
these comments are not fully validated, but we hope that they will stimulate discussion and 
further evaluation. 
 

• Direct manipulation is obviously the most low-level approach. It offers the user little or 
no support or guidance in implementing transformations. Basically all work has to be 
done by the user. In the long run, this approach will become impractical. 



OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture 
 

 15

• The structure-driven category groups pragmatic approaches that were developed in the 
context of (and seem particularly well applicable to) certain kinds of applications such as 
generating EJB implementations and database schemas from UML models. These 
applications require a strong support for transforming models with a 1-to-1 and 1-to-n 
(and sometimes n-to-1) correspondence between source and target elements. Also, in this 
application context, there is typically no need for iteration (and in particular fixpointing) 
in scheduling, and the scheduling can be system-defined. It is unclear how well these 
approaches can support other kinds of applications. 

• Graph-transformation-based approaches are inspired by heavily theoretical work in graph 
transformations. These approaches are powerful and declarative, but also the most 
complex ones. The complexity stems from the non-determinism in scheduling and 
application strategy, which requires careful consideration of termination of the 
transformation process and the rule application ordering (including the property of 
confluence). There is a large amount of theoretical work and some experience with 
research prototypes. However, experience with practical applications of these approaches 
is still limited. It remains to be seen how well the complexities of these approaches will 
be received in practice. 

• Relational approaches seem to strike a well balance between flexibility and declarative 
expression. They provide flexible scheduling and good control of non-determinism. 
Three of the five current QVT submissions fit into this category ([CDI], [QVTP], and 
partly [AST+]). 

• Hybrid approaches allow the user to mix and match different concepts and paradigms 
depending on the application. Practical approaches are very likely to have the hybrid 
character. 

 
Evaluation of the different design options for a model transformation approach will require more 
experiments and practical experience. Establishing of a comprehensive collection of benchmark 
problems would be a valuable next step in that direction. 
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