

Thèse
présentée à

L’Université Pierre & Marie Curie – Paris VI

en vue de l'obtention du titre de

Docteur de l’Université Pierre et Marie Curie

Spécialité :

Systèmes Informatique
par

Reda BENDRAOU

Sujet de la thèse :

UML4SPM: Un Langage De Modélisation De Procédés De
Développement Logiciel Exécutable Et Orienté Modèle

A soutenir le 6 septembre 2007 devant un jury composé de :

Jean-Marc JEZEQUEL Rapporteur Professeur à l'Université Rennes 1

Pierre-Alain MULLER Rapporteur MdC. HDR à l'Université de Mulhouse

Colin ATKINSON Examinateur Professeur à l'Université de Mannheim

Bernard COULETTE Examinateur Professeur à l'Université de Toulouse

Fabrice KORDON Examinateur Professeur à l'Université Paris VI

Marie-Pierre GERVAIS Directeur Professeur à l'Université Paris X

Xavier BLANC Co-encadrant Maître de Conférences Paris VI

Table of contents

Chapter 1 : Introduction ___ 1
1. Motivation ___ 1
2. Research objectives __ 4
3. Thesis structure ___ 7

Chapter 2 : Process Modeling ___ 9
1. Introduction__ 9
2. Basic Concepts__ 9

2.1. Process___ 9
2.2. Process Models ___ 13
2.3. Process Modeling Languages __ 16
2.4. Process Metamodel __ 17
2.5. Process-Centered Software Engineering Environments (PSEEs) _____________________ 17

3. Process Modeling Language Requirements _________________________________ 18
3.1. Constituents of Software Process Models ______________________________________ 19

4. Classification and Comparison Of Process Technology Domains _______________ 20
4.1. Software Process Engineering Domain ___ 22
4.2. Business Process Management Domain __ 23
4.3. Workflow Management Domain __ 26

5. Conclusion __ 33
Chapter 3 : Software Process Modeling Within the MDE Vision __________________ 35

1. Introduction___ 35
2. Model-Driven Engineering and Software Process Modeling ___________________ 36

2.1. Raising the Abstraction Level of Modeling Languages_____________________________ 36
2.2. Executability of Models___ 38
2.3. Metamodelling__ 39
2.4. Standardization ___ 39

3. The Unified Modeling Language __ 40
3.1. Heavyweight Extension___ 40
3.2. Lightweight extension __ 42
3.3. Lightweight extension Vs. Heavyweight extension________________________________ 43

4. Conclusion __ 45
Chapter 4 : UML-Based Software Process Modeling Languages__________________ 47

1. Introduction___ 47
2. Requirements for Software Process Modeling Languages _____________________ 47

2.1. Semantic Richness___ 47
2.2. Understandability__ 48
2.3. Precision __ 49
2.4. Executability ___ 49
2.5. Modularization ___ 49

3. Comparing UML-Based Software Process Modeling Languages________________ 49
3.1. SPEM1.1 __ 49
3.2. SPEM2.0 __ 54
3.3. Di Nitto et al. approach ___ 62
3.4. Promenade Approach __ 65

3.5. Shih-Chien Chou's Approach __ 69
3.6. Chou's Approach Evaluation ___ 69

4. Discussion___ 72
5. Conclusion __ 77

Chapter 5 : UML4SPM, a UML2.0-Based Language For Software Process Modeling 79
1. Introduction___ 79
2. UML4SPM: Design Goals ___ 79
3. UML4SPM: The Metamodel ___ 81

3.1. Process Structure Package ___ 81
3.2. UML4SPM Foundation Package__ 96

4. UML4SPM Notations __ 106
5. Conclusion ___ 108

Chapter 6 : UML4SPM Language Evaluation _______________________________ 109
1. Introduction__ 109
2. Evaluation of UML4SPM according to SPML Requirements _________________ 109

2.1. Semantic Richness__ 109
2.2. Understandability___ 115
2.3. Precision ___ 115
2.4. Executability __ 116
2.5. Modularization __ 116

3. Evaluation of UML4SPM with the ISPW-6 Software Process Example _________ 118
3.1. ISPW-6 Software Process Example___ 118
3.2. Modeling the ISPW-6 Software Process Example with UML4SPM__________________ 120
3.3. Modify Design___ 120
3.4. Review Design___ 122
3.5. Discussion __ 126

4. Conclusion ___ 126
Chapter 7 : Execution of UML4SPM Software Process Models: the UML4SPM-2-
WSBPEL Approach___ 129

1. Introduction__ 129
2. Combining UML4SPM and WS-BPEL for Software process model executions __ 129
3. WS-BPEL2.0 ___ 131

3.1. Origins ___ 131
3.2. WS-BPEL Process__ 131
3.3. WS-BPEL Interaction Model ___ 132
3.4. Related XML Specifications __ 132

4. From UML4SPM to WS-BPEL __ 132
4.1. UML to WS-BPEL Related Work__ 133
4.2. Mapping Rules___ 133
4.3. Discussion __ 135

5. Human Interactions ___ 136
5.1. The Workflow Service___ 136
5.2. BPEL4People ___ 137
5.3. Discussion __ 139

6. Transforming UML4SPM Process Models to WS-BPEL2.0___________________ 140
6.1. Software Process Example ___ 140
6.2. The Software Process Example Modeled Using UML4SPM _______________________ 140

6.3. Transformation __ 142
7. Discussing the Approach ___ 144
8. Conclusion ___ 145

Chapter 8 : Execution of UML4SPM Software Process Models: the UML4SPM
Executable Model Approach __ 147

1. Introduction__ 147
2. UML4SPM Execution Model Approach ___________________________________ 148
3. The UML4SPM Executable Model _______________________________________ 149

3.1. Executable Model: Rationale__ 149
3.2. Process Model Execution Class__ 151
3.3. Activity Execution Class ___ 153
3.4. ActivityEdgeInstance and ActivityNodeExecution Classes ________________________ 154
3.5. ControlNodeExecution Class__ 158
3.6. ObjectNodeExecution Class __ 160
3.7. ActionExecution Class __ 161

4. Execution of UML4SPM Process Models __________________________________ 166
4.1. UML4SPM Process Model Editor__ 166
4.2. UML4SPM Process Execution Engine __ 168
4.3. Software Process Example ___ 170

5. Discussion__ 172
6. Conclusion ___ 174

Chapter 9 : Conclusion__ 177

References __ 183

Appendix A__ 195
UML4SPM Notations __ 195
Activity Element Notations __ 195
Action Notations___ 200
ISPW-6 Process Example modeled using UML4SPM ____________________________ 201

Appendix B__ 213
1. Listing 1. WS-BPEL sample of the Inception Phase _________________________ 213

Appendix C__ 217

Chapter 1

Introduction

Motivation

Building complex and reliable software systems in the shortest time-to-market
represents the challenging objective that competitive companies are facing everyday.
Projects developing large computer software may span months and involve many
development teams, working on different locations and using diverse tools and
technologies. All these project's variants make it very difficult for companies to respect
product delivery deadlines and estimated costs. A more challenging objective for these
companies is to be able to repeat the same development project within the same
deadlines and to provide software with the same quality. According to the Standish
Group report, in 2006, only 35% of software projects were completed on time, on
budget and met user requirements, while 46% had cost or time overruns or didn’t fully
meet the user’s needs and 19% have failed (cancelled prior to completion or delivered
and never used) [Standish 06].

In the software industry, these objectives are not new. What is constantly changing,
is the technologies and ways of working used to reach these objectives. By
technologies, we refer to the set of programming and modeling languages,
methodologies, applications, middleware, systems and platforms, etc., used for
building software. As for ways of working, it regroups the set of techniques, best
practices, and strategies followed in order to effectively manage the development
efforts of large teams of software engineers over the software construction's phases.

Over the past several years, the "ways of working" dimension has gained a
particular attention in the software industry. This is due to the fact that since late
eighties, there has been a growing conviction that software systems should be viewed
as products resulting from the execution of orderly software development processes
[Sutton 95a] [Montangero_99]. Consequently, the quality of a software product cannot
be ensured simply by inspecting the product itself or by performing the traditional
verification and validation approaches (V&V) [ANSI/IEEE 87]. It also relates to the
production process that is carried out and to actors involved in this production process.
There is, further, a belief that software development times and costs can be reduced,
and software product quality can be improved through the disciplined application of
superior software processes. These beliefs have served to focus attention on the
problem of how to create and to represent superior software processes [Sutton 95b].

Lonchamp defines a software process as "the set of partially ordered process steps,
with sets of related artifacts, human and computerized resources, organizational
structures and constraints, intended to produce and maintain the requested software
deliverables" [Lonchamp 93]. Looking at this definition, we can notice the important
number of factors that may affect the success of software development processes.
Indeed, software processes are not typical production processes. They are complex and
highly unpredictable since they depend too much on too many people and
circumstances. Not all activities of the software process require automation and depend

1

on communication, coordination and cooperation within a predefined framework
[Ruiz_ 04].

Thus, the real challenge of software development firms is to find the means of
rationally representing and managing activities, resources and constraints of their
software development processes while taking into account all these characteristics.
Once these processes represented and capitalized in process models, they become an
important asset of the company. Process models can then be used to reason about
processes, to test them and to improve them in order to answer to quality and cost
expectations.

Hosier [Hosier 61], Royce [Royce 70] and Boehm [Boehm 76] were among the
pioneers to propose models of the Software Development Life Cycle (SDLC).
However, the software process community was unsatisfied with these models. The
granularity of process steps included in SLDC models was too large and does not
prescribe the precise course of actions, artifacts and tools used within the process,
development policies and constraints, etc [Curtis 92].

Rapidly, the need to describe in more details processes that software companies are
actually performing during software development or maintenance emerged.
Consequently, the software domain saw the spreading of a multitude of Software
Process Modeling Languages (SPMLs). Some of them were rules-based (e.g.,
MARVEL) [Kaiser 90], others Petri-net based (e.g., SPADE) [Bandinelli 93] or
programming languages based (e.g., SPELL, APPL/A) [Conradi 92] [Sutton 95]. They
are commonly called first-generation languages.

However, no language has gained general acceptance or widespread. Except the
fact that these languages were executable, they had obvious limitations. They were
based on existing paradigms that were not particularly well adapted to the domain of
software process modeling [Sutton 97]. Their complexity, their use of low-level
formalisms and the impossibility for non-programmers to use and to understand them,
were among the obstacles for their adoption. The large number of process stakeholders
with different backgrounds ranging from software process engineers, project managers,
system engineers to customers imposes the use of an understandable and intuitive
representation format.

In front of the limited success of first-generation SPMLs, other languages
promoting simplicity by using high-level constructs, narrative text and graphical
representations have been proposed. Examples of such process descriptive languages
are the OMG's (Open Management Group) initiative for software process modeling
called, SPEM (Software Process Engineering Metamodel) [OMG 02] [OMG 07c] and
the SEMDM (Software Engineering — Metamodel for Development Methodologies)
specification, a standardisation effort initiated by ISO [ISO 06]. Contrarily to first-
generation languages, the practical utility of these languages is limited to documenting
methodologies and processes. They are rather suitable for enterprise's expertise and
knowledge capitalization, process description exchanges than to be executed.
Documented processes can help in the comprehension of the process however; they
cannot be used for automating some process routings and for coordinating between
activities and software engineers of the development process. For that latter purpose,
advanced constructs are required to capture control and data flows, iterations, choices,
exceptions, communication between agents, tool invocations, and so on. Nowadays,
companies are looking for how to extensively automate all parts participating in the
software production, including the development process itself.

2

Of course, software processes cannot be fully automated since they are human-
centred processes. However all steps and coordination controls that do not require
human interventions can be automated (e.g. starting activities, routing of artifacts
across process's activities, handling of exception, deadlines and alarms management,
etc.).

With the popularization of the OMG's Unified Modeling Language (UML) and
surfing on the MDA (Model Driven Architecture) wave [OMG 03], the process
modeling community saw in UML, a potential candidate as a SPML. UML is standard,
provides high-level constructs, offers a rich notation and a set of diagrams and is wide
spread. Thus, many propositions emerged. More cited ones are Promenade [Franch 98],
Di Nitto's approach [Di Nitto 02] and Chou's approach [Chou 02]. The common lack
between these languages is that they neither do propose a new language nor extends the
UML language. Language's elements (grammar) come in form of a UML class
diagram. Thus, when the process modeler needs to define its process model she/he has
to extend the predefined UML class diagram provided by the approach (e.g. make all
process's activities as a specialization of the class Activity in the predefined UML class
diagram). However, there is no proper semantic for these elements and no appropriate
notation. They all have the same semantics as the UML Class metaclass since they are
all instances of this metaclass. Almost all basic process elements are given and are
represented as a UML class diagram.

Regarding executability, in Chou's approach, the UML class diagram is used only
to reason about the process. In order to execute the process model, the process modeler
has to code manually the process in a proprietary programming language. In Di Nitto's
approach, the process program is generated from the multiple UML diagrams used to
define it (i.e., class, activity and state diagrams). However, process modeler has to add
code manually into the program since there are no relationships between the input
diagrams. Another limit of this approach is that the code generation is based on name
matching of process elements scattered on different input diagrams (i.e. assuming for
instance that the process element named "A" in the activity diagram, is the same
process element "A" in the class diagram). Finally, the Promenade approach does not
provide solutions for the executability requirement.

If we look back to all efforts taken in the area of software process modeling for
defining the appropriate SPML, we can clearly distinguish two families of
software process modeling languages. Executable SPMLs, based on programming
languages, and Descriptive SPMLs providing high-level construct and graphical
representations. However, no software process modeling language succeeded in
satisfying these two apparently conflicting requirements. Thus, a trade-off
between high-level constructs and executability is needed in order to satisfy the
expectations of the software process modeling community.

Another issue that current and first-generation software process modeling
languages overlooked is the human dimension. Software development processes are
all about human creative tasks. The emphasis of first-generation SPMLs has been on
describing software process models as normative models i.e., on prescribing the
expected sequence of activities and pushing automation to enforce them [Cugola 98a].
Humans have a central role in performing the activities needed to accomplish the
process goals. They do so by interacting and cooperating among themselves and with
computerized tools, by making decisions and by reorienting the current process
workflow. Thus, this dimension has to be taken into account while designing a SPML.

3

The last important issue relates to flexibility. According to W. Humphrey, "The
actual process is what you do, with all its omissions, mistakes, and oversights. The
official process is what books say what you are supposed to do". This quotation,
represents quite well implicit challenges that software development firms have to face.
The first one is to be able to adapt a software process model to company's specific
projects and culture. By adapting, we mean the possibility to customize the process
model and to be able to extend it with project-specific components i.e. adding specific
artifacts, roles, methodology steps, etc. The second challenge is to not constrain people
to follow a predefined pattern of activities, but to provide support to their creative
tasks. Software processes are too complex and intrinsically dynamic to be defined in all
details in advance. Moreover, no matter how carefully the process is defined, in
practice people often deviate from the normative description embodied into the process
model [Madhavji 93] [Cugola 98b].

Research objectives

In order to overcome the above-mentioned issues, in this document, we present
UML4SPM, a UML2.0-Based Language for Software Process Modeling.
Expressiveness, Understandability, and Executability were our main objectives while
designing UML4SPM. Our contribution comes in form of MOF-Compliant
metamodel, which extends the UML2.0 Superstructure standard [OMG 07b], a simple
yet expressive graphical notation and high level constructs with precise execution
semantics. UML4SPM process models can be executed directly, without any
intermediate or refinement steps. The UML4SPM proposition came as the result of the
following research objectives we identified at the beginning and during this work:

 A large study of the state of the art on the Process Modeling domain. Indeed,
process modeling is a very mature field and encompasses many sub domains. The
literature is very rich and it becomes very hard to distinguish between the multiple
proposed definitions, acronyms and concepts. This objective has in fact many sub
objectives.

The first one is to put in place some definitions that we will use along this work.
Examples of such definitions are Process, Process Model, Process Modeling
Language, etc. As we will see, the term Process for instance may have slightly
different meaning form one process modeling community into another which may
be confusing.

The second sub objective is to identify major requirements to take into account
while designing a software process modeling language. These requirements were
established by several well-known works proposed in the literature. We will use
them as means for comparing between the different SPML propositions and as
design goals for defining UML4SPM.

The last sub objective is to clarify the relationship between the different process
technology domains. In the recent past, the process modeling domain saw the
emergence of several process communities, each one having its own vision and
expectations of modeling and executing processes. Examples of such communities
are the Workflow Management community (WfM), the Business Process Modeling
community (BPM), the Software Process Modeling, (SPM) community, the
Enterprise Application Integration (EAI) community, etc. This situation led that
nowadays, many process analysts and company deciders are confused about which

4

technology to use to achieve their goals. Besides, they are unable to establish the
relationship between these domains. To clarify this situation and for comparing
these process technology domains, we defined a framework [Bendraou 07b]. This
framework gives process definitions, characteristics, modeling objectives, process
model constituents, process context and scope proper to each domain. The main
goal behind this framework is to guide process modelers and deciders in their
choice of the appropriate technology in regard with their process modeling
objectives. Conversely, it can be used in order to identify the set of concepts and
requirements that have to be respected in order to define a new PML according to
the domain.

 Exploring how the software process modeling community can take advantage
of the MDE (Model Driven Engineering) vision. MDE promises a better software
productivity and more reliability at reduced costs. The MDE counts on the use of
platforms-independent modeling languages instead of code during software
development projects in order to hold these promises. Company's expertise and
knowledge are capitalized in models which prevent them from the continuous
evolution of technologies and platforms. Productivity and reliability are reached by
automating code generation from these models into the appropriate platforms. For
the choice of the modeling language to use, the MDE vision does not advocate the
use of any specific platform independent modeling language. However, UML
succeeded by far to be one of the most popular. The software process community
recognized the benefits of the MDE vision and was attracted in applying the MDE
principles to the area of software processes. Thus, exploring the suitability of UML
as SPML came as natural initiative and since its earlier versions, approaches on
defining UML-Based SPMLs were proposed [Franch 98] [OMG 02][Di Nitto 02]
[Chou 02]. In this work, we highlight the MDE principles that may influence the
software process modeling community in terms of abstraction and productivity and
we identify advantages that UML offers as a SPML but also its limits [Bendraou
05a]. We also compare all UML-Based approaches for software process modeling
according to the SPML requirement we identified in fulfilling the first objective of
this work.

 Defining the UML4SPM metamodel. Instead of starting from scratch, we decided
to reuse the expressiveness of UML2.0 Activity and Action packages. In this new
version of the UML standard, these packages offer concepts and features that allow
the modeling of sophisticated activities and actions with executable semantics.
Thus, our first step is to identify the UML2.0 subset of Activity and Action elements
suitable for process modeling. This subset is then used as a basis for defining the
UML4SPM metamodel. UML4SPM comes in form of a MOF-compliant
metamodel which extends a subset of the UML2.0 Superstructure standard
[Bendraou 05a]. UML2.0 provides all the concepts related to the sequencing of
activities and actions, for expressing choices, concurrency, synchronization, events,
exception handling, etc., while UML4SPM metaclasses provide the semantics
proper to software process modeling concepts. We also provide a UML4SPM
Process Model Editor based on the Eclipse open source development environment
[Eclipse].

Regarding the UML4SPM notation, it is principally inspired from the UML2.0
Activity Diagrams notation. This notation is enriched to take into account some
element's important features (properties) for software process modeling purposes.

5

For UML2.0 Activity and Action concepts, which do not have a notation, we
suggest one.

 Exploring approaches for UML4SPM process model executions. In order to
execute UML4SPM process models, we explore two approaches.

The first one consists in investigating some efforts done in the area of the
business process management (BPM). The idea behind this initiative is to
leverage the maturity level of this domain and to take advantage of process engines
and tooling supports already proposed by the BPM field. To execute UML4SPM
process models using these process engines, we need to transform them into a
business process execution language. We opted for WS-BPEL as a target process
execution language [WSBPEL 07]. Recently, WS-BPEL has become the de facto
standard for process executions and many BPEL process engines are proposed,
which consolidates our choice. Thus, in this work we define a set of mapping rules
from UML4SPM to WS-BPEL and transformation steps in order to map
UML4SPM process models into a WS-BPEL executable code. We also discuss the
advantage and limits of this approach [Bendraou 07c]

The second approach consists in defining an Execution Model for UML4SPM.
This Execution Model defines execution behavior semantics of UML4SPM
concepts. Thus, for each UML4SPM metaclass having execution semantics, we
define its execution class. Execution classes reproduce the execution behavior
semantics of UML4SPM metaclasses at runtime. This execution semantics is
expressed in terms of operations within the execution classes. Since UML4SPM
extends UML2.0 Activity and Action concepts, we base our work on the Executable
UML Foundation, a work on progress at the OMG [OMG 05c]. Executable UML
aims at defining a compact and complete subset of UML2.0 to be known as
"Executable UML", along with a full specification of the execution semantics of
this subset. In this work we study this specification and we draw from it the
UML4SPM Execution Model. We also identify the set of operations and execution
classes lacking by the Executable UML Foundation specification [OMG 06e]. Our
Execution Model can be reused for executing UML2.0 Activity diagrams since
UML4SPM extends UML2.0 Activity and Action concepts.

For the Execution Model we propose, we provide a Java implementation Thus,
UML4SPM process models can be directly executed without any transformation or
configuration phase. This implementation privileges flexibility. Some important
points we have taken into account are:

- Easy extension of the UML4SPM metamodel with a minimal impact on
the Execution Model;

- Strong coupling of UML4SPM process models and their execution. If
process models elements are modified, their execution classes are not
affected (i.e., the execution class extracts data from the process element
when required. Data is not duplicated within the execution class) and there
is no need to interrupt or to restart the execution;

- Concurrency of process's activity executions;
- Connection of the process execution with external applications (e.g., GUI,

business application, etc.);

In this work we will demonstrate how these flexibility aspects are achieved through
the implementation we provide.

6

 Validating the UML4SPM approach. At this aim we evaluate UML4SPM with
the set of SPMLs requirements defined by the literature (cf. first objective). In the
software process community there is a well-known software process example used
to evaluate the expressiveness of an SPML. This example is called the ISPW-6
software process example. In this work, we also use this process example in order
to evaluate the expressiveness of UML4SPM.

For the execution of UML4SPM process models, in this work we provide a
UML4SPM Process Execution Engine. That latter takes as input a UML4SPM
process model edited with the UML4SPM Process Model Editor and directly
executes it. Our process engine is based on the UML4SPM Execution Model we
defined. To validate this process engine, we test it with a complete software process
example that we edited within UML4SPM Process Model Editor.

The research objectives and contributions we introduced in this section are presented in
more details along the chapters of this thesis document. The document structure is
given in the next section.

Thesis structure

This thesis is further structured as follows:

 Chapter 2 gives the state of the art of the Process Modeling domain. Definitions
used along this document are introduced in this chapter. It also identifies the set of
SPML requirements used to compare between the different SPMLs studied in this
thesis. Finally, it introduces a framework we defined for the comparison and
classification of the different process technology domains.

 Chapter 3 explores how the software process modeling community can take
advantage of the MDE vision. It identifies its main principles and how they can be
taken into account in defining a SPML. When designing UML4SPM, we have
considered these principles.

 Chapter 4 compares the UML-based approaches for software process modeling
and highlights their limits. The evaluation of these approaches is done according to
SPML requirements identified in Chapter 2 and MDE principles enumerated in
Chapter 3.

 Chapter 5 presents our software process modeling language, UML4SPM. A
detailed presentation of UML4SPM metamodel's classes as well as of the subset of
UML2.0 elements we reused is given. It also introduces the UML4SPM notation.

 Chapter 6 evaluates UML4SPM according to SPML requirements and MDE
principles. A particular evaluation of the expressiveness of our language is done by
modeling the well-known ISPW-6 process example using UML4SPM.

 Chapter 7 presents the UML4SPM-2-WS-BPEL approach. In this chapter we give
the mapping rules and transformation steps that allow UML4SPM process models
to be mapped into WS-BPEL code before to be executed. The approach is
illustrated through a software process example. Finally, we discuss the limits of this
approach that make us exploring alternative solutions for UML4SPM process
model executions.

 Chapter 8 defines the UML4SPM Execution Model, an alternative solution to the
UML4SPM-2-WS-BPEL approach. In this chapter, a detailed description of the

7

UML4SPM Execution Model classes is given. We also present our Java
implementation of this model and we highlight approach's positive aspects that
overcome the execution approach presented in Chapter 7. The approach is
evaluated through the same software process example used in Chapter 7. This
process example is edited in the UML4SPM Process Model Editor and executed
with the UML4SPM Process Execution Engine which both are presented in this
chapter.

 Chapter 9 concludes this document by outlining the main contributions of this
thesis and by drawing some perspectives for further investigations.

8

Chapter 2

Process Modeling

1. Introduction

One of the most challenging tasks while exploring the Process Modeling domain is
to become familiar with the myriad of concepts, acronyms and definitions it proposes.
The aim of this chapter is to clarify some of them but most of all, to put in place some
definitions that we will use along this document. The main difficulty we encountered
while collecting these definitions was to pick what we believed to be the right
definition among many others. As the domain is vast and brings together various sub
domains and communities, the same concept may have a slightly different sense from
one community to another as sometimes, it can be in complete contradiction.

Another purpose of this chapter is to present and to clarify the relationship between
different process modeling domains such as Software Process Engineering, Business
Process Modeling and Workflow Management. At this aim, we define a framework that
highlights main characteristics, modeling objectives, commonalities/distinctions and
scope of each domain. It also points-out the relationship of each domain with the other
domains.

In the following, we start by introducing some basic concepts like "Process",
"Process Model" and "Process Modeling Language". Then, we present principal
requirements expected from a Process Modeling Language. These requirements will
serve us in the next chapter in order to compare between different software process
modeling languages. We conclude this chapter by a discussion on different process
characteristics, which may vary from one domain to another.

2. Basic Concepts

The set of the so-called "basic concepts" may differ from one audience to another.
In this section, we only address concepts and definitions that we believe essential for
the understanding of this document. To provide these definitions we explored a
multitude of sources in the literature, trying each time to exp lain the meaning and
properties highlighted by the definition. A comparison of various definitions for the
same concept is also given. For readers who want more definitions and taxonomy of
the Process Modeling domain, they can be found in [Dowson 91] [Humphrey 92]
[Conradi 92a] and [Lonchamp 93].

2.1. Process

The concept of Process is not new. It exists since the first manufacture appeared, a
long time ago before even the first computer was designed. Indeed, laying out inter-
related activities in a sequence and creating a flow of work has been part of
organization designs for more than two centuries. Nevertheless, the use of the term
Process varies from an organization to another and never stopped to evolve. It moved

9

from a guide that helps in organizing the realisation of product into a means of
reasoning, evaluating and enhancing the quality of the delivered products.

The International Organisation for Standardisation (ISO) provides this generic
definition: "a process uses resources to transform inputs into outputs. In every case,
inputs are turned into outputs because some kind of work, activity, or function is
carried out"[ISO 98]. The term Process is used in various domains. A process can be
administrative, industrial, agricultural, governmental, chemical, mechanical, electrical,
and so on. In the following, we only consider the use of the term Process in the area of
computer and information science and more especially, in most mature communities
that deal with the process technology:

2.2.1. Process definition by the Workflow Management community
The Workflow community primary goal is the automation of business procedures

or "workflows" within organisations during which documents, information or tasks are
passed from one participant to another in a way that is governed by rules or procedures
[WFMC 06]. The WFMC (Workflow Management Coalition), the standardization
organization leading this community defines a process as "a formalized view of a
business process, represented as a coordinated (parallel and/or serial) set of process
activities that are connected in order to achieve a common goal " [WFMC 99]. As we
can notice, this definition may seem ambiguous. It defines a process, as the
representation of a business process. In fact, the same specification defines further a
Business Process as "a set of one or more linked procedures or activities, which
collectively realise a business objective or policy goal, normally within the context of
an organisational structure defining functional roles and relationships". A business
process in the context of Workflow is typically associated with operational objectives
and business relationships, for example insurance claims process, shipping order
process and so on. It may consist of automated activities, capable of workflow
management, and/or manual activities, which lie outside the scope of workflow
management. Looking at the WFMC definitions and at the organization purpose, we
can distinguish two properties that characterize this domain. The first one is, the
emphasis on the automation of business procedures and the automatic routing of
documents (artifacts) to actors having predefined roles [Totland 95]. The second one is
the organizational context of this kind of processes which most often is
application/department specific.

The OMG's (Open Management Group) WMFS1.2 standard (Workflow
Management Facility Specification) defines a process in the context of the workflow
management as "a set of discrete activity steps, with associated computer and/or
human operations and rules governing the progression of the process through the
various activity steps". This definition emphasizes the important role of the governing
rules, commonly called business rules and which represent the mechanism by which
the process automation is ensured.

2.2.2. Process definition by the Business Process Management (BPM) community
In this community, which also covers Business Process Reengineering (BPR),

people use to employ the term Business Process instead of Process. The Google search
engine returns more than seven hundred millions of entries in response to the request:
"Business Process", which makes it difficult to converge to a unique definition. At its
most generic, a Business Process is a collection of activities that are required to
achieve a business goal and it is represented with an activity flow that specifies the

10

orchestration needed to complete the goal [Bastida 05]. This definition does not really
differ from the one given by the workflow community. We can notice the new term:
orchestration, which in the BPM domain means all ordering and timing constraints that
should be taken into account for process execution. In addition, the term business goal,
which most often is intended to express the organization's "main" or "essential"
activity, i.e., its core business.

Davenport [Davenport 93] defines a Business Process as "a structured, measured
set of activities designed to produce a specific output for a particular customer or
market. It implies a strong emphasis on how work is done within an organization, in
contrast to a product focus’s emphasis on what. A process is thus a specific ordering of
work activities across time and space, with a beginning and an end, and clearly defined
inputs and outputs: a structure for process actions. Processes are the structure by
which an organization does what is necessary to produce value for its customers."

 In our view, this is one of the most representative definitions of what could be a
Business Process. It highlights many aspects of this family of processes. Aside the
common the definition: "a structured set of activities, etc.", the first important aspect is
that the business process focus is on the business logic of the process (i.e., how work is
done), instead of taking a product perspective (i.e., what is done). This later perspective
is more specific for instance to the Information System Development community. The
second aspect is the notions of time and space, which in this kind of processes may
vary from few seconds to years and may encompass as well the smaller enterprise unit
as big corporations. The last aspect but not least, is the customer, which more often
represents the recipient of the process' outcome.

If we consider the process definition of Johansson et. al. [Johansson 93], they
define a process as "a set of linked activities that take an input and transform it to
create an output. Ideally, the transformation that occurs in the process should add
value to the input and create an output that is more useful and effective to the recipient
either upstream or downstream." In this definition, the focus is on the constitution of
links between activities and the transformation perspective that takes place within the
process upon artifacts (inputs) it handles.

Finally, the BPMI (Business Process Management Initiative), which is one of the
most influent organizations in the BPM domain and which recently merged with the
OMG (Open Management Group), provides through its BPMN standard -finalization
underway- this process definition: "a Process is an activity performed within a
company or organization. Processes may be defined at any level from enterprise-wide
processes to processes performed by a single person. Low-level processes may be
grouped together to achieve a common business goal" [OMG 06a]. Then, it defines a
Business Process more generically as "a set of activities that are performed within an
organization or across organizations. Thus a Business Process may contain more than
one separate Process. Each Process may have its own Sub-Processes". Here, main
characteristics that are highlighted in this definition are the hierarchical aspect of
processes and their scope, which can be cross-organizations.

2.2.3. Process definition by the Software Engineering (SE) community
In this domain, process definitions do not thrive as in the previous one. In the

software engineering community, we usually refer to processes as Software Processes
(SP) or Software Engineering Processes (SEP). Humphrey's software engineering
process definition is probably the most cited one in the literature [Humphrey 89a].

11

Humphrey defines a software engineering process "as the total set of software
engineering activities needed to transform a user’s requirements into software". The
term Software refers to a program and all of the associated information and materials
needed to support its installation, operation, repair and enhancement. An important
aspect pointed out by this definition is that functionalities and quality of the delivered
software are partially based on the good understanding or not of user's requirements.
The definition given by Sommerville is very close to Humphrey's one. He defines a SP
as "the set of activities and associated results that produce a software product"
[Sommerville 07].

Software Process is not to confuse with Software Life cycle which represents the
period of time that begins when a software product is conceived and ends when the
software is no longer available for use. The life cycle typically includes a requirements
phase, design phase, implementation phase, test phase, installation and checkout phase,
operation and maintenance phase, and sometimes, retirement phase. These phases may
overlap or be performed iteratively, depending on the software development approach
used [IEEE 90]. However, the definition of Software Process complements the concept
of Software Life-Cycle in the sense that, a software lifecycle defines the skeleton and
philosophy according to which the software process has to be carried out, while a
software process prescribes a precise course of actions, an organization, tools and
operating procedures, development policies and constraints. Though, adopting a
specific lifecycle is not enough to practically guide and control a software project.

In [Fuggetta 00], the author defines a SP as "a coherent set of policies,
organizational structures, technologies, procedures and artifacts that are needed to
conceive, develop, deploy, and maintain a software product". In addition to software
engineer skills, this definition underlines principal constituents of a software process
and which may affect the quality of the delivered product. By organisation structures,
is meant, all the skills and means necessary to manage teams, to control time
constraints and to coordinate process activities. During the software development, tools
and infrastructures are needed. The choice of the proper technology to use can be a
determinant criterion for the success or the failure of the software. Finally, the term
procedure means all the material, guidelines and the methodological support needed
during the software development.

On the standardization organism sides, the OMG, through its standard for software
process modeling SPEM1.1 (Software Process Engineering Metamodel), roughly
defines a software engineering process, as a complete description of its constituents in
terms of Process Performers, Process Roles, Work Definitions, Work Products, and
associated Guidance [OMG 05a]. Examples of Work definition can be an Activity, a
Phase or Iteration. When writing up this document, the OMG was just about to finalize
the revision of SPEM1.1, namely SPEM2.0 [OMG 04]. SPEM2.0 skipped the concept
of Process and uses Activity instead. An Activity represents a general unit of work
assignable to specific performers represented by Roles. An Activity can rely on inputs
and produce outputs represented by Work Products. The SPEM standard will be
addressed in more details in the following chapters.

Finally, ISO is currently working on a standard named SEMDM (Software
Engineering Metamodel for Development Methodologies), which establishes a formal
framework for the definition and extension of development methodologies for
information-based domains (IBD), such as software, business or systems, including
three major aspects: the process to follow, the products to use and generate, and the

12

people and tools involved. It defines a Process as "a large-grained work unit that
operates within a given area of expertise" [ISO 06].

2.2.4. Process definition by the Information System (IS) community
In the context of Information System Development, a Process is performed to

produce a product. Products represent what shall be constructed, e.g. class diagrams,
state charts, and so on. Processes (techniques) are the procedures which describe in
what order the construction of the products shall be performed, e.g. "at first, identify
classes and objects" to construct a class diagram, "identify states", and so on. The
specificity of this domain is that the process's focus is more on the product to be
delivered rather then on the techniques and role definitions employed for its
production.

In [Rolland 93] the term process is defined as "a related set of activities conducted
to the specific purpose of product definition". Both together, the set of products and
their corresponding processes/techniques form a Method [Rolland 98].

While looking at all these definitions from the aforementioned communities, we
can notice that roughly, almost of them has the same vision of the term Process (i.e., as
the set of activities required to transform inputs into outputs). What may differ from
one community into another are 1) the objectives the process tends to attain; 2) the
means used by the process and 3) the result of applying the process. In fact, these
distinctions are what characterize each of these communities. In Section 4 of this
chapter, we give a more exhaustive discussion about the commonalities and
distinctions between these communities and we attempt to clarify the relationship
between each them.

Since the topic of this thesis relates to the Software Process Modeling domain, we
need to agree on a unique definition of what could be a Software Process. It will be
used along the document. This definition is Lonchamp's one and is, in our view, the
one that covers all the aspects and components of software processes. Lonchamp
defines a Software Process as "the set of partially ordered process steps, with sets of
related artifacts, human and computerized resources, organizational structures and
constraints, intended to produce and maintain the requested software deliverables"
[Lonchamp 93]. Processes of the same nature, whatever the domain, are classified
together into a Process Model, which is the topic of the next section.

2.2. Process Models

Since the earliest projects developing large software systems, one main concern of
organizations was to provide a conceptual scheme for rationally managing the
complexity of software development activities [Scacchi 01]. Indeed, when several
people work cooperatively on a common project, they need some way to coordinate
their work. For relatively small or simple tasks, this can often be done informally, but
with larger numbers of people or more sophisticated activities, more formal
arrangements are needed. Furthermore, within a company or an application domain,
processes of different projects tend to follow common patterns. Hence, software
engineers had rapidly felt the need to capture these commonalities in process
representation which describes these common features and fosters the cultural
homogeneity of the community.

Hosier [Hosier 61], Royce [Royce 70] and Boehm [Boehm 76] [Boehm 87] were
among the pioneers to propose models of the Software Development Life Cycle

13

(SDLC). These models depict how software development activities are partitioned and
organized in interconnected phases and iterations. Phase specifications, their ordering
and the way they might be linked are proper to the life cycle model. The "Waterfall",
"Spiral" and the "Incremental Model" are well known examples of SDLC.

However, the software process modeling community was unsatisfied with using
these life-cycle descriptions as process models. The granularity of process steps
included in SDLC models is too coarse-grained and fails to describe elementary
process building blocks [Curtis 92]. Most life-cycle descriptions represent an extremely
abstract model of software development and do not provide clear guidance on how to
integrate the many process steps that project staffs perform. Rapidly, the need to
describe in more details processes that software companies are actually performing
during software development or maintenance emerged. The idea was to decompose
these SDLC descriptions into sufficient detail so that they can provide more explicit
guidance for executing a software development project. This is how the notion of
Process Models (PM) appeared.

2.2.1. Process Model: Definition
Based on Curtis's definition, "a Process Model (PM) is an abstract description of

an actual or proposed process that represents selected process elements that are
considered important to the purpose of the model and can be enacted by a human or
machine"[Curtis 92]. Thus, a process model is a description of a process at the type
level. Since the process model is at the type level, a process is an instantiation of it. The
same process model is used repeatedly for the development of many applications and
thus, has many instantiations. One possible use of a process model is to prescribe "how
things must/should/could be done" in contrast to the process itself which is really what
happens. A process model is more or less a rough anticipation of what the process will
look like. What the process shall be will be determined during actual system
development [Rolland 98].

In the context of software development, a Software Process Model (SPM)
represents a networked sequence of activities, objects, transformations, and events that
embody strategies for accomplishing software evolution [Scacchi 01]. They are
representative of a family of software processes expressed in a suitable formalism (i.e.,
diagrams and notation, code, etc.). Such models can be used to develop more precise
and formalized descriptions of software life cycle activities. More often, their power
depends from their utilization of a sufficiently rich notation, syntax, or semantics, often
suitable for computational processing. Among the forms of information that people
ordinarily want to extract from a process model are what is going to be done, who is
going to do it, when and where it will be done, how and why it will be done, and who
is dependent on what its being done [Curtis 92]. This is why the availability of a
precise process model is paramount, since it provides a non-ambiguous basis for
communication about the process.

2.2.2. Basic uses of Process Models
Goals that motivated the introduction of process models are manifold: they span

from informal support to direct assistance in process assessment, enactment and
improvement. Research on software process modeling and process models supports a
wide range of objectives [Kellner 89] [Riddle 89] [Curtis 92]. Herein, we present basic
uses for process models and their imperatives with the assumption of the availability of
their computer-supported representation:

14

- Facilitate human understanding and communication: requires that a group be able
to share a common representational format

- Facilitate process reuse: process development activities are time consuming. In the
software process community, the goal is the repeatability of the process with
optimal human resource consumption, focusing on how the job should be done.
Process reuse requires the identification of the good abstraction using the right
process elements (i.e., roles, products, guidance, etc.).

- Support process improvement: requires a basis for defining and analyzing processes
and that processes be precise, easily understood and expandable.

- Support process management: requires a clear understanding of plans against which
actual process behaviors can be compared and the ability to precisely characterize
process status against them.

- Automate process guidance: requires automated tools for manipulating process
descriptions, indirect support, like information on the current state of the process,
the meaning of decision points, etc.

- Automate execution support: requires a computational basis for controlling process
behavior within an automated environment, the identification of automatic
invocations of non-interactive tools, etc.

According to Humphrey [Humphrey 89b], in order to ensure these goals, process
models must:

- Represent the way the process is actually (or is to be) performed;

- Provide flexible and easily understandable, yet powerful framework for
representing and enhancing the process;

- Allow to be refined to whatever level of detail is needed.

2.2.3. Granularity of Process Models
To be most effective in supporting the objectives of process modeling presented

above, process models must go beyond representation. The understanding of process
participants about the contents and sequencing of process steps depends strongly on the
degree of details provided in the process model. The granularity issue involves the size
of the process elements (i.e., steps, roles, artifacts, etc.) represented in the model. The
granularity of a process step needed to ensure process precision will depend on the
purpose of the model and attributes of the person that must execute the process [Curtis
92]. Recently, the pressure for greater granularity (i.e., more details) in process models
is driven by the need to ensure process precision, the degree to which a defined process
specifies all the process steps needed to produce accurate results [Humphrey 92].
Another pressure comes from the increasing demand for process automation, which
requires precise process models at relatively deep levels of detail.

In the absence of precise process models, process participants are expected to have
the appropriate knowledge and reasoning to translate these abstract process models into
effective actions. This may be feasible for small and repeatable processes. However,
for larger projects, this situation becomes rapidly unmanageable and often leads to a
misunderstanding and to diverse interpretations of the same process model. Another
consequence of imprecise process models is that this penalizes the technology transfer
of companies. Indeed, process models encodes a part of the company expertise which

15

otherwise is only in employee heads. Having detailed process models allows
companies to:

- Master their assets;

- Transfer more easily the know-how to newcomers ;

- Increase repeatability;

- Allow process analysis and improvement.

For describing process models, we need some formalism, which may be graphical,
code-like, or both. These formalisms in the context of process modeling are called
Process Modeling Languages (PML). We introduce them further in this chapter.

2.2.4. Process Model Views
Depending on how large and complex the development process is, many aspects of

the process have to be modelled for the understanding of process participants.
Obviously, one view cannot cover all the details of process contents. Thus, multiple
views on the process are provided, each view focusing on a specific interest or aspect.
Typical examples of views are:

- The activity view, also called the workflow view, which focuses on the types,
structure and properties of the activities in the process and their relations,
sequencing. This view may be used for instance, by the project manager for
scheduling purposes and monitoring;

- The product view, which describes the types, structure and properties of the
software items of a process. This view can used to see the transformation
perspective of process artifacts form one state to another. It may be of interest
also to the user, e.g. to understand which kind of documentation will be
delivered with the software system;

- The resource view, that describes the resources either needed from or supplied
to the process, which is relevant from a managerial perspective;

- The role view, which describes a particular set of resources, namely skills that
performers supply and the responsibilities they accept. This is relevant to the
organisation and the quality assurance personnel, besides other performers.

Notice, that one view can refer to some concepts defined in other views. One
consideration then to take into account, is to ensure the global consistency of the
different views. It is meant by consistency here, that a process element should have the
same name and properties from one view to another.

2.3. Process Modeling Languages

A Process Modeling Language (PML) is a language used to express process models
[Zamli 01]. Consequently, the understandability, precision and usability of a process
model will mainly depend on the PML used to describe it. Requirements and design
goals for a PML are mainly driven by the domain and complexity of processes being
modeled. A good PML design assumes that we understand the domain, so that we can
make sensible decisions on which process elements should be covered where and how.
Examples of some considerations that have to be taken into account while designing a
PML are:

16

- What has to be defined within a process model?

- What are the constituents of a software process and how are they interrelated?

- Is the process model intended to be used for description purposes? For its
execution? For reasoning, analysis, improvement?

A PML can be formal, semi-formal or informal. A formal PML is one which is
provided with a formal syntax and semantics. Semi-formal languages usually have a
graphical notation with formal syntax, but not formal semantics i.e. not being
executable. Natural languages, such as English, may be used as informal PML
[Conradi 99].

In Section 3, we address in more details PMLs, their characteristics and
requirements. A state of the art of some Software Process Modeling Languages
(SPML) is presented in the next Chapter.

2.4. Process Metamodel

Metamodels are used to describe and analyse the relation between concepts. A
model is an abstraction of phenomena in the real word and a metamodel is yet another
abstraction highlighting properties of the model itself [Van Gigch 91]. A Process
Metamodel is a conceptual framework that gives a precise definition of the constructs
and rules needed for expressing and composing Process Models [Lonchamp 93]. While
a process model represents a description of a family of processes to be (or actually)
performed, the process metamodel defines the set of concepts and their relationships to
be used in process models. Then, a process is an instantiation of a process model which
is (should be) in conformity with its metamodel. Process metamodels represent also a
powerful mean for comparing and reasoning about different PMLs. The grammar
defined by each metamodel will depend on the context and modeling objectives. This
topic is addressed in more detail in the next chapter in the context of metamodel-based
software process modeling languages.

2.5. Process-Centered Software Engineering Environments (PSEEs)

Process-centered Software Engineering Environments (PSEEs) or (PCSEEs) are
meant to support the development process. A PSEE provides a variety of services, such
as assistance for software developers, automation of routine tasks, invocation and
control of software development tools, and enforcement of mandatory rules and
practices [Ambriola 97]. Information needed to provide such services are defined in
Process Models which represent the main input parameter of PSEEs. Process models
specify how people should interact and work, how and when automated tools are
activated or invoked. A PSEE takes then as input a Process Model and "behaves"
according to what it is defined within that model. Obviously, the PSEE is characterized
by the PML that defines its input process models.

PSEEs may have different user support goals. Herein, principal one:

 Passive role: The user guides the process and the PSEE operates in response to
user requests;

 Active guidance: The PSEE guides the process and prompts the users as
necessary, reminding them that they should perform certain activities. The users
are still free to decide if they will perform the suggested actions or not;

17

 Enforcement: The PSEE forces the users to act as specified by the process
model;

 Automation: The PSEE executes the activities without user intervention.

Often, the same PSEE adopts more than a single form of user support [Cugola 98].

3. Process Modeling Language Requirements

In [Kellner 91a], authors concluded that the suitability of a process modeling
language will depend on goals and objectives of the resulting model. A conclusion
which remains valid nowadays. Research on software process modeling identified
many of these objectives [Riddle 89] [Curtis 92] [Jaccheri 99]. They vary from
facilitating human understanding to providing automated execution support.

Roughly, PM community viewpoints are divided into two families. Those that
consider a PML as any Modeling Language (ML) and those that view a PML as any
Programming Language (PL). That latter perspective was essentially supported by
Osterweil's work in his well-known paper "Software Processes are Software Too"
[Osterweil 87]. Principal PML requirements promoted by this community are
Executability and Formality. While authors like Conradi [Conradi 95] and [Kellner 89],
which support the first perspective (i.e., a PML as any ML), establish Analyzability,
Understandability and Modularity as general PML requirements. Those requirements
are confirmed by Armenise et at. in [Armenise 93], which add the Generecity
requirement.

In the following, we give a brief description of principal PML requirements:

 Formality: The syntax and semantics of a PML may be defined formally, i.e.
precisely, or informally, i.e. intuitively. Formal PMLs support, for example,
reasoning about developed models, analyzing of the precisely defined
properties of a model, or transforming models in a consistent manner;

 Understandability: It dependents on the possible process model's users. A
PML should be user-oriented and easy to comprehend. Users with a computer
science background will find easier to understand a model written in a PML
that resembles a programming language. Those with other backgrounds may
prefer graphic representations based on familiar metaphors;

 Expressiveness: Indicates whether all aspects of a process model may be
directly modelled by language features of the PML or have, for example, to be
expressed by means of additional comments. This requirement is addressed in
the context of Software PMLs in the next section (cf. section 3.1);

 Abstraction: An abstraction mechanism allows one to focus on the important
aspects of a system while irrelevant details remain hidden. Abstraction is
important in process modeling, because it helps in mastering the complexity of
the process by allowing the designer and user of the process to concentrate in
what is important in each phase of the software development;

 Modularization: The PML may offer modelling-in-the-large concepts, such as
modularization, to structure a process model into sub-models connected by
certain relationships. With the expansion of new ways of working such as
outsourcing, contracting-out, company fusions, this requirement is taking more
and more importance;

18

 Generecity: provides the way of describing a general solution for a set of
related problems, by parameterizing it with respect to its possible instantiations
[Armenise 93]. This goes through the definition of more general, abstract sub-
models which are customized within a concrete process model. In addition, a
PML may offer the possibility of distinguishing between generic and specific
process models;

 Executability: The PML may support the definition of operational models.
These are executable. This implies that the PML should provide concepts and
structures with an operational semantics, a key for process model executions;

 Analyzability: A PML, as most modeling languages, should be sufficiently
formal to allow precise modeling, analysis and simulation. Reasoning about
process models is a key for process improvement;

 Reflection: The PML may directly support the evolution of process models. In
this case there are parameterization, dynamic binding, persistency and
versioning issues to be addressed;

 Multiple conceptual perspectives/views: The PML may support the definition
of views of certain perspectives of a process model. This implies mechanisms
to integrate different views of a process model into an overall process model.

PMLs can be evaluated according to these requirements. However, an important
observation is that some desired requirements may be in conflict so it is not possible to
address all of them within one PML [Ambriola 94] [Perry 89]. Thus, fundamentally
different PMLs and notations may be needed to cover such diversity in scope [Conradi
95].

3.1. Constituents of Software Process Models

As we emphasized in Section 2.3 (Process Modeling Languages), the
expressiveness of a PML depends on the set of concepts that forms its vocabulary. A
PML, depending on the domain, should support the description of several concepts that
characterize the development process. In the context of Software Process Modeling
(SPM), early classifications of the constituents of software process models have been
proposed in the literature [Dowson 91] [Conradi 92a] [Feiler 93] [Lonchamp 93]
[Fuggetta 00]. We give here an essential summary of each element:

 Activity: A concurrent process step, operating on artifacts and coupled to a
human agent or a production tool. It can be at different abstraction levels i.e.,
activities can be decomposed. They can be at almost any level of granularity.
Artifacts constitute the operands (inputs/outputs) of activities [Conradi 99].
Synonyms of Activity are Task, Step, Work definition, etc. When we say
synonym, we mean from one PML to another. Of course, we can have all or
parts of these synonyms as concepts of the same PML. As an example,
SPEM1.1 which defines Activity, Step and WorkDefinition. Each concept with
its own semantics [OMG 05a]. SPEM1.1 will be addressed in detail in the next
chapter;

 Artifact: A product created or modified during a process either as a required
result or to facilitate the process. They are the input and output of activities. An
artifact can be simple or composite and may have relationships i.e.,

19

dependencies with other artifacts. Synonyms of Artifact are Product in [Conradi
92a], WorkProduct in [OMG 05a] and [ISO 06], Resource in [Cass 00];

 Role: Defines rights (i.e., permissions) obligations and responsibilities of the
human agent involved in the software activity. A Role is a static concept while
the binding between a role and an agent can be dynamic [Conradi 95]. A role
can be played by several agents and inversely, an agent can play several roles;

 Human: Human are process agents who may be organized in teams. They have
skills and authority and can fulfil a set of roles. They are in charge of executing
certain activities that compose the process. Synonyms of Human are Agent,
Performer, etc;

 Tool: Relates to any tool used by the software process, may be batch (i.e.
compilers, links, parsers…) or interactive (i.e. textual editors, graphical CASE
tools…).

Of course this set of concepts is not restricted to those defined here and may differ
depending on the modeling domain. Then, as we've noticed in the previous section, the
expressiveness requirement is tightly related to the ability of the PML to express
constituents of real software development processes.

4. Classification and Comparison Of Process Technology
Domains

Since organizations recognized the benefit of capturing their processes in formal
representations, their interest to the Process Modeling discipline never stopped to
grow. The promises of cost effective and better quality products and services
stimulated many research activities and projects. The process technology was first
developed within the manufacturing domain and rapidly succeeded to draw the
attention of many others. The computer science domain counts many research areas
that deal with process modeling. Most mature ones are:

- Software Process Engineering (SPE);

- Workflow Management (WfM);

- Business Process Management (BPM);

- Information Systems Engineering (ISE);

- Enterprise Application Integration (EAI).

However, whether these communities have distinct goals, they all share the fact that
they handle and manage processes. This common point became rapidly a source of
misunderstanding and ambiguities since each community started to give its own
definitions regarding the process technology. This led, in a first time, to the
proliferation of taxonomies that aim at giving definitions of basic concepts. As we saw
earlier in this chapter, the term Process has different meaning from one community to
another. In the literature, we can mention most known contributions in providing
taxonomies for Software Process Engineering [Lonchamp 93] [Humphrey 89a], for
Business Process Management [Davenport 93] [Scheer 99] [Giaglis 01], for
Information Systems Engineering [Sol 92], and [WFMC 99] [Georgakopoulos 95] for
Workflow Management.

20

In a second time, the process modeling community saw the appearance of a
multitude of Process Modeling Languages within each community. PMLs are the
means to capture real processes in Process Models. The principal aim behind modeling
processes was to capture the company expertise and to ensure the repeatability of
processes. Once companies had their processes described in formal representations,
their objectives moved from simply representing processes to how to provide means
and techniques to analyse them, to improve them and to execute them. In order to
evaluate PMLs, frameworks were proposed [Curtis 92] [Paulk 95] and a set of
requirements on PMLs and basic process model elements were fixed [Dowson 91]
[Conradi 92a] [Jaccheri 99] [Kellner 89]. Within each community, efforts were made to
compare between the different PMLs and many surveys was provided. We can quote
[Conradi 99] [Armenise 93] [Zamli 01] in the context of Software PMLs, [Giaglis 01]
[List 06] for a comparison of Business PMLs and [Lei 97] [Bolcer 98] [Mühlen 99] for
Workflow formalism evaluations.

However, whether each community is evolving its process technology individually,
few works have been done in order to find commonalities/distinctions between the
different research areas. This situation led that nowadays, many process analysts and
company deciders are confused about which technology to choose to achieve their
goals. Besides, many people in the domain are unable to differentiate or to establish the
relationship between a Software Process (Software Process Engineering), a Business
Process (Business Process Management) and a Workflow (Workflow Management).
Are software processes a kind of workflows? What is the difference between a business
process and a workflow? Are software processes business processes?

In the following, we try to answer these questions. In order to do so, we define a
kind of framework that guides us while classifying and comparing these different
research areas. The main goal behind this framework is to guide process modellers and
deciders in their choice of the appropriate technology in regard with their process
modeling objectives. Conversely, it can be used in order to identify the set of concepts
and requirements that have to be respected in order to define a new PML according to
the domain (i.e., SPE, BPM or WfM). The framework consists in responding to the
following questions:

1. What it is the domain context and scope?

2. What are goals and objectives of modeling processes in this domain?

3. What are the domain and process characteristics?

4. What are the process modeling concepts of the domain?

In the following, we detail each of these concerns with regard to Software Process
Engineering (SPE), Business Process Management (BPM) and Workflow Management
(WfM) domains. The choice of these domains is related with the scope of this thesis and
with the fact that some domains are more mature than others. Definitions of the term
Process within each of these domains was already addressed in Section 2.1. In
[Totland 95], we can find a similar initiative. However, in the paper, authors only
answered the questions (1) and (2) and did not establish any relationship between the
different process modeling domains.

21

4.1. Software Process Engineering Domain

As introduced by Humphrey, Software Process Engineering refers to "the total set
of software engineering activities needed to transform user’s requirements into
software"[Humphrey 89a]. This process may include, as appropriate activities of:
requirement specifications, design, implementation, verification, installation,
operational support, and documentation.

Goals and Objectives of Modeling Software Processes
The goal of software processes is to facilitate and to support the development of

high-quality products more quickly and at lower cost. Modeling of software processes
can have several purposes. Most important ones remain ensuring process
understandability and communication between software developers. In [Armenise 93],
authors add the following objectives: process planning, analysing, measuring,
configuring, reusing, executing and improving. Software processes are formed of two
kinds of processes. The software production process, which represents the process
being actually performed by software developers and tools, and the Meta-Process,
which consists of the activities of modeling the process, managing the process, support
for its execution and improvement. Processes and meta-processes are operated by
humans. One output of a process is the feedback from its operating people on the
procedures and tools used. This feedback is used by the meta-process to improve the
process itself by modifying the process model [Conradi 92a].

Domain and Process Characteristics
Software processes have characteristics that make them different from typical

production processes. Software production is a highly creative task and therefore, it is
not completely formalizable. Consequently, the execution of the activities involved in a
software process cannot be done entirely by computers [Armenise 93]. According to
[Ruiz 04] and [Sutton 95a] the special nature of software processes can be defined as
follow:

- They are complex;

- They are exception driven, highly unpredictable since they depend too much on
too many people and circumstances;

- Not all activities are supported by automated tools. Some of them may be
incomplete and informal;

- They are finding-based and depend on communication, coordination and
cooperation within a predefined framework;

- Their success depends on user involvement and the coordination of many roles;

- They may take a long time and are subject to changes during this time.

Of course, these features that characterize software processes have to be taken into
account while designing Software PMLs.

Process Model Elements
In the literature, we can find an agreement about principal process elements that we

can find in software process models [Dowson 91] [Conradi 92a] [Lonchamp 93]. Main
ones are Activities, Artifacts, Roles, Human (or agent) and Tools. The description of
each of these process elements was introduced earlier in Section 3.1. We can also quote

22

notions such as Deliverable, Constraints, Milestone, Guidance, team, Phase, Iteration,
Lifecycle, etc.

Domain context and scope
Developing software processes is generally the goal of companies that have as a

main business, the production and maintenance of software. Software organizations
aim at making their processes and software the most repeatable, cost effective and
reliable as possible. The implication of organisations, having other business than
software production, in modeling software processes would be risky and costly.
Organisations doing so tend to retain their software-dependent competitive advantage
by developing their own software [Thomas 95]. The critical software's components are
often developed internally while non-strategic ones are bought as off-the-shelf systems.
The scope of software processes in almost cases is limited to the organisation.

4.2. Business Process Management Domain

A business process is defined as group of tasks that together create a result of Value
to the customer [Hammer 96]. We will see herein, how important the notion of Value
is. Business Process Management (BPM) refers to the set of methods, techniques and
tools to support the design, enactment, management, analysis and improvement of
business processes [Van der Aalst 03b]. We can resume BPM concerns in:

 Organizing the business around processes and focusing on customer
satisfaction;

 Clarifying and documenting processes;
 Monitoring process performance and compliance;
 Continuously identifying opportunities for improvement and deploying them.

Companies rely on a range of Core and Support processes, which together form the
business process, to create Value for their customers. It is meant by value creation for
customer: improved product quality, improved customer service, reduced cycle time,
reduced cost to the customer. The notion of core and support processes was initially
introduced by the famous Michael Porter's work in his book, "Competitive Advantage"
[Porter 85]. Porter divided the activities within the value chain into two sets:

1. The primary activities that converted raw materials into finished products and
sold and delivered them;

2. Support activities, which included technology development, human resources
and firm infrastructure.

By the mid-Nineties, most authors referred to the two types of high-level processes
as core business processes and support business processes.

Every business has unique characteristics embedded in its core processes that help
it achieve its goals and create competitive advantage. Strategic business processes,
such as new product design or high-sensitivity customer care, provide unique and
durable business advantages to organizations. Those that depend on people's
intelligence, experience, knowledge, judgment and creativity are the hardest for rivals
to duplicate. Core processes are unique to a firm and have greater strategic importance
than support processes. Support processes deal with the activities of process
automation, resources and process management, analysis and improvement. Nowadays
these activities are mostly known as BPA for Business Process Automation or

23

Analysis, BAM for Business Activities Monitoring and STP for Straight Through
Processing.

If the objective is to create competitive advantage, then a company’s focus should
be on core processes, such as new product development or customer care and retention.
Examples of questions when developing the core process are: what can we do to
permanently cut the costs of our operations? How can we boost revenue? How can we
get first-mover advantage? However, if the objective of a process is operational
efficiency, then a support process may be a better choice.

In the literature, we can also find the notion of Business Process Reengineering
(BPR). BPR is a management approach aiming at improvements by means of elevating
efficiency and effectiveness of the processes that exist within and across organizations.
It is a fundamental and radical approach by either modifying or eliminating non-value
adding activities. BPM differs from BPR in that it does not aim at one-off
revolutionary changes to business processes, but at their continuous evolution.

Goals and Objectives of Modeling Business Processes
Every organisation has a core business. It can range from producing and delivering

of goods, producing software, to providing services as transportation or medical cares.
Their principal concern remains how to augment efficiency and reliability of goods or
services they provide. The notion of Value is then related to the degree of reliability (in
case of producing goods) or satisfaction (in case of providing services) the
organisation's business meets the customer expectations. In their paper "Business
Modelling Is Not Process Modelling", authors pointed-out a very important goal of
business process modeling [Gordijn 00]. They define as a main goal of having business
process models, the answer to the question "Who is offering What to Whom and expects
What in return". Therefore, the central notion here is the concept of Value, in order to
explain the creation and addition of Value in a multi-party stakeholder network, as well
as the exchange of Value between stakeholders. Thus, creation/addition of value for
customer and for the organisation is among principal goals that can induce
organisations to model and reason about their business processes. The notion of value
as an important concept in business models is also pointed out in [Timmers 99] in
terms of benefits and revenues.

Obviously, the support for human understanding, communication, process
improvement, analysis, simulation and execution remain important parts of BPM
objectives [Giaglis 01] [Ould 95].

Domain and Process Characteristics
Business processes are essentially characterized by their dependency on human

intervention and by their complexity, often involving unpredictable variables that can
require major changes during execution, even changing the entire course of the process.
In [Jennings 96], authors emphasize the following characteristics:

 A business process crosses functional/organisational boundaries. Organisations
are physically distributed. This distribution may be across one site, across a
country, or even across continents. Within organisations, there is a
decentralised ownership of the tasks, information and resources involved in the
business process;

 Different groups within organisations are relatively autonomous—they control
how their resources are consumed, by whom, at what cost, and in what time

24

frame. They also have their own information systems, with their own
idiosyncratic representations, for managing their resources;

 There is a high degree of natural concurrency—many interrelated tasks are
running at any given point of the business process;

 There is a requirement to monitor and manage the overall business process.
Although the control and resources of the constituent sub-parts are
decentralised, there is often a need to place constraints on the entire process
(e.g. total time, total budget, etc.);

 Business processes are highly dynamic and unpredictable—it is difficult to give
a complete a priori specification of all the activities that need to be performed
and how they should be ordered. Any detailed time plans that are produced are
often disrupted by unavoidable delays or unanticipated events (e.g. people are
ill or tasks take longer than expected).

We can also add that:

 Business Processes are often long running;

 Business Processes need user interaction;

 Business Processes may need to migrate in the event of hardware failure or for
performance;

 Business Processes are stateful;

 Business Processes have customers, internal or external, which may receive
products or services from a business process. External customers are outside of
the organisation. Core processes concentrate on satisfying their requests.
Internal customers are part of the organisation. They represent other groups or
departments and relate to support processes.

Process Model Elements
In addition to well-established process elements we introduced earlier (cf. Section

3.1); there are some other aspects and concepts specific to business processes. These
concepts deal more with the organisation context. In [List 06], authors denote for
instance the notion of Organizational Unit or Entity, of Customer, which can be
internal or external, of Agent, the notion of Software. There are also some concepts that
deal with the organisation's business context such as, Goal or Objective, Process
Owner, Service, Event, Message, Condition, Transaction, Sub-Process, Time Date and
Business Rule. Business rules represent the knowledge and rules in an organization that
prescribe and/or restrict the way in which process activities are accomplished. Some of
these rules exist in a formalized way; others exist only informally. Some rules are
precisely defined, others allow for discretion of a human actor [Endl 98]. Finally as the
main goal for modeling business processes is the creation of value, business process
models often provide concepts for measuring process efficiency.

Domain context and scope
Achieving organisation business goals can make business processes span many

organization's units as well as many other organizations. More often, a business
process is composed of sub-processes, which are achieved by the organisation units.

25

4.3. Workflow Management Domain

The term Workflow or Workflow Management designates the automation of a
business process, in whole or part, during which documents, information or tasks are
passed from one participant to another for action, according to a set of procedural rules
[WFMC 99]. The business process is defined within a Process Definition, which
identifies the various process activities, procedural rules and associated control data
used to manage the workflow during process enactment.

Workflow Management System (WfMS) are used to define, create and manage the
execution of process definitions through the use of software, running on one or more
workflow engines, which is able to interpret the process definition, interact with
workflow participants and, where required, invoke the use of IT tools and applications.

Goals and Objectives of Modeling Workflows
 An important objective in workflow management is to be able to automatically

route artifacts - most often documents- through a network and according to predefined
rules, to actors having predefined roles [Totland 95]. This aims at saving time and
money by ensuring that the right person or entity is being affected with the right tasks
and documents at the right moment. Workflow management tends to answer the
"Who?" (Business process's participants and roles), the "What?" (Process activities,
roles have to do) and the "When?" (When does a role start an activity).

Domain and Process Characteristics
 Since a workflow is the automation of parts of a business process i.e. automatic
routing of artifacts across process activities, workflow processes are much related to
the business process they support. Thus, they share few characteristics such as:

 Workflows can be long-time running. This is not the case of a majority of
workflows. Often it depends of the business process they support [Schmidt 98];

 They depend on humans. Even if the process is automated, it depends on the
agent (human) executing the process activity. The efficiency in terms of time
and quality depends on the agent's ability and skills to do the work on time.

However, the workflow technology has some characteristics that are in contradiction
with the nature of business processes, thus making their support and management
limited. Herein some of them:

 Workflow systems are suitable for supporting rigidly structured, well-defined
and repeatable business processes. Since processes are more often implemented
in terms of proprietary code and procedures, any change in the business
process, e.g., new requirement, new objective, may reveal very costly and time
consuming. Besides, procedure implementations are task-specific and may
require recompiling the code [Swenson 95] [Adams 03];

 Business rules in Workflow systems are hard-coded. Once the process
execution is lunched, it is not possible to modify them;

 Workflow systems are tightly coupled through customized APIs with software
and applications used during the process;

 Workflows are limited in modeling all business process aspects in the sense that
most concepts relate to the coordination of tasks and artifacts routing;

 Not all workflow systems provide graphical representations.

26

Process Model Elements
As for the previous domains, the Workflow technology has some domain-specific

concepts in addition to the usual ones i.e., Activity, Role, Artifact, Tool and Human.
Concept names may differ but roughly, they designate the same thing. For instance, the
term Workflow Participant or Agent is used instead of Human, Application or Software
instead of Tool, etc. Regarding process model elements proper to workflows, we can
mention Work Item, which designates the representation of the work to be processed by
a workflow participant in the context of an activity within a process instance [WFMC
99]. Work items are normally presented to the workflow participant via a Work List,
which maintains details of its allocated work items. We also have the notion of Task,
which represents an automated activity, the notion of Deadline, Event or Pre & Post-
Conditions and Procedure, Rule, which model process business rules.

Domain context and scope
In enterprise-wide applications, workflows may span multiple organizational units,

which are often, to a large extent, autonomous. Consequently, for scalability reasons, is
not unusual that an enterprise decides to partition a large workflow into a number of
sub-workflows (e.g., based on organizational responsibilities) each of which can be
handled by a different workflow management system. In order to allow different
workflow systems to interact and to harmonise the way of exchanging data between
workflow components, the WfMC defined a reference model [WFMC 95]. This
reference model comes in form of five interfaces that identify workflow primary
interaction modes. Interface 4 is the one dedicated to workflow system interactions.

Now we have introduced the three domains and presented their characteristics, in
the following we try to clarify the relationship between each domain.

Business Process Management Vs Workflow Technology
In the process modeling community, most people still have some difficulties to

distinguish the difference between the Workflow domain and the Business Process
Management domain. Even if the frontier between these two domains may look very
thin, it exists.

Business processes are a specific category of processes. A business process is
conceptually defined as a high-level process determined by the overall goals of the
enterprise [Georgakopoulos 95]. One primordial goal remains the creation/adding of
value to customers. Business processes contain activities that interface with market
partners (i.e., customers, suppliers, or other third parties). We refer to them as core
processes.

Workflow is concerned with the automation of procedures where documents,
information or tasks are passed between participants according to a defined set of rules
to achieve, or contribute to, an overall business goal. The function of a Workflow
Management System is to direct, co-ordinate and monitor execution of tasks arranged
to form workflows [Lawrence 97]. Traditional workflow systems support the partial
automated handling of small and repeatable steps within business processes. However,
support is restricted to the process-oriented part of a business case (e.g., activity B
starts when activity A finishes, etc.). The function-oriented part, which comprises
applications realizing business functions, is usually done by other business process
components [Schreyjak 98].

27

Business Process Management is the sum of all organizational activities centred
around the definition, implementation, execution, control, supervision and
improvement of processes. It is considered a more holistic view of Business Process
Reengineering in that includes execution, measurement and control of processes, in
addition the modeling and improvement or redesign activities. BPM in general is an
organizational concept. Workflow Management tends to be seen as the technical
coordination of process execution. It is a component of a comprehensive BPM
strategy, but does not encompass the strategic or change management activities
associated with BPM. Thus, the Workflow technology is a subset of Business
Process Management.

However, it is not surprising to find in the industry and in the literature some
workflow products and propositions that claim that they fully support business
processes. They are commonly called Advanced Workflows. We did not explore them
but in [Bolcer 98] [Swenson 95] [Becker 02] and [Georgakopoulos 95], the reader can
find a set of requirements, features and tradeoffs that traditional workflow systems
have to provide in order to support all phases of a business process lifecycle.

Software Processes Are Business Processes Too
Although many modern organisations are software-dependent, this does not mean

that software development is necessarily a critical business process for them [Thomas
94]. Business processes are not limited to the modeling of trading activities such as
"Develop market" or "Sell to customer", but include any meaningful human-work and
automated activities both coordinated in order to achieve a business goal. Therefore,
for companies vending software or providing software maintenance services, a
software development process is considered as a critical business process. The business
goal of these companies is then developing and maintaining software. All the expertise,
tools and techniques used during the software development process are the means to
ensure product's quality, short time to market, cost-effectiveness and customer's
satisfaction. Once these objectives reached, they represent the creation of a Value to
the customer (in terms of satisfaction) and to the organization (in terms of benefits).
Thus, Software Processes Are Business Processes Too.

Historically, the notion of software processes as well as all the tooling and support
for developing software appeared before the one of business processes. However, it is
important to recognize that, in terms of modeling concepts, the business process
modeling domain is richer than software process one. This is due to the fact that a
business processes have to capture many organizational as well as functional aspects of
the process. Organizational details concern all aspects related to the organization's
business goals, customers, financial partners, human resources, organisational units,
measures, etc. While the functional details deal with the coordination of process
activities and participants, managing artifacts, process simulation, execution and
monitoring, etc. These distinctions in modeling concepts between the two domains
added to modeling goals specific to each domain (cf. Sections 4.1 & 4.2.), justify the
myriad of PMLs in both domains.

More discussions on the topic can be found in [Thomas 94] [Scacchi 94]
[Henderson 94] and [Gruhn 92].

Regarding the relationship between Software Process Engineering and Workflow
Technology, it is the same as the one between BPM and Workflow Technology. Indeed,
since software processes are special cases of business processes, in SPE, workflows

28

are used as means to automate the coordination of repeatable process steps and
roles. Software process analysis, improvement and management are not supported by
workflow engines.

Which Process Technology Fits the Best Your Needs?
After having introduced the different domains that deal with processes, in the

following, we present our Process Technology Framework (See Table 2.1), which
summarizes the characteristics, scope and constituents of each process domain. It also
clarifies the relationship between each domain. As we argued earlier, this framework
aims at facilitating and helping deciders and process modeller in their choices for the
right process technology that will fits the best the organisation's core business and
objectives. It is also a kind of a requirement book that can be taken into account if one
needs to design a new PML within any of the SPE, BPM or WfM domains. We
validated this framework in [Bendraou 07b].

29

Process Domains
Characteristics

Software Process Engineering
(SPE)

Business Process Management
(BPM)

Workflow Management
(WfM)

Definition of the
term Process

The set of partially ordered process
steps, with sets of related artifacts,
human and computerized resources,
organizational structures and
constraints, intended to produce and
maintain the requested software
deliverables [Lonchamp 93]

A specific ordering of work
activities across time and space,
with a beginning and an end, and
clearly defined inputs and outputs.
Processes are the structure by which
an organization does what is
necessary to produce value for its
customers [Davenport 93]

A formalized view of a business process,
represented as a coordinated (parallel
and/or serial) set of process activities that
are connected in order to achieve a
common goal [WFMC 99]

Primary
Goal

To facilitate and to support the
development of high-quality
software more quickly and at lower
cost

Creation/addition of Value for the
customer and for the organisation

Automatic routing of artifacts across
process activities and participants

Goals of
Modeling
Processes

 Secondary
Goals

Process planning, understanding,
analysing, measuring, configuring,
reusing, executing and improving

Support for human understanding,
communication, process
improvement, analysis, simulation
and execution

Saving of time by automatic task and
artifacts affectations, detection of process
bottlenecks

Process Composition
(Sub-Processes or

Phases)

- The Software Production
Process: represents the process
being actually performed by
software developers and tools

- The Meta-Process: consists of
the activities of modeling the
process, managing the process,
support for its execution and
improvement

- The Core Process: the primary
activities that converted raw
materials into finished products
and sold and delivered them

- The Support Process: the
activities of process automation,
managing resource and process,
analysis and improvement

There is no firm consensus in the literature
on process phases in the Workflow
domain. The WfMC define two phases:
- Process Definition Phase: designates

the time period when manual and/or
automated (workflow) descriptions of
a process are defined and/or modified
electronically

- Process Execution Phase: the time
period during which the process is
operational, with process instances
being created and managed

30

Domain and Process
Characteristics

- They are complex

- They are exception driven

- highly unpredictable since they
depend too much on too many
people and circumstances

- Not all activities are supported
by automated tools

- They depend on communication,
coordination and cooperation
within a predefined framework

- Their success depends on user
involvement and the
coordination of many roles

- They may take a long time and
are subject to changes during
this time

- Business processes may cross
functional/organisational
boundaries

- High degree of natural
concurrency—many interrelated
tasks are running at any given
point of the business process

- There is a requirement to
monitor and manage the overall
business process

- They are complex, highly
dynamic and unpredictable

- They are often long running

- They need user interactions

- They may need to migrate in the
event of hardware failure or for
performance

- Business Processes are stateful

- Business Processes have
customers (internal or external)

- Workflow systems are suitable for
supporting rigidly structured, well-
defined and repeatable business
processes

- Processes are more often implemented
in terms of proprietary code and
procedures

- Business rules are hard-coded. Once
the process execution is lunched, it is
not possible to modify them

- Workflow systems are tightly coupled
through customized APIs with
software and applications used during
the process

- Workflows are limited in modeling all
aspects of business processes

- Not all workflow systems provide
graphical representations

General
Process

Elements

Activity, Artifact, Role, Tool and
Agent

Activity, Artifact, Role, Tool and
Agent

Activity, Artifact, Role, Tool and Agent

Process
Model

Elements
Domain-
specific
Process

Elements

Deliverable, Constraint, Milestone,
Guidance, Team, Phase, Iteration,
Lifecycle, etc.

Organizational Unit or Entity,
Customer, Software, Goal, Process
Owner, Service, Business Rule,
Event, Message, Condition, Date,
Transaction, Sub-Process, Time, etc.

Work Item, Work List, Task (automated
activity), Instance (of process or activity),
Deadline, Procedure, Rule, Application,
Event, etc.

31

Domain's context
and scope

Organisations having as main
business the development and
maintenance of software. In
addition, organisations that tend to
retain their expertise and strategic
business by developing their own
software.
The scope of the process is the
organisation.

Any organisation, what ever its
business, that wants to create/add
value to its customers.
Business processes span many
organization's units as well as many
other organizations

Workflows are often
Organisation/Department specific

Relationship with
other domains

- Software Processes are special
cases of Business Processes.

- Software Processes use the
Workflow technology to
automate the routing of artifacts,
the coordination of process
activities and roles

- A Business process can be a
Software Process since the BPM
domain is richer than the SPE.

- BPM is a superset of the
Workflow technology. That
latter is used to automate
process's repeatable tasks and
for artifacts routing

- The Workflow Technology is used by
BPM and by SPE to automate process's
repeatable tasks and for routing artifacts.

Table 2.1. A Framework for classifying and comparing process technology domains

32

5. Conclusion

In this chapter, we addressed many aspects and concepts that relate to the Process
Modeling discipline.

First, we started by giving different and most cited definitions of the term Process
across some mature communities that deal with process modeling. Communities we
addressed are Software Process Engineering (SPE), Business Process Management
(BPM), Workflow Management (WfM) and Information Systems Engineering (ISE)
communities. Our intention was not limited to simply provide these definitions but to
bring out and to comment specificities of each of them. The main purpose behind was
to clarify the vision of each community about what they define as a Process. This
helped us in identifying process-specific characteristics of each domain. As the topic of
this thesis is about software process modeling, we retained Lonchamp's software
process definition among many others as the one to use along the document. Lonchamp
defines a software process as "the set of partially ordered process steps, with sets of
related artifacts, human and computerized resources, organizational structures and
constraints, intended to produce and maintain the requested software deliverables".

Then, we introduced Process Models and we presented the motivations for
representing processes in a more formal format rather than simply using natural
language. We also emphasized on the increasing need and process community
pressure for having more fine-grained process models. This pressure is mainly driven
by two reasons. The first one is due to the fact that since processes are more and more
complex, that development teams are constantly renewed and the appearance of new
way of working (outsourcing), organisation's expertises have to be captured in
sufficiently precise models in order to ensure the transfer of the technology. The
second reason relates to the increasing demand for process automation, which requires
precise process models at relatively deep levels of detail. We will see in chapter 4 that
not all languages provide fine-grained process models, and how this lack can penalize
process automations.

We also discussed Process Modeling Languages and general requirements that
have to be taken into account while designing a PML. An important observation we
came to is that many of these requirements may be in conflict and often, it is not
possible to satisfy all of them at once. These requirements will be used in the next
chapter to compare between some software PMLs.

Finally, in front of the proliferation of process technology domains such as BPM,
SPE, and WfM, it becomes more and more difficult to distinguish between these
different domains. Each domain comes with its concepts, tools and marketing slogans
such as nowadays, company managers pain to choose the right technology that should
satisfy their expectations. In order to make things clearer and to ease the choice
between these domains, we defined a kind of framework that classifies and compares
the different process technologies (i.e., SPE, BPM and WfM) [Bendraou 07b]. This
framework gives the process definition, characteristics, modeling objectives, process
model constituents, process context and scope of each domain. It also clarifies the
relationship between each of these domains. By means of this framework, we
concluded that whatever a Software Process, a Business Process or a Workflow, it
remains a process. What differ from one domain to another, are the process modeling
objectives, the means and technology used by the process to attain these objectives and
the characteristics proper to each domain. All these distinctions justify the myriad of

33

PMLs within the different domains. Having one massive PML in order to deal with all
these domains would be inefficient since it will need to be tailored and customized to
fit domain-specific characteristics.

Since in this chapter we clarified the distinctions between the different process
modeling domains and since the topic of this thesis is restricted to software processes
modeling, in the next chapters we only address Software Process Modeling Languages.
Comparing Software PMLs, Business PMLs and Workflow formalisms would be
incoherent since they do not address the same modeling objectives.

34

Chapter 3

Software Process Modeling Within the MDE Vision

1. Introduction

Since late eighties, research on software development processes and management
saw the emergence of a multitude of Software Process Modeling Languages (SPMLs).
Some of them were rules based (e.g., MARVEL) [Kaiser 90], others Petri-net based
(e.g., SPADE) [Bandinelli 93] or object-oriented and programming languages based
(e.g., SPELL, APPL/A) [Conradi 92b] [Sutton 95b]. They are commonly called first-
generation languages. Despite the fact that these languages were executable and
semantically rich, they did not gain much attention from the industry [Di Nitto 02]
[Henderson 04] [Chou 02]. Their complexity, their use of low-level formalisms and the
impossibility for non-programmers to use them, were among the main causes of their
unsuccessfulness and of their limited spreading. The continuing proliferation of these
first-generation PMLs has naturally risen in the SP research community the need of
standardizing software process engineering concepts and best practices.

On the other hand, advances in software development and information processing
technologies have resulted in attempts to build more complex software systems. These
complex systems highlighted the inadequacies of the abstractions provided by modern
high-level programming languages [France 06]. This has led to a demand from the
software development community for languages, methods, and technologies that raise
the abstraction level at which software systems are conceived, built, and evolved. In
response to this keen interest in raising the abstraction level of programming
languages, the software industry saw in models, the means to reach this goal. They
represent a powerful mechanism for abstracting system specifications from the
underlying technical and technological features. This has as direct effect, the increasing
of understandability, analysability and model exchanges of software specifications
between development teams. This initiative is commonly known as MDE: Model-
Driven Engineering. MDE is promoted as an approach to software development where
extensive models are created before source code is written. By considering models as
first class entities, MDE aims at increasing productivity by reducing software
production complexity [Bendraou 07a].

The MDE approach promotes the use of models and platform-independent
modeling languages. During the last decade, only few modeling languages gained the
attention of both the industry and the academia. Undeniably, UML (Unified Modeling
Language) succeeded to become the de facto standard for modeling object-oriented
applications and systems in the industry. The principal ingredients that participate in
the success of UML - among others - are 1) its power of abstracting the complexity of
the systems being modelled and 2) the use of an intuitive and understandable set of
notations and diagrams. Nowadays, complete panoply of tools, documentations and
training supports are available. A large number of engineers and software developers
are already familiar with UML and with the accompanying tools.

35

The standardization of UML, together with the promises of the MDE approach in
terms of abstraction and productivity has logically attracted the attention of the process
modeling community. Therefore, the possibility of using UML as a process modeling
language has been largely explored in the literature. This was not limited to the SP
modeling domain, but was also addressed by the business process and workflow
management communities [OMG 00a] [Bastos 02] [Manttel 05].

In this chapter, more than introducing the MDE vision, we will highlight its
principles and we will focus on how the software process community can take
advantage of this approach in order to gain in efficiency and to reduce the complexity
of software process descriptions. As UML appears to be a main actor of the MDE and
since our approach is based on UML, we will briefly present this language and the
different extension possibilities it offers to be adapted for specific modeling domains.
Our domain of interest in this thesis is software process modeling. The understanding
of UML and its extension mechanisms is required for the comprehension of the next
chapter where a survey on UML-Based software process modeling languages is
addressed. The MDE principles introduced in this chapter are among the criteria on
which this survey is based on.

2. Model-Driven Engineering and Software Process Modeling

Among the plenty definitions that we can find in the literature about MDE, we
preferred to introduce Mellor's one. According to Mellor, "Model-Driven Engineering
is simply the notion that we can construct a model of a system that we can then
transform into the real thing" [Mellor 03]. Thus, this definition makes each of us a
model-driven developer. However, one important difference between the traditional
modeling practices and the MDE is that MDE's vision is not to use models only for
documentation purposes (i.e., contemplative models). Models are to be used as formal
input/output for computer-based tools implementing precise operations (i.e.,
operational models) [Bézivin 05]. The focus of software developers is then moved
from programs and code into models, which become primary artifacts through the
software engineering lifecycle. In its MDA (Mode Driven Architecture) guide, the
OMG defines a model as the "formal specification of the function, structure and/or
behavior of an application or system" [OMG 03]. In a broader sense, "Modeling is the
cost-effective use of something in place of something else for some cognitive purpose. It
allows us to use something that is simpler, safer or cheaper than reality instead of
reality for some purpose" [Rothenberg 89].

For an efficient use of MDE, there are some considerations to take into account,
whatever the application domain i.e., systems modeling, software process modeling,
etc. We address them in the below-sections.

2.1. Raising the Abstraction Level of Modeling Languages

The raise in abstraction claimed by the MDE vision can be viewed as the logical
continuity that programming languages have been faced during these last five decades.
Years ago, first computer programs were written in a target computer's numeric
machine code that had been used with the very first computers. In the beginning of the
fifties, the assembly language was introduced. Successions of "zero" and "one" in
computer programs were replaced by mnemonics (a code, usually from 1 to 5 letters,
that represents a machine language instruction that specifies the operation to be

36

performed), abbreviations or words that make it easier to remember a complex
instruction and make programming in assembly an easier task. An assembly language
program was then translated into the target computer's machine code by a utility
program called an assembler. An assembler is distinct from a compiler, in that it
generally performs one-to-one translations from mnemonic statements into machine
instructions while a compiler takes an entire program and translates it as a body. To a
certain extent, the translation of assembly programs into a machine code can be viewed
as it is most known today in the MDE domain, a Model Transformation. This model
transformation, transforms a human-readable model written in assembly language into
a machine-readable model written in a machine code. The goal behind this
transformation is the operationalization and the execution of assembly programs.
Nevertheless, whether the assembly code proved to be very efficient, it quickly tuned
out unsuitable to deal with the increasing complexity of computer programs. This is
what induced the introduction of High-Level Programming Languages. "High-Level
Language" refers to the higher level of abstraction from machine language. Rather than
dealing with registers, memory addresses and call stacks, high-level languages deal
with variables, arrays and complex arithmetic or boolean expressions. In addition, they
have no machine language instructions that can directly compile the language into
machine code, unlike low-level languages like the assembly language. In order to
execute programs written in a high-level programming language, programs may need
to be first translated (or compiled) into assembly language or byte code and then to
machine code by means of virtual machines.

Thus, by definition, every time a programmer writes a program in Java or C++,
there is actually a succession of model transformations which are performed before that
the program is executed. MDE then, can be considered as a natural continuation of this
trend. Instead of requiring developers to use a programming language spelling out
"how" a system is implemented, it allows them to use models to specifying "what"
system functionality is required and what architecture is to be used [Atkinson 03]. This
move to a higher abstraction aims at reducing complexity issues related to the
independency from platforms and languages, distribution, interoperability, persistency,
etc. However, one crucial challenge to be considered for leveraging this raise in
abstraction is to be always able to go a level down while minimizing the loss of data
and preserving code efficiency. Much more challenging, is to be able to go the other
way up in order to reflect (trace-up) changes applied at the low-level. Figure 3.1,
summarizes quite well the relationship between the language's abstraction level and the
degree of abstraction needed for modeling a subject matter under study. The main idea
is that one starts modeling an abstract problem (a bank application is given as an
example) using an abstract language (e.g., the Unified Modeling Language). Using the
abstract language will considerably ease the comprehension the of the problem since
developers abstract away object allocation issues, exceptions handling, etc. The
resulting system model is then to be refined, completed and transformed progressively
until it ends as a solution of the problem in a low-level concrete programming language
such as Java or C++.

37

Figure 3.1. Relationship between a language's abstraction level and the degree of abstraction of the

subject matter under study. From [Mellor 03]

In this work, we aim to apply MDE to the Software Process Modeling domain. As
we introduced in the previous section, first-generation SPMLs, whatever the formalism
they used e.g., Petri Nets, inference rules or programming languages such as Ada were
considered as relatively low-level process modeling languages. Indeed, aside to be
executed, the principal goal behind modeling software processes is first to enable
people reasoning, understanding and communicating about tasks to accomplish during
the development process. A software process described using the Ada language for
instance may be understandable in case of a simple process but it quickly turns out very
complicated for complex software processes. Software process executions have to deal
with many aspects such as artifacts management, events, exceptions handling, control
flows, etc, which may not be of primary importance while describing the process to
software developers. MDE can help process modeller to raise the abstraction level of
SPMLs they use to model software processes in order to concentrate on the process
domain aspects while keeping a tight relationship between process models and the way
they can be executed.

2.2. Executability of Models

Since the main motivation of the model-driven development is to improve
productivity, executability of models appears to be a pivotal requirement. Like a
programmer who writes a program and then tests it straightforward by a simple click, a
modeler should be able to test its models as easier as that. In [Harel 00], the author
compares models that cannot be executed to cars without engines. One important
advantage of executable models is that they can provide an early direct experience with
the system being designed [Selic 03].

Making software process models executable would allow, at earlier stages, to check
many aspects of the process. First, the process modeler can check the right sequencing
of process's activities and properties such as the process termination (e.g., does the
process end one day?) or activity starting (e.g., does this activity start one day?).
Second, the availabilities of resources and roles involved in the process are checked
beforehand (e.g., three designers, one tester, two analysts, etc.). Third, to be able to
reason about the process and to identify some process deadlocks or time-consuming
activities.

38

2.3. Metamodelling

To be productive, models should be usable by machines [AS CNRS 04]. Thus, the
language used to define these models has to be defined precisely. Metamodels are used
at this aim. A "metamodel is a model that defines the language for expressing a model"
[OMG 07a]. That is, a metamodel makes statements about what can be expressed in the
valid models of a certain modeling language [Seidewitz 03]. The relation between a
model and its metamodel is also related to the relation between a program and the
programming language in which it is written, defined by its grammar, or between an
XML document and the defining XML schema or DTD [Bézivin 05]. This relation is a
"Conforms To" relation and a model conforms (or is in conformity) to (with) its
metamodel if the elements defined in the model as well as relationships between these
elements are defined in the metamodel.

Analogous to modeling, metamodelling has many advantages. Metamodels help
abstracting low level integration and interoperability details and facilitate partitioning
problems into orthogonal sub-problems. Hence, metamodels can serve as an abstraction
filter in a particular modeling activity [Bézivin 01], as devices for method engineering
[Brinkkemper 01], language modeling, and conceptual definition of repositories and
Case tools [Talvanen 02]. Because a metamodel is a model itself, we express it in some
modeling language. One of the most known metamodelling languages is the OMG's
MOF (Meta Object Facility) [OMG 06c].

2.4. Standardization

Standardization provides a significant impetus for further progress of the MDE
trend. It codifies best practices, enables and encourages reuse, and facilitates
interworking between complementary tools. It also encourages specialization, which
leads to more sophisticated and more potent tools [Selic 03].

In reaction to the proliferation of languages and propositions claiming their support
for MDE, by early 2000, the OMG introduces its particular variant of MDE under the
MDATM acronym for Model Driven Architecture [OMG 03]. MDA promotes the OMG
shift from "every thing is object" to "every thing is a model" and may be defined as the
realization of MDE principles around a set of OMG standards like MOF [OMG 06c],
XMI [OMG 05b], OCL [OMG 06b], UML [OMG 07a, OMG 07b], SPEM [OMG 05a],
etc. MDA encourages the use of MOF as a foundation for building new languages, the
MOF/QVT standard for transforming models from one source language into a target
language, XMI as an interchange formalism and finally UML as the reference language
for defining either Platform-Independent Models (PIM) or Platform-Specific Models
(PSM) of systems and applications. The MDA is not the only initiative for tackling the
MDE vision and many others approaches tend (or already anticipated) to participate in
the "every think is model" shift. Among them, the Microsoft Software Factories (SF)
proposition [Greenfield 03] and the Model-Integrated Computing (MIC), which is
probably among the pioneer in this trend [Sztipanovits 95].

In the area of software process modeling very few standards exist comparing to the
Workflow and Business Process Management domain. We count only two
propositions, the ISO SEMDM (Software Engineering Metamodel for Development
Methodologies) standard, which is currently under standardization [ISO 06] and the
OMG's SPEM (Software Process Engineering Metamodel) standard. SPEM is

39

addressed in more detail in the next chapter and the ISO proposition is discussed
briefly.

In this section we presented main considerations to take into account of a better
leveraging of the MDE vision. The aspects we introduced here (Abstraction,
Executability of Models, Standardization, Metamodelling) combined with SPML
requirements that we will introduce in the Chapter 4 constitute our basis for combining
MDE advantages and SPM knowledge for an efficient and a better support of the
software process modeling discipline. In the next section we introduce UML, a main
actor of the OMG's MDA. Since our proposition is based on UML, we thought that it is
essential to present its principal facets.

3. The Unified Modeling Language

Since its introduction by the OMG in 1997, the Unified Modeling Language (UML)
has become one of the most widely used standards for specifying and documenting
information systems. In its new version, i.e., UML2.0, the standard's designers
emphasized on the better support for the notion of UML as a family of languages. This
notion is mainly ensured through the use of profiles and semantic variation points that
mark the part of UML intentionally left without semantics to accommodate user-
defined ones. An effort was also done in order to improve expressiveness, including
improved modeling of business processes and the integration of the Action Semantics
that developers can use to define the model's runtime semantics and provide the
semantic precision required to analyze models and translate them into implementations
[France 06]. The UML2.0 Actions are presented in more details while presenting our
approach in Chapter 5.

The standard comes in four parts:

 Infrastructure which defines base concepts that provide the foundation for UML
modeling constructs [OMG 07a]

 Superstructure introduces the concepts that developers use to build UML
models specifying their systems and applications [OMG 07b]

 Object Constraint Language which defines the language for expressing
invariant conditions that must hold for the system being modeled or queries
over objects described in a model and operation. OCL can also be used to
specify operations / actions that, when executed, do alter the state of the system
[OMG 06b].

 Diagram Interchange which enables a smooth and seamless exchange of
documents compliant to the UML standard (referred to as UML models)
between different software tools [OMG 06d].

Even if UML tend to cover many developers modelling preoccupations, there are

situations, however, in which a language designed to be of such broad scope may not
be appropriate for modelling applications of some specific domains such as for
instance, process modeling, architecture modeling, etc. This is what justifies the many
propositions of domain-specific languages (DSLs) and approaches such as the
Microsoft's Software Factories. In some domains, the UML syntax or semantics cannot
express specific concepts of particular systems, or where we want to restrict or
customize some of the UML elements which are usually too abundant and too general
[Fuentes 04].

40

In order to deal with the modeling of domain-specific concepts, the OMG defines
two possible approaches for defining DSLs: the heavyweight extension mechanism and
the lightweight extension mechanism. Since, in this thesis we propose to reuse UML
for software process modeling, in the following we present each of them with their
respective advantages and drawbacks.

3.1. Heavyweight Extension

The heavyweight extension, also referred to as first-class extension consists in
defining a new language (i.e., an alternative to UML), using the MOF (Meta Object
Facility) standard. The syntax and semantics of the new language's elements - that do
not match with semantics of UML elements - , their properties, operations and relations
between these elements are defined to fit the specific characteristics of the targeted
domain.

The MOF provides also an extension mechanism that allows defining a new
metamodel from an existing metamodel. Commonly, the new metamodel is defined by
importing (i.e., using the <<import>> relation) classes from packages of an existing
metamodel. These classes are then extended by new domain-specific classes through
the specialization /Generalization mechanism [Desfray 99]. An example of this kind of
extension is the SPEM1.1 standard, which is built as a MOF stand-alone metamodel
that some of its classes extend UML1.4 metamodel classes (see figure 3.2). The
concepts proper to software process modelling are regrouped in the SPEM_Extensions
package which extends a subset of UML1.4 metamodel contained in the
SPEM_Foundation package (Figure's 3.2. left part). Examples of classes from the
software process domain extending UML1.4 classes are given in the right part of the
figure.

Figure 3.2. Heavyweight extension example: the SPEM1.1 metamodel

Finally, the newly adopted UML2.0 introduces a new extension mechanism through
the Package Merge relationship. A package merge is a directed relationship between
two packages that indicates that the contents of the two packages are to be combined. It
is very similar to Generalization in the sense that the source element conceptually adds
the characteristics of the target element to its own characteristics resulting in an
element that combines the characteristics of both [OMG 07b]. It is used to provide
different definitions of a given concept for different purposes, starting from a common

<<import>>

41

base definition. A given base concept is extended in increments, with each increment
defined in a separate merged package. By selecting which increments to merge, it is
possible to obtain a custom definition of a concept for a specific end.

Package merge is particularly useful in meta-modeling and was extensively used in
the definition of the UML metamodel. Conceptually, a package merge can be viewed
as an operation that takes the contents of two packages and produces a new package
that combines the contents of the packages involved in the merge. Examples and more
details can be found in the standard specification [OMG 07b]. A discussion on its
applicability is addressed in [Zito 06a, Zito 06b].

3.2. Lightweight extension

The Profile mechanism has been specifically defined for providing a lightweight
extension to adapt the UML standard for a specific domain. The profiles mechanism is
not a first-class extension mechanism i.e., it does not allow for modifying existing
metamodels (contrary to the heavyweight extension). Rather, the intention of profiles is
to give a straightforward mechanism for adapting an existing metamodel with
constructs that are specific to a particular domain, platform, or method. Each such
adaptation is grouped in a profile. It is not possible to take away any of the constraints
that apply to a metamodel such as UML using a profile, but it is possible to add new
constraints that are specific to the profile.

In this approach, the extension is based on the UML customization, in which some
of the language's elements are specialized, imposing new restrictions on them. These
specializations are defined while respecting the UML metamodel and leaving the
original semantics of its elements unchanged. Properties of classes, associations, etc
will remain the same, only new constraints will be added to their original definitions
and relationships.

To not restrict the profile mechanism only to the UML metamodel but to be
applicable to any MOF-defined language, in the latest OMG standard revisions
(UML2.0, MOF2, etc.), the Profiles package was intentionally defined in the
Infrastructure [OMG 07a]. It contains mechanisms and concepts that allow metaclasses
from existing MOF-instance metamodels to be extended to adapt them for different
purposes. This includes the ability to tailor the UML metamodel for different platforms
such as J2EE or .NET or domains such as real-time or business process modeling.
Main concepts of this extension mechanism are stereotypes (domain-specific class that
will extend a metaclass), tagged values (in UML1.x, standard metaattributes in
UML2.x) and constraints (pre/post conditions, invariants, etc).

In UML 1.1, stereotypes and tagged values were used as string-based extensions
that could be attached to UML model elements in a flexible way. In subsequent
revisions of UML, the notion of a Profile was defined in order to provide more
structure and precision to the definition of stereotypes and tagged values. The UML2.0
Infrastructure and Superstructure specifications have carried this further, by defining it
as a specific meta-modeling technique. Stereotypes are specific metaclasses, tagged
values are standard metaattributes, and profiles are specific kinds of packages. These
changes were mainly inspired by works introduced in [Clark 02], [2U] and [D’Souza
99].

In figure 3.3, we present a very simple yet demonstrative example presented in
[Fuentes 04] showing the use of Profiles. Authors also give a very interesting guide on

42

how to build UML profiles. The example is that one wants for instance to add new
elements to UML models – say, weights and colours. Furthermore, one may want to
incorporate some particular properties and requirements of such elements, such as the
actual color of a coloured element, the weight of a weighed element, and a restriction
that states that coloured associations can only be defined between classes of the same
colour as that of the association. For the sake of simplicity, we will assume here that
only classes and associations can be coloured, and that only associations can be
weighed. The WeightsAndColours profile defines these two elements:

First, a Stereotype is defined by a name and by the set of metamodel elements it can
be attached to. Graphically, stereotypes are defined within boxes, stereotyped
«stereotype». In the example, the WeightsAndColours UML Profile defines two
stereotypes, Coloured and Weighed, and indicates that both UML classes and
associations can be coloured (i.e., stereotyped «Colored»), but only associations can
have an associated weight (i.e., stereotyped «Weighed»). Metamodel elements are
indicated by classes stereotyped «metaclass». The notation for an extension is an arrow
pointing from a stereotype to the extended class, where the arrowhead is shown as a
solid triangle. An Extension may have the same adornments as an ordinary association,
but navigability arrows are never shown.

Figure 3.3. Lightweight extension: an example of a profile specification

Second, Constraints can be associated to stereotypes, imposing restrictions on the
corresponding metamodel elements. Examples of constraints include pre- and post-
conditions of operations, invariants, derivation rules for attributes and associations, the
body of query operations, etc. In this way a designer can define the properties of a
“well-formed” model. For instance, the aforementioned restriction on the colours of the
classes joined by a coloured association can be expressed by the following OCL
constraint:

context UML::InfrastructureLibrary::Core::

Constructs::Association

inv : self.isStereotyped(“Coloured”) implies self.connection->forAll
(isStereotyped(“Coloured”)

implies (color=self.color)

Finally, a tagged value is an additional meta-attribute that is attached to a metaclass
of the metamodel extended by a Profile. Tagged values have a name and a type, and are

43

associated to a specific stereotype. In the example, the stereotype «Weighed» has an
associated tagged value named “weight”, of type Integer that represents the actual
weight of the stereotyped association. Graphically, tagged values are specified as
attributes of the class that defines the stereotype.

3.3. Lightweight extension Vs. Heavyweight extension

Each of the aforementioned extension mechanisms has its advantages and
disadvantages which may make it, depending on the context and domain, suitable or
not for specific modeling purposes. Both of them aim to define a notation and
semantics in order to deal with a particular application domain. It is not therefore
obvious to decide when to create a new language and when to define a profile. This is
what induced some OMG's standards such as SPEM, EDOC and recently, SysML to
opt for both mechanisms i.e., a MOF metamodel and a UML Profile [OMG UMLpf].

Defining a tailor-made language will produce a notation and semantics that will
perfectly match the concepts and nature of the specific application domain. However,
as the new language does not respect the UML semantics, it will not allow leveraging
the bunch of UML tools already provided by tool vendors. Nevertheless, recently, with
the emergence of some MOF-Based metamodelling environments, repositories and
code generator tools such as Vanderbilt's University GME-MOF tool [Emerson 04], the
Xactium's XMF-mosaic tool, the Kermeta environment [Muller 05] and the Eclipse's
EMF (Eclipse Modeling Framework) [EMF], GEF (Graphical Editing Framework)
[GEF] or GMT [GMT] (Generative Modeling Technologies), this is not really
considered as an obstacle anymore.

Conversely, UML Profiles may not provide such an elegant and perfectly fitting
solution as it may be required for some domains [Peltier 02]. On the other hand, they
offer the possibility to reuse UML tools instead of creating new ones from scratch.
Another advantage is the number of people already familiar with UML specification
and tools. However whether current tools allow the definition and usage of UML
Profiles, this is only done at the diagrammatic level, i.e., only graphically. This means
that verification of constraints (e.g., in OCL) associated to stereotypes is not yet
supported or have to be expressed with some proprietary languages (e.g. the use of the
J language in the case of the Objecteering Profile Builder tool [Objecteering]), and
consequently well-formed rules can be neither checked nor enforced [Fuentes 04]. The
user can therefore never be sure whether or not the system being specified using a
given profile is conformant with profile rules.

Regarding the debate Profile versus Metamodel, even the OMG does not give a
precise answer. It only states: "there is no simple answer for when you should create a
new metamodel and when you instead should create a new profile". However, in
[Desfray 00], Desfray gives some insights on whether one should define a profile or a
new metamodel.

One may opt for heavyweight extension if:

 The target (specific) domain is well defined, and has a unique well accepted
main set of concepts

 A model realized under this domain is not subject to be transferred into other
domains

 There is no need to combine this domain with other domains

44

One may opt for lightweight extension if:

 The domain is not subject to consensus, many variations and point of view exist
 Many changes and evolutions may occur
 The domain may be combined with other domains, in an unpredictable way
 Models defined under your domain may be interchanged with other domains

In our proposition we opted for the heavyweight extension mechanism (i.e., first-
class extension mechanism). The domain of software process modeling is well defined
and there is a consensus on the set of concepts proper to this domain. These concepts
were introduced in the previous chapter (cf. section 3.1.). Additionally, software
process models once defined, are not meant to be combined with other models from
different domains neither to be transferred into other domains. Another motivation for
choosing this extension mechanism is that we intended to participate in the OMG's
SPEM revision namely, SPEM2.0. In the RFP (Request For Proposal) [OMG 04], it
was a mandatory requirement to define a MOF metamodel for the future standard. The
heavyweight extension mechanism allows us to define new metaclasses with semantics
proper to the software process modeling domain, which are lacking in UML, as well as
a notation. Using the lightweight extension mechanism would be more complex since
many constraints on UML metaclasses and relationships have to be defined and no real
support for expressing them is provided by current UML2.0 tools. Finally, regarding
the tooling aspects, the facilities offered with the Eclipse open source projects (i.e.,
EMF, UML, GMT, etc.) make the task of defining a tool easier since a large
community is already familiar with their use and efficient support is ensured. However,
we do not exclude the possibility of defining a UML2.0 profile for our proposition in
order to deal with the software process modeling within UML2.0 tools.

4. Conclusion

In this chapter we have introduced MDE and its principles. We have also
emphasized on how the software process modeling community can take advantage of
these principles (i.e., Abstraction, Executability of Models, Standardization, and
Metamodelling) for a better productivity and less complexity in modeling software
processes. These principles are taken into account in the next chapter while comparing
UML-Based SPMLs. Since our approach is based upon UML, we believed essential to
introduce UML's main characteristics and most of all, the extension mechanisms it
proposes. In the next chapter, we present a survey on UML-Based SPMLs, which
highlights advantages and drawbacks of each approach.

45

fin

46

Chapter 4

UML-Based Software Process Modeling Languages

1. Introduction

In this chapter, we present a survey on UML-based software process modeling
languages. Before comparing the different propositions, we will first establish a set of
requirements, which represent major considerations to be satisfied for the definition of
a software process modeling language. These requirements, gathered from well-known
works done in the literature, are to be combined with MDE considerations introduced
in the previous chapter. The crosscutting between well-established requirements in the
community of SPMLs and those needed for an efficient use of the MDE approach will
be our basis for comparing the different approaches.

In the following, Section 2 introduces principal SPML requirements, which will be
used in the comparison of UML-Based SPMLs presented in Section 3. Section 4
discusses the result of this evaluation and whether the current UML-based SPMLs
fulfil requirements we defined or not. Finally, Section 5 concludes this chapter.

2. Requirements for Software Process Modeling Languages

The large number of potential process model users, such as software process
engineers, project managers, software engineers, system engineers, software
executives, and customer management makes it difficult to establish a universally
understood representation format [Curtis 92]. Due to their individual information needs
and expertise, these groups place widely diverging demands on a process modeling
language. Visual representations, abstraction, and multiple perspectives offer
promising techniques for coping with these challenges.

Research on software process modeling identified many requirements for the
definition of a SPML [Riddle 89] [Kellner 89] [Curtis 92] [Jaccheri 99]. They vary
from facilitating human understanding to providing automated execution support. In
the following, we introduce principal ones and we motivate how the ones we selected
can be an important criteria while designing a SPML. These requirements will be taken
into account while comparing UML-Based SPMLs in section 3.

2.1. Semantic Richness

Semantic richness relates to the SPML ability to express what is actually performed
during software development processes, even for most complex situations. It is a very
large requirement and encompasses many aspects. Herein we detail each of them.

2.1.1. Process Elements
It relates to the fact that an SPML has to offer the appropriate set of concepts in

order to cover the description of all process elements. Most frequently mentioned
process model elements are: Agent, Role, Activity (or Step) and Artifact [Dowson 91],

47

[Humphrey 92], [MacLean 89]. However, there is not a strict agreement on a fixed list
of process model elements. In [Conradi 95] for instance, authors add as a crucial
element, the notion of Tool. The definition of each of these elements was given in the
Chapter 2 (cf. section 3.1.).

2.1.2. Activities and Actions Coordination
One important criterion, which is centric to most PMLs, is the mechanisms by

which activation, sequencing, iteration and synchronization of activities / actions
(steps) is ensured. These mechanisms fall into two categories, Proactive Control and
Reactive Control [Wise 00]. Proactive control is an imperative specification of the
order in which activities (steps) are to be executed (direct invocation). Examples of a
proactive control are Control Flow (i.e., explicitly linking two or more
activities/actions) and Object Flow (i.e., linking of activities through artifacts. The
artifact output of an activity/action may be used as input of other activities/actions).
Reactive control is a reactive specification of the conditions or events in response to
which activities (steps) are to be executed (indirect invocation). Examples of such
control are Exception and Event handling, Message receptions, etc.

2.1.3. Exception Handling
Since exceptions are part of software development process ingredients, we believe

that they should be reflected in process models. By placing exceptions in process
models, modelers are acknowledging that these elements are part of their overall view
and design of the process. It helps to show how they are handled and where they
originate from.

2.1.4. Advanced Constructs
Due to the complexity and unpredictable nature of software development processes,

advanced constructs are required to express the most complicated situations. A suitable
SPML should offer the possibility to express iterations, modeler decisions,
synchronizations, WorkProducts storage and retrieval, communication between agents,
tool invocations, etc. These advanced constructs could also help in facilitating the
automation of the process.

2.2. Understandability

SPMLs and process models cannot be used if they cannot be understood. This is
what makes this objective so crucial. The large number of actors participating in the
development process puts serious constraints on the format that should be used to
express process models. Some of them would prefer graphical representations while
other would find it more appropriate to handle code, to test it in order to directly get
feedbacks on the modeled process. The success of UML and the involvement of people
with no computer science background in the software realization confirmed the
efficiency of graphical representation in augmenting understandability and in easing
communication between people. Thus, this is considered as a crucial point to take into
account while designing a SPML.

Another important aspect to consider and which can be added to the
understandability requirement, is the support of different perspectives /views on the
process. Here the term view is employed informally and just means, a representation of
the process according to certain aspects. Some of them were introduced in section 2.2.4
of Chapter 2 (i.e., Activity view, Product view, Role View, etc).

48

2.3. Precision

By precision, we mean here the degree of details (i.e., granularity) used to describe
software activities. One would argue that abstract process models promote
understandability. This is true but only if they don’t aim to be executed. Thus, a
compromise has to be found in order to combine precision and understandability,
which is, in our view, a quite difficult exercise.

2.4. Executability

Nowadays, companies are increasingly driven by the need to extensively automate
all parts participating in the production of software, including the development process
itself. However, this goal cannot be reached if the SPML does not provide constructs
with operational semantics as well as the execution support for these constructs.

2.5. Modularization

Modularization is about to be able to combine different chunks of processes in
order to build a new one. This means that the SPML should provide such concepts that
allow composing already defined processes easily and without modifying them. This
would be a beneficial advantage especially, that nowadays we assist to the emergence
of new way of working such as outsourcing, contracting-out, etc., which imposes more
flexibility on SPMLs in order to consider process composition constraints.

The above-cited requirements represent main SPML requirements that we believe
essential for designing a SPML. Added to MDE considerations introduced in the
previous chapter, these requirements will be used as a basis for comparing the different
UML-Based SPMLs presented in the next section.

3. Comparing UML-Based Software Process Modeling
Languages

In this section, we compare UML-Based Languages for Software Process Modeling
according to the requirements introduced in the previous section. We also take into
account if, whether or not, the language fulfills some of the MDE considerations
addressed in Chapter 3. i.e., does the language provides a metamodel, is there any
means to execute its model instances, is it based on a standard formalism (in this case it
is always true since all approaches here are UML-Based), etc. At the end of this
comparison, a table summarizing all aspects of languages discussed here is presented.

3.1. SPEM1.1

SPEM1.1 (Software Process Engineering Metamodel) is the OMG's standard for
software process modeling. It was adopted by January 2005 [OMG 05a], and is the first
revision of the standard which was initially issued by end of 2002 [OMG 02]. During
this thesis, another revision (i.e. SPEM2.0) of the standard was requested through an
RFP (Request For Proposal) [OMG 04] and when writing this document, finalization
tasks of SPEM2.0 were underway. In the SPEM2.0 revision, LIP6 was heavily
involved in the standardization process. SPEM2.0. is presented in detail in the next
section (c.f., 3.2.)

49

SPEM1.1 introduces common concepts and a modelling structure to construct
models of software development processes. It uses some basic modelling concepts
from UML1.4 to describe rules, constraints, vocabulary, and notation to be used in
defining process models [OMG 01]. It comes in form of a MOF1.3-compliant
metamodel and a UML1.4 profile. The metamodel is defined as an extension of a
subset of UML1.4, expressed in the SPEM_Foundation package. The
SPEM_Extensions package which extends the SPEM_Foundation package, adds the
constructs and semantics required for software process engineering. It owns five
packages; each package addresses a specific concern of the software process definition.

The building block of the SPEM metamodel is the Process Structure package (cf.
figure 4.1.). It defines the main structural elements from which a process description
may be constructed.

Classifier
(from Core)

Parameter
(from Core)

ActivityParameter
hasWorkPerArtifact : Boolean

WorkDefinition
/ performer : ProcessPerformer
/ parentWork : WorkDefinition0..*

0..*

+subWork

0..*

+parentWork
0..*

ProcessPerformer
/ work : WorkDefinition

0..* 1

+work

0..*
{ordered}

+performer

1

Operation
(from Core)

ActionState
(from Activi tyGraphs)

ModelElement
(from Core)

Step
Activity

/ assistant : ProcessRole
/ step : Step

0..*1

+step

0..*

+activity

1 ProcessRole

0..*

0..*

+assistant 0..*

+activity
0..*

WorkProduct
isDeliverable : Boolean
/ kind : WorkProductKind
/ responsibleRole : ProcessRole

0..*

0..1

+workProduct0..*

+responsibleRole

0..1

WorkProductKind

0..*

1

0..*

+kind 1

Figure 4.1. The Process Structure package, the SPEM1.1 metamodel core for process definitions.

3.1.1. SPEM1.1 Evaluation
In the following we evaluate SPEM1.1 according to the SPML requirements.

3.1.1.1. Semantic Richness
As we saw in the previous section, this requirement covers many aspects. We detail

each of them in the context of SPEM1.1.

Process Elements

The notion of Activity in SPEM1.1 is given through the Activity metaclass, which
is the main subclass of WorkDefinition. It describes a piece of work performed by one
ProcessRole and may consist of atomic elements called Steps.

The notion of Product corresponds to a WorkProduct in SPEM and is anything
produced, consumed, or modified by a process. It describes one class of artifacts
produced in a process and has a WorkProductKind that describes a category of artifact,
such as Text Document, UML Model, Code Library, etc. Finally, the notion of Role in
SPEM, corresponds to ProcessRole, which is a subclass of ProcessPerformer and
defines responsibilities and roles over specific WorkProducts and Activities.

50

Although SPEM1.1 defines the notion of ProcessRole (Role), it does not provide
the one of Human or Agent who may undertake this role. Moreover, there is no
concept in the standard equivalent to the notion of Tool. Besides, there is no support or
concept related to human interactions

Activities and Actions Coordination
In SPEM1.1 the ability to orchestrate process Activities and Steps is only provided

by means of a proactive control thanks to the Precedes dependency. Kinds of
precedence were: start-start, finish-start or finish-finish. The start-finish precedence is
lacking. Regarding the reactive control, SPEM1.1 does not provide any concept to deal
with this aspect.

Exception Handling
Exception handling is not addressed in SPEM1.1.

Advanced Constructs
The standard does not define concretely concepts such as loops or conditionals.

Rather, it defines the notion of Phase and Iteration. A Phase is a specialization of
WorkDefinition such that its precondition defines the phase entry criteria and its goal
(often called a "milestone") defines the phase exit criteria. However it does not allow
expressing a condition to be evaluated as a result of an activity or step execution (i.e.,
at lower level, since a Phase may contain Activities). An Iteration is a composite
WorkDefinition with a minor milestone and expresses the need to iterate the work until
a certain goal is reached. This goal is also expressed thanks to post conditions. No
concepts for easing the communication between agents are provided, no constructs for
modeling tool invocations or WorkProducts storing and retrieval are defined by
SPEM1.1.

3.1.1.2. Understandability
SPEM1.1 uses UML notations and diagrams. This is considered as a serious

advantage as UML has attractive features: it is standard, graphical, intuitive, and easy
to be understood. Besides, a wide community of software developers is familiar with
UML and uses a UML case tool environment. UML being so popular and widely used,
SPEM has an important competitive advantage compared to any specialized PML [Di
Nitto 02].

Since understandability is considered as a decisive criterion in adopting a modeling
language, the above-cited arguments comforted us in using UML as a basis of our
SPML. However, for the approaches discussed here, we will see that the choice of the
UML concepts to use, to extend, the set of diagrams to employ can be very decisive in
improving or not the understandability of the SPML.

3.1.1.3. Precision
SPEM1.1 proposes different concepts for organizing the process description into a

hierarchy. These concepts range from Phase, Lifecycle, Iteration, and WorkDefinition
to Activity, and Step, which are considered as the lower level constructs for describing a
process. However the Step element is defined only as a means of describing guidelines
for performing the activity. There is no way to express what are the inputs/outputs of
the step, who is the role responsible of this step neither their constraints. All these
concerns are expressed at the activity level which makes it the effective lower level for
describing process's tasks in SPEM1.1. Indeed, In SPEM1.1, a WorkProduct inherits

51

from the UML1.4 Classifier and is used as a parameter into or from Activities
(WorkDefinition in general). We can’t know which steps of the Activity are going to act
on WorkProducts nor responsible roles of these Steps. The standard also proposes a
notation for each of the above-mentioned concepts (i.e., Phase, Iteration, etc.) except
for the Step element. Moreover, in all examples introduced in the specification, there is
no one who deals with Steps.

We believe that for a better technology transfer, for a good comprehension of
process performers about the work to be accomplished and in order to go toward a
larger automation of process parts, more precise process models are required.

3.1.1.4. Executability
The automation of process model executions requires that the SPML provides such

concepts with an execution semantics that would allow their mapping toward some
execution formalisms and languages. SPEM1.1 provides as atomic actions of a
development activity, the concept of Step, which only represents the name of the action
that developer has to perform (e.g., Step x: "Check model consistency"). In the
standard, the only reference to the Step element is "An Activity may consist of atomic
elements called: Steps" [OMG 02]. Obviously, this is insufficient. A Step inherits from
UML1.4 ActionState. "An action state represents the execution of an atomic action,
typically the invocation of an operation" [OMG 04]. But, UML1.4 does not explicitly
specify, neither parameters of the invocation action (i.e., name and value) nor their
types as it is done with Actions in UML2.0. Moreover, SPEM1.1 adds the constraint
that a Step has no associated action.

In SPEM1.1, the use of the Step element could help for process description but it is
so far of its execution. We agree that execution of process models was outside the
scope of SPEM1.1. However, we hardly believe that it should provide concepts that
enable the specification of executable action semantics within process models.

UML2.0 offers this possibility thanks to the Actions packages. It gives precise
execution semantics to actions, by defining their effect as well as their typed inputs and
outputs. This may help in mapping them into executable actions in some well-known
OO languages such as Java or C++. This also comforted us in our choice of reusing
some constructs (i.e., Activities and Actions) of the UML2.0 Superstructure in our
SPML.

3.1.1.5. Modularization
One of the major lacks of SPEM1.1 is ProcessComponent compositions, which is

supposed to be the mechanism for process compositions. A ProcessComponent is a
chunk of process description that is internally consistent and may be reused with other
ProcessComponents to assemble a complete process. However, developers who want
to combine two or more ProcessComponents in order to get one coherent process, have
to carry out a unification procedure. Indeed, to combine for instance two
ProcessComponents P1 and P2, at least the output WorkProducts from P1 must be
unified i.e., made identical with the WorkProducts inputs to P2. Other elements may
possibly be unified in addition, such as ProcessRoles.

Let’s have for example two Process Components PC1 and PC2 (see figure 4.2.).
PC1 is in charge of realizing a UML class diagram. PC2 has to transform a UML class
diagram to a relational database diagram. These two processes were specified
separately, so WorkProducts and Roles might have different names. If a process

52

modeler decides to compose these two process components, she/he will have to unify
(rename) WorkProducts output from PC1 (i.e., ClassD) in order to be identical with
WorkProducts inputs of PC2 (i.e., UmlCD). Likewise, she/he has also to explicitly link
activities from PC2 within PC1.

PC1: Class Diagram Process Component PC2: Class DiagramToRDBTransformation Process Component

Figure 4.2. Process Component compositions in SPEM1.1
Composition of ProcessComponents can be fully automated only if they originate

from a common family (i.e., an agreement on WorkProduct and Roles names) so that
the unification is capable of being automated. Otherwise, the unification would involve
human intervention that normally would consist of some re-writing of the elements,
and possibly associated elements, to be unified. This could be manageable in case of
the combination of two simple ProcessComponents. However in case of complex
ProcessComponents, it becomes increasingly difficult.

3.1.2. Discussion
To summarize, SPEM1.1 presents the advantage of being based upon UML, which

makes it easy to understand and a good candidate for a large adoption since many
people are familiar with the unified modeling language. However the standard has had
a limited success within the industry. One of the obstacles was that the standard
comprised many ambiguities. As an example, let's consider the concept of
ProcessPerformer. The standard defines the ProcessPerformer as a performer for a set
of WorkDefinitions. It also states that ProcessPerformer represents abstractly the
“whole process” or one of its components. Definitively, we can clearly note that this

CassDiagram PC :
ProcessComponent

designer:
ProcessRole

Class Diagram Elaboration :
Activity

ClassDiag:ActivityP
arameter

Identify Objects
:Step

identify class objects
: Step

...:Step

Model:WorkPro
duct

Note :[Output
parameter]

assistant

type

ownedElement

ownedElement

ownedElement

step

step

step

parameter

UML Model:
WorkProduct

UmlCD :
ActivityParameter

Class Diagram To RDB Transformation: Activity

load Src & Tgt Metamodel: Step

load model : Step

... :Step

Transformation designer :
ProcessRole

Note :[Output
parameter]

cdTOrdbPC :
ProcessComponent

parameter

type

step

step

step

ownedElement

assistant

ownedElement

ownedElement

precedes

ownedElement

Unification
of names

53

definition is confusing. One obvious question would be: what is the practical use of a
ProcessPerformer? Is it used as a container for WorkDefinitions or as a role,
responsible for specific activities? In the latter case, what is the difference with the
ProcessRole concept? We believe that a container of WorkDefinitions and roles are
totally two separate concepts that should be expressed separately. Another example is
the relationship between a Discipline and a Process. Since both concepts inherit the
Namespace and ModelElement UML1.4 elements, this makes that a Process can be
composed of Disciplines (through the composition between a Namespace and a
ModelElement) but also allows to have process models where a Discipline may be
composed by Processes, which is in contradiction with the semantics given to the
Discipline concept by SPEM1.1. Thus, this relationship has to be constrained for more
coherence. In [Bendraou 05], we identified many of these ambiguities and other
inconsistencies with some solutions are proposed in [Combemale 06].

Another obstacle for the adoption of SPEM1.1 was that process models were not
executable and do not provide concepts with execution semantics. SPEM1.1 process
models were contemplative models.

Regarding the tooling aspects, only few implementations of the standard are
proposed. We can cite the Rational Process Workbench (RPW) from Rational [RPW],
IRIS Suite from Osellus [Osellus], and SPEM Profile from Objecteering
[Objecteering]. However, we evaluated these tools and no one of these
implementations is in 100% conformity with the standard. Moreover, each of them
proposes its own formalism for process model persistency. Thus no model exchanges
are possible between the different tools.

3.2. SPEM2.0

SPEM2.0 is the revision of SPEM1.1 and when writing this document, the
specification where under finalization (FTF: Finalization Task Force). SPEM2.0 aims
at providing organizations with means to define a conceptual framework offering the
necessary concepts for modeling, interchanging, documenting, managing and
presenting their development methods and processes [OMG 07c]. Besides providing a
standard way for representing organization’s processes and expertise, SPEM2.0 comes
with a new attractive vision. That latter consists in separating all the aspects, contents
and materials related to a software development methodology from their possible
instantiation in a particular process. Thus, to fully exploit this framework, the first step
would be to define all the phases, activities, artifacts, roles, guidance, tools, and so on,
that may compose a methodology and then, to pick, according to the situation or
process context, the appropriate method contents to use within a process definition.

SPEM2.0 comes in form of MOF-compliant metamodel that reuses UML2.0
Infrastructure [OMG 07a] and UML2.0 Diagram Interchange specifications [OMG
06d]. It reuses from the UML Infrastructure basic concepts such as Classifier and
Package. No concept from the UML2.0 Superstructure [OMG 07b] is reused. The
standard comes also in form of a UML Profile where each element from the SPEM2.0
metamodel is defined as a stereotype in UML2.0 Superstructure. The metamodel is
composed of seven packages linked with the "merge" mechanism (cf [OMG 07a],
§11.9.3), each package dealing with a specific aspect (cf. fig. 4.3.).

The Core package introduces classes and abstractions that build the foundation for
all other metamodel packages. The building block of this package is the
WorkDefinition class, which generalizes any work within SPEM2.0. The Process

54

Structure package defines elements for representing basic process models in terms of a
flow of Activities with their WorkProduct Uses and Roles Uses (figure 4.4.). However,
the possibility to textually document these elements (i.e., add properties describing the
element) is not provided in this package but in the Managed Content package. That
latter provides concepts for managing the textual description of process elements.
Examples of such concepts are the Content Description class and the Guidance class.
The Method Content package defines core concepts for specifying basic method
contents such as Roles, Tasks and WorkProducts. The Process with Method package
defines the set of elements required for integrating processes defined by means of
Process Structure package concepts with instances of Method Content package
concepts. The Method Plugin package provides mechanisms for managing and reusing
libraries of method contents and processes. This is ensured thanks to the Method Plugin
and Method Library concepts. Finally, Process Behavior package provides a way to
link SPEM2.0 process elements with external behavior models such as UML2.0
Activity Diagrams or BPMN (Business Process Modeling Notation) models [OMG
06a].

MethodPlugin

ProcessWith
Method

MethodContent

ManagedContent

Core

ProcessStructure

ProcessBehavior

<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<merge>><<merge>>

<<merge>>

<<merge>>

Figure 4.3. SPEM2.0 Metamodel package hierarchies

55

ParameterDirectionKind

in
out
inout

<<enumeration>>
WorkSequenceKind

finishToStart
finishToFinish
startToStart
startToFinish

<<enumeration>>

ActivityUseKind

na
extension
localContribution
localReplacement

<<enumeration>>

ActivityProcessParameter
*

1+OwnedProcessParameter

*

{subsets ownedParameter,
ordered}

1

WorkProductUseRelationship

Milestone
WorkProductUse

0..1

+parameterType

0..1
1..*

*

+target 1..*

*

1

*

+source
1

*

*

*

+requiredResults

*

*

ProcessResponsibilityAssignementMap

1

*

+mappedWorkProductUse1

*

InfrastructureLibrary::Core:: Constructs::Constraint

SPEM::Core:: WorkDefinitionParameter

direction : SPEM::Core::ParameterDirectionKind

SPEM::Core::
WorkDefinition

*

0..1

+postcondition*

{subsets ownedElement}

0..1

*

0..1

+precondition
*

{subsets ownedElement}

0..1

*

1

+/ownedParameter*

{subsets ownedElement,
ordered, union} 1

SPEM::Core:: WorkDefinitionPerformerMap

1

*

+/mappedWorkDefintion
1

*

RoleUse

1..*

*

+mappedRoleUse

1..*

*
ProcessPerformerMap

1..*

*

+mappedRoleUse

1..*

*

BreakdownElement

hasMultipleOccurrences : Boolean = false
isOptional : Boolean = false

 Activity

useKind : ActivityUseKind

0..1

*

+mappedActivity
0..1

{subsets mappedWorkDefinition}

*

*

0..1

+suppressedBreakdownElement

*

0..1

*

0..1

+nestedBreakdownElement

*

{subsets ownedMember, ordered}

0..1

0..1 *
+usedActivity
0..1 *

WorkBreakdownElement

isRepeatable : Boolean = false
isOngoing : Boolean = false
isEventDriven : Boolean = false

WorkSequence

linkKind : WorkSequenceKind

1

*

+successor

1
+linkToPredecessor

*

1

*

+Predecessor

1
+linkToSuccessor

*

Figure 4.4. SPEM2.0 Process Structure Package

3.2.1. SPEM2.0 Evaluation
In the following we evaluate SPEM2.0 according to the SPML requirements.

3.2.1.1. Semantic Richness
Before to go through the different aspects of the semantic richness requirement, we

need first to introduce the implementation compliance points defined by the standard.

To implement the specification, SPEM2.0 defines three compliance points. The
first one called "SPEM Complete" is dedicated for case tool providers that want to
support the description of large-scale method libraries as well as the definition of
process models that may reuse the method library contents. It contains all the packages
introduced above (cf. Figure 4.3.). The second compliance point is the "SPEM Process
with Behavior and Content" and is dedicated for tool providers who are just interested

56

in providing concepts for describing process models without referring to a particular
method. This compliance point was especially designed for the Agile community which
prefers simple and brief process description to method hand-books and guidelines. In
this compliance point, there is no possibility to reuse method content descriptions. It is
composed of four packages: the Process Structure (cf. Figure 4.4.), the Core, the
Process Behavior and the Managed Content packages. The last compliance point is the
"SPEM Method Content" and it is recommended for implementers who primarily focus
on managing the documentation of descriptions of development methods, techniques,
and best practices. It comprises the Method Content, Managed Content and Core
packages.

So depending on the compliance point implemented, the tool may provide or omit
some of the SPEM2.0 constructs.

Process Elements
As introduced previously, SPEM2.0 aims at giving the possibility to process

modellers to separate a method description from the possible instantiation of its
contents (Role Definitions, Task Definitions, WorkProduct Definitions, etc.) in a
particular process (Role Uses, Activities, WorkProduct Uses, etc.). What makes the
thing complex is that distinct concepts, which semantically have the same meaning
(use) are used differently depending if they are part of a process model or of a method
description.

For instance, if you are using a tool implementing the "SPEM Process with
Behavior and Content" compliance point, you will refer to artifacts used by process's
activities as "WorkProduct Uses" and to process's roles as "Role Uses". A
"WorkProduct Use" is defined by the specification as an input and/or output type for an
Activity [OMG 07c]. However, when using a tool implementing the "SPEM Method
Content" compliance point and you are describing a method, you will refer to artifacts
produced or consumed by a method's Task Definitions as "WorkProduct Definition". A
WorkProduct Definition is introduced as tangible work products consumed, produced,
or modified by Tasks. Finally, if you are using "SPEM Complete", you can use both
WorkProduct Use and WorkDefinition. The WorkDefinition will used for documenting
the artifact used by your method and the WorkProduct Use will be used in your process
model as reference (pointer) to the WorkProduct Definition given in the instantiated
method instead of re-describing once again the artifact within the process model.

Thus, as we can notice process elements that you may use depends on the
compliance point supported. Basic process elements are ensured thanks to concepts
introduced in the previous paragraph however, as in SPEM1.1, the notion of Agent is
lacking and the notion of Tool Definition is only provided the "SPEM Complete" and
"SPEM Method Content" compliance points.

Activities and Actions Coordination
In SPEM2.0, no reactive control is provided. Proactive control is ensured thanks to

the WorkSequence element, which allows orchestrating the different Work Breakdown
Elements (Task Definition, Activity, and Step) defined by the specification. The
WorkSequenceKind property helps in defining the kind of dependency between two
Work Breakdown Elements, which may be start-start, finish-start or finish-finish and
finally the start-finish, which was lacking in SPEM1.1

57

Exception Handling
Exception handling is not addressed in SPEM2.0.

Advanced Constructs
 SPEM2.0 does not explicitly define concepts such as Iteration, Phase, Lifecycle,
etc. which would be too restrictive or method specific. Instead, during the
standardization process, partners (including LIP6) focused on adding a more flexible
means that would allow adding new kinds of process elements through the
ExtensibleElement abstract metaclass defined in the Core package(figure 4.5.). This
mechanism was inspired by Odell's "Power Types" work [Odell 94].

Figure 4.5. The SPEM2.0 Extensible Element construct

An ExtensibleElement is an abstract generalization that represents any SPEM 2.0
class for which it is possible to assign a Kind to its instances expressing a user-defined
qualification. Every SPEM 2.0 class that allows such a qualification derives directly or
indirectly from ExtensibleElement. Thus, it is for instance possible to define new Work
Breakdown Elements such as Phase, Discipline in the context of RUP but also a Sprint
in the context of Scrum agile processes. The specification does not define constructs
for expressing loops or conditionals, tool invocations or agent communications.

3.2.1.2. Understandability
Regarding understandability, we have to admit that the standard is very complex

and hard to tackle. We have to deal with many compliance points, which may turn very
confusing for non-expert of SPEM2.0. The specification defines seven packages with
seventy-five metaclasses. Moreover, SPEM2.0 does not propose any behavioural
model for describing the workflow of the process but proposes rather a kind of proxy
classes in order to link the process description with some external behavioural models
defined in other formalisms such as BPMN for instance, which is inconceivable. We
will detail this point in the executability aspect presented below.

Finally, in the RFP [OMG 04], it was fixed as a mandatory requirement, the reuse
of UML2.0 Superstructure Activity and Action constructs while defining the SPEM2.0
metamodel. Unfortunately, this was not taken into account by the principal submission.

3.2.1.3. Precision
When using the "SPEM Process with Behavior and Content" compliance point (i.e.,

to describe the process undependably of any method), the Activity is the only concept
for describing the hierarchy of the process model. It can represent the whole process as

58

well as atomic actions within the process. Activities relate to Work Product Use
instances via instances of the Process Parameter class and Role Use instances via
Process Performer Map instances.

When using the "SPEM Method Content" or "SPEM Complete" compliance points
it is possible to describe the method library in terms of Tasks that it may contain, Steps
of each task, Process Components (reusable units of work), Roles, Workproducts, etc.
which represents a quite complete set.

3.2.1.4. Executability
Even if process enactment was among the principal requirements when the

SPEM2.0 RFP was issued [12], the final adopted specification does not address the
enactment issue. Nevertheless, it clearly suggests two possible ways of enacting
SPEM2.0 process models. In the following, we introduce them, we present the
concepts that are supposed to be used in order to enact SPEM2.0 process models and
we give some criticisms on the feasibility or not of each approach.

Mapping the SPEM2.0 Processes Models into Project Plans
In this first approach the standard proposes to map SPEM2.0 processes into project

plans by means of project planning and enactment systems such as IBM Rational
Portfolio Manager [RPM] or Microsoft Project [MSProject]. SPEM2.0 processes
defined using breakdown structures - i.e., Activity, Role Use and WorkProduct Use
from the Process Structure package - offer key attributes that provide the project
planner with the right guidance to make process instantiation decisions. Examples of
such attributes are the hasMultipleOccurrence attribute that indicates for instance that
an Activity or a WorkProduct will be mapped to multiple plan Activities - respectively
multiple plan WorkProducts (multiple occurrences of the Activity/WorkProduct are
needed). An isRepeatable flag for an Activity indicates that the Activity has to be
iterated many times before to get the expected result. An isOptional attribute indicates
whether the Activity can be skipped out or not, for example due to a delay in the initial
schedule.

Once SPEM2.0 processes mapped to project plans, plans can be instantiated by
means of planning tools and concrete resources can then be affected. However, whether
this approach may be very useful for project planning it is not considered as process
enactment. It is still necessary to affect duration to tasks, persons to roles in order to get
at the end an estimation of the development process period and resources needed for its
realization. These plans are used by project manager in order to estimate if the process
will be in schedule or not, if more persons need to be affected to process tasks, etc.
There is no support for process execution, no automatic task affectations to responsible
roles, no automatic routing of artifacts, no automatic control on work product states
after each activity, no means to support agent and team communications and so on.

Besides the fact that this approach does not provide concrete enactment support, it
presents a major lack which is its tight dependence to the project planning tool.
Another aspect that has to be taken into account is the impact of modifying or adding
information within the planning tool and how this modification will be reflected /
traced-up to the SPEM2.0 process model. Finally, process modelers have to deal with
the compatibility of process definition file format of the planning tool.

Linking SPEM2.0 process elements with external behavior formalisms

59

The SPEM2.0 does not provide any concepts or formalism for modeling precise
process behavior models or execution. Rather, claiming for more flexibility, SPEM2.0
provides through the Process Behavior package a way to link SPEM2.0 process
elements with external behavior models. The goal behind is not to restrict or to impose
a specific behavior model but to give the process modeler the option to choose the one
that fits best its needs. A SPEM2.0 Activity can for instance be linked with a BPMN
diagram [OMG 06a] in order to represent in more details the activity’s steps, control
flows, etc. Then, a BPMN execution engine has to be provided or a mapping towards
process orchestration language such as BPEL (Business Process Execution Language)
[WSBPEL 07] has to be carried out in order to reuse BPEL execution engines. In
addition, a WorkProduct can for instance be linked to a UML state diagram in order to
model possible WorkProduct’s states and transitions that can make this WorkProduct
move from one state into another. Here again, a state machine engine has to be
integrated to the process execution engine. SPEM2.0 defines a kind of proxy classes
i.e., Activity_ext, ControlFlow_ext, Transition_ext and State_ext in order to link
between SPEM2.0 process elements i.e., WorkProductUse, WorkDefinition, RoleUse,
Activity, WorkSequence and external behavior model elements. It is up to the process
modeler to link each process element with its equivalent in the behavior model. Since a
single behavior model may not be expressive enough to represent all the behavioral
aspects of the process, several behavior models can be combined.

Whether this approach may provide flexibility in representing behavioral aspects of
SPEM2.0 processes, it presents some lacks. The first one is that the standard is not very
clear on how the linking of process elements with behavioral models is realized. It just
provides proxy classes that make reference (point) to other elements in an external
behavioral model. SPEM2.0 supposes that this task is tool implementer’s
responsibility. Tool implementers have to define a specific behavioral model that has to
be automatically generated from the SPEM2.0 process model. This is already the case
in the free EPF (Eclipse Process Framework) tool [EPF], which is meant to be the
implementation of SPEM2.0. In EPF, a kind of a proprietary activity diagram is
partially generated from a process definition. That latter can be refined in order to
provide more details on the process activities and their coordination (control flows).
However no execution is provided. The second lack is that the mapping from SPEM2.0
process elements into a specific behavioral model can be done differently from one
organization to another depending on process modeler interpretation. Thus, a
standardization effort may be required in order to harmonize mapping rules between
SPEM2.0 concepts and a specific behavior model such as BPEL for instance. The third
lack, which tightly relates to the previous one, is that more often concepts in behavior
models are richer than in SPEM2.0. This is because behavior modeling and execution
languages provide additional concepts related to the technical support and execution of
processes while SPEM2.0 concentrates on the "business concerns" of the software
development process or methodology (i.e., Roles, Activities, Guidance, etc.).
Consequently, a full executable code generation from SPEM2.0 is not possible which
may impose some refinement steps in behavior models before they can be enacted.
This in its turn poses the problem of traceability and how these refinements (changes)
can be reflected in the initial SPEM2.0 process model.

3.2.1.5. Modularization
SPEM2.0 provides different mechanisms for reusing, extending and customizing

process models and methods. At the "SPEM Process with Behavior and Content"
compliance point, extension of process models is ensured thanks to the Activity's

60

"Activity Use Kind" property (enumeration). Depending on the value of the property, a
process's activity can 1) extend an activity from another process; 2) can be extended by
another process's activity or 3) completely replaces an activity in another existing
process.

At the "SPEM Method Content" or "SPEM Complete" compliance points, the
specification proposes mechanisms such as Variability Element and Process
Component. The former allows not only for extending process's activities as in the
"SPEM Process with Behavior and Content" compliance point but also to any
metaclass inheriting the Variability Element abstract metaclass. This would allow that a
process model or contents of one method redefine, reuse or replace another method's
contents or process models. The detail of this mechanism is given in more detail in
[OMG 07c]. The latter, i.e., Process Component, is a means to define a kind of
reusable black boxes of processes identified by their ports (i.e., Workproducts inputs
and outputs of the Process Component). Finally, the concept of Method Plugin is
introduced. It defines a granularity level for the modularization and organization of
method contents and processes. A Method Plugin can extend many other Method
Plugins and it can be extended by many Method Plugins.

3.2.2. Discussion
The main advance in the SPEM2.0 specification is the proposition of a clear

separation between the contents of a method of their possible use within a specific
process. However, this was not to simplify things since many concepts and
mechanisms were introduced in order to allow method contents to be reused in process
models. Added to extension mechanisms, compliance points, the notion of Method
Plugins, the specification turns out very complex and hard to understand. This
complexity comes from the fact that the SPEM2.0 proposition (submission) took as a
basis the IBM's UMA (Unified Method Architecture) method, which in its turn is the
result of combining three methods: the RUP (Rational Unified Process) [Kruchten 03],
the IBM Global Services Method [IBM 97] and the Summit Ascendant Method.

Regarding executability, we saw that SPEM2.0 does provide neither concepts nor
formalisms for executing process models. However, it proposes two possible
approaches for their execution. We exposed these approaches and we demonstrated
their limits.

For modularization aspects, the standard proposes powerful mechanisms for
extending process models and methods, which requires extensive implementation
efforts in order to respect the semantics of all the proposed extension mechanisms and
to make sure that they will not overlap.

Finally, for the tooling support, an open source project called EPF (Eclipse Process
Framework) [EPF], which was initially lunched for supporting the IBM's UMA
method, is on the way to be fully compatible with SPEM2.0. A commercial version of
this tool exists: the Rational Method Composer (RMC) tool [RMC]. Objecteering also
proposes a commercial tool on top of EPF and Microsoft Project called PRO3
[Objecteering]. For tool vendors who aim to implement the SPEM2.0 profile they will
have to face a considerable obstacle, which is the constraining, using OCL, of the UML
metamodel in order to respect the SPEM2.0 metamodel semantics. Indeed, the
specification defined the profile but intentionally left the writing of OCL rules up to the
profile implementers. The argument was that the semantic is already defined in the
SPEM (MOF) metamodel.

61

3.3. Di Nitto et al. approach

Di Nitto's et al. approach was proposed at the ICSE'02 (International Conference of
Software Engineering) [Di Nitto 02]. The approach aims at assessing the possibility of
employing a subset of UML1.3 [OMG 00b] as an executable PML. It comprises two
main phases. The first one consists in describing process aspects using UML diagrams.
The second phase consists in translating this UML diagrams into code that can be
enacted by the team's events-based workflow engine called OPSS (ORCHESTRA
Process Support System) [Cugola 01]. This team has a good experience in the domain
of software process modeling and was among the pioneers in proposing SPMLs
[Bandinelli 93] [Bandinelli 95] and [Arlow 97]. They started by a Petri-nets-based
SPML named SPADE [Bandinelli 96] and quickly they realised the necessity to raise
the abstraction level of SPMLs for a larger adoption. Their experience, their arguments
that UML represents a good candidate for a high-level SPML justifies our choice of
using UML as a building block of our approach.

3.3.1. Di Nitto et al. approach Evaluation
In the following, we evaluate this approach according to considerations we set

earlier in this chapter.

3.3.1.1. Semantic Richness
This approach proposes to use UML1.3 diagrams as a high-level modeling

language. There is no extension to the UML1.3 metamodel, no stereotyping or new
concepts introduced. These diagrams are then translated into Java code in order to be
enacted by the OPSS engine. During the translation, a set of predefined classes used by
the OPSS are taken as a basis and extended in order to generate the final Java code.
These predefined classes represent basic process constituents such as Activity, Artifact,
Agent, etc (cf. figure 4.6.).

The UML diagrams used in this approach are:

 The activity diagram for modeling the flow of work;

 Class diagrams to associate concepts belonging to the level of the process

description with concepts that are part of the OPSS. In class diagrams, the UML
inheritance (generalisation/specialisation) relationship is used to specialise the
set of predefined classes used by the OPSS. These predefined classes, which are
given in figure 4.6., can then be specialized by process modeller's classes in
order to adapt the predefined class diagram to its specific needs. A process
modeler willing to use OPSS has to start defining his/her own activity types,
agent types, etc. by specializing the existing classes. This means adding the set
of roles classes involved in the process such as Designer, Analyst, etc., specific
artifacts classes such as Requirements, Design document, and process activities
such as Test Code, Edit Report, and so on.Via specialization the modeler can
modify the default values of the attributes of the base classes, or introduce new
operations.

 For each OPSS class, a state diagram is associated in order to describe the

lifecycle of each entity. A precise and complete definition of these state
machines is curial for process execution, since that they encapsulate the process
business rules.

62

SoftwareActivity
HumanActivity

SoftawreAgent

Resource

MaxLicences : int
AvailableLicences : int

1

1..*

1

1..*

instantiates
Agent

MaxAllocation : int
CurrentAllocation : int

HumanAgentGroup

1..*0..1 1..*0..1

Activity **

Preceded by

**

Uses

1..*

1

1..*

1

Executed by*

0..1

*

Composed of 0..1

Artifact

**

Mofify/use

Formed by

Figure 4.6. OPSS predefined classes representing basic process constituents

Process Elements
Process elements in this approach are provided in terms of UML classes through a

predefined class diagram (cf. figure 4.6). These classes can be extended by means of
the UML specialization/generalization relationship in order to add new types of process
elements (i.e., specific roles, activities, etc.). However, there is not a proper semantic
for these elements and no adapted notation. They all have the same semantic as the
UML Class metaclass since they are all instances of this metaclass. Almost basic
process elements are given and are represented as a UML class. The notion of Software
Agent means a Tool. The notion of Role that process agents may undertake is lacking.

Activities and Actions Coordination
 Regarding the proactive control, the finish-start precedence relationship is provided
through the sequence control flow used in the UML activity diagram. Semantics of the
UML Join and Fork elements is enriched to describe the possibility of having multiple
instances of the same or different activity type that are enabled for execution in
parallel. This is to model the start-start precedence relationships between activities. In
state diagrams, events are used as a means to trigger transitions allowing activity state
changes. However, there is no link between state changes of distinct activities, which
limits the reactive control of this approach.

Exception Handling
Exception handling is not addressed by the approach. However, one can imagine a

state called "exception", which once reached can have as an action, the call of an
operation to warn that an exception occurs. In Di Nitto's approach, the set of states
proposed for each entity is fixed and cannot be changed.

63

Advanced Constructs
Expressing conditions is made possible thanks to UML Activity diagram decision

nodes. However, notions such as loops, iterations, tool invocations are not provided by
the language.

3.3.1.2. Understandability
Modeling the process constituents by specializing a predefined UML class diagram

opens the way to many UML-familiar people to model their processes easily. The
activity diagram is used to describe the flow of work within the process. However,
there is not link between the two diagrams. Authors claim that the link between
activities defined in the class diagram and those defined in the class diagram is checked
through name matching. It may work for one simple class diagram, but in case of
combining many class diagrams to form one global process definition this may turn out
very difficult.

Additionally, authors claim that using the composition relationship in the class
diagram allows defining activities that can be composed by many other activities, each
activity having its own performer (agent). However, this composition aspect cannot be
reflected in the activity diagram. In the activity diagram, one activity, may it be simple
or composed, is realized by one and only one role materialized by the swim lane. Thus,
representing a compound activity with each of its component activities having a
different performer is rendered impossible by the activity diagram. Here again, the
relationship between the two diagrams is weak.

Finally, the use of state diagrams for modeling the process business rules may
penalize a bit the ease-of-use of this approach. Indeed, state diagrams are more
complicated to define than activity and class diagrams and not all people are familiar
with them. The states are fixed, but process modellers have to define events, guards,
actions of each state in a very precise manner since that the process execution depends
on it.

3.3.1.3. Precision
The unique unit of work is the activity. It may represent the simple atomic action as

well as activity composed of many other activities. However as said previously this can
only be expressed in the class diagram. The state diagram provides a very precise
means to describe activity's states and events that may trigger transitions for state
changes. In the class diagram, classes can be specialized, new attributes and operations
can be added in order to adapt the class diagram to your specific process
preoccupations.

3.3.1.4. Executability
To execute the process, all the diagrams are used for generating the code. User-

defined classes derived from predefined classes to describe specific elements of the
process being modeled are translated into the corresponding Java classes, equipped
with attributes, methods and associations as described in the given UML class
diagrams. The body of new methods is defined according to the information provided
by the corresponding state and activity diagram. However, the black point in this
translation is how precedence relationships (sequencing of activities) defined in the
activity diagram are reported in the Java code. Unfortunately, the only reference to this
by the authors is: "relations represented in the activity diagrams are translated into
java code which manages such relations" [Di Nitto 02].

64

Another lack of this approach in terms of executability is that the code of new
operations introduced in user-defined classes can only be inferred from the state
diagram of the class. If the modeller does not provide enough information in the state
diagram, the implementation of the operation is left incomplete: the process modeler is
supposed to complete this implementation after the translation has been performed

3.3.1.5. Modularization
Modularization and process compositions were not explicitly addressed in the

author's work. We can figure that to combine different processes, one can simply make
all the process classes from the different processes specializing the predefined OPSS
classes (i.e., Activity, Artifact, Agent, etc.) within the same class diagram. However,
two points have to be taken into account. The first one is to make sure that two
specialized process constituent classes have not the same name. The second is to
establish the precedence relationships between all the activities defined in the class
diagram within the activity diagram. The last point cannot be automated.

3.3.2. Discussion
The advantage of this approach is that process constituents can be defined easily by

simply specializing a set of predefined classes provided by the approach in form a
UML class diagram. The flow of work is given in activity diagrams and the lifecycle of
each entity is defined by a state diagram. However, we have demonstrated through an
evaluation that the activity and class diagram have no links with each other.

The approach does not extend the UML language nor introduces new concepts.
Process elements are simply instances of the UML Class metaclass, which means that
they all have the same semantics and notation as the UML Class metaclass.

Regarding execution, it is essentially based on how state diagrams defined by the
user are precise enough and sound in order to enable a complete code generation and to
allow process execution within OPSS. Otherwise, code has to be added manually. The
black point in the executability aspect remains how information defined in activity
diagrams (i.e., precedence between activities), state machines and class diagrams are
integrated to generate each of the Java classes needed for the execution. Authors did
not precise how this integration is realised. Modularization is not addressed by the
approach.

3.4. Promenade Approach

Promenade stands for (PROcess-oriented Modelling and ENactment of software
DEvelopment). It is a software process modeling language defined in the context of the
ComProLab project [Franch 97, Franch 98]. Promenade consists of two different parts:
the static one, which introduces main elements that play a part in the process (i.e.,
Agent, Task, Document, etc.); and the dynamic one, which establishes the order in
which tasks are to be enacted. The static part comes in form of UML1.3 class diagram
[OMG 00b], which comprises a set of predefined classes. These classes can be
specialised in order to meet specific process requirements. The dynamic part defines
what the authors call a precedence graph, which defines the different kind of
precedence relationships that may exist between process's tasks. To some extents, the
static part of this approach is very similar with Di Nitto's one. Thus, the same criticisms
we developed in the previous approach are also valid for the static part of Promenade.
In the following, we evaluate this approach according to SPML requirements.

65

3.4.1. Promenade Evaluation
As we said earlier, this approach is very similar to the one presented by Di Nitto's

team. Thus, when needed, we will refer to the evaluation made in the previous
subsection (cf. section 3.3.1).

3.4.1.1. Semantic Richness
The static part of the language is built upon three kinds of information, which yield

to several complementary UML class diagrams. First, individual information of
predefined classes is given (i.e., classes with there respective attributes and operations)
including constraints (e.g., invariants). Second, a UML class diagram is defined for
describing the hierarchy (generalisation /specialisation) between the different
constituents of the process (figure 4.7). New classes inheriting these predefined classes
can be added for specific process needs (i.e., specific roles, artifacts, etc.). Finally, a
class diagram is used for describing association relationships between predefined
classes (figure 4.8). This diagram can also be extended.

Element

Type

Document Agent Task Role Resource

ToolCommunication

Figure 4.7. Default UML Class Hierarchy Diagram of Promenade predefined classes

RoleAgent

1..n1..n

+role

1..n1..n

plays
Document

1
0..n

+owner

1
0..n

owns

Tool
Task

0..n

1

0..n

+responsible
1

responsible-for

1

1..n

1

1..n

generates

0..n
0..1

0..nhas-as-subtasks
0..1 0..n

0..n
0..n

0..n

invokes

Figure 4.8. Default associations between Promenade predefined classes

Process Elements
As in Di Nitto's approach, process elements in Promenade are given in terms of

instances of the UML Class metaclass. Thus, no proper semantics (distinct from the

66

UML Class metaclass semantics) or notation can be assigned to these concepts. Here
the notion of Document represents the notion of Artifact. All process elements are
provided through the predefined UML classes introduced by the language (figure 4.8).

Activities and Actions Coordination
 The dynamic part of the language is in charge of establishing the order in which
process tasks can be enacted. Precedence is the means for representing proactive
control specification in Promenade (c.f., Figure 4.9.). The approach defines four kinds
of precedence. The Strong precedence for defining the basic finish-start precedence
between tasks. The Weak precedence to model the fact that task S must be started
before T and must end before T. The Synchronizing precedence, which distinguishes
two types of precedence, the start-start and the finish-finish precedence relationships.
The start-finish precedence is not represented.

Precedence

type : precedenceTypes

Task
1..n

0..n

+source

1..n

0..n

incoming

0..n

1..n

0..n

+target1..n

outgoing

Figure 4.9. Precedence between process tasks

The approach proposes another means to ensure a proactive control. It consists of
including two attributes in each task. The first one to store all input documents of the
task and the second one to store all outputs of the task. Then, authors proposes to link
tasks according to their inputs/outputs (if task A has an output which is the same as the
input of task B then task A is linked with task B). Definitely, this solution can cause
many disagreements. The first one is because a task having its inputs equivalent to
another task's outputs does not necessarily mean that a direct precedence relationship
exists between them. Second, we can have many tasks having as input the same output
of a task. Thus, which one to choose? Third, in case of combining many processes,
process modellers have to rename process's documents, which may represent the same
document but are named differently from one process to another, in order to ensure the
precedence relationship between tasks. Thus, basing precedence relationships between
tasks on document names is not a reliable solution.

Reactive control is ensured by means of activity's state diagram. However, authors
do not give information about events and actions used for defining state changes.

Exception Handling
 Promenade defines a predefined state diagram, which represents the set of
allowable task's states. One of these states is the "CompleteUnsucc" state, which once
reached, may cause the call to an operation that can handle the unsuccessful completion
of the task.

Advanced Constructs
No tool invocation mechanisms, no loop constructs or conditionals (e.g., switch like

element) are proposed by the approach.

67

3.4.1.2. Understandability
The approach is quite simple and supposes that the process modeller is familiar

with UML class diagrams. To model a process, one has just to specialize the set of
predefined classes provided by the approach. To define precedence between process's
tasks, one has to define a precedence graph, which defines the order between all tasks
of the process. Precedence rules are described using a declarative formalism, which is
quite simple. However, authors do not specify how the precedence graph (including
precedence rules) is to be integrated with the class diagram to form a complete process
model. In our view, using a class diagram for describing the flow of work within the
process is not a very elegant and a precise way. Additionally, the process modeller has
to combine between the two diagrams (i.e., class and precedence graph) in order to
understand and to reason about the process, most of all that there is no link between
these diagrams.

3.4.1.3. Precision
The unique unit of work is the Task class, which is an instance of the UML Class

metaclass. A Task can be composed by other tasks however; the precedence between
these tasks is to be defined separately in the precedence graph.

3.4.1.4. Executability
Executability was not addressed at all by the Promenade approach. No prototype

was implemented and no tool is provided.

3.4.1.5. Modularization
 For combining many processes, authors propose to make all process elements of the
same type from the various processes, inheriting the same predefined classes defined
by Promenade. Thus, the static part of P (P: the new combined process)
P=P1+P2+…+Pn is the superposition of their generalisation hierarchies, together with
the union of their association and aggregation relationships. However, to avoid name
clashes (of classes, relationships, attributes, etc); authors propose to rename (to give a
similar name) all the classes that represent the same artifacts but that are called
differently from one process into another. This requires manual intervention to identify
these classes and to rename them. What makes the thing more complex is that the
precedence graph has also to be modified separately in order to ensure that for instance
the document output of task A from process P2 (which was renamed) is the input
document of task B from process P3. This definitely may revel to be a very tedious and
unmanageable task.

3.4.2. Discussion
This approach presents many lacks. The first one comes from the fact that the

approach does not provide a proper set of concepts for describing process elements but
relies on a UML class diagram with a predefined set of classes (that can be extended).
The second lack is that the approach does not provide any mechanism or way to
execute Promenade process models. Modularization revels to be very complicated and
cannot be automated. Understandability may be affected since process modellers have
to deal with a set of class diagrams and precedence graph in order to understand the
process's flow of work. Finally, no tool or prototype is provided.

68

3.5. Shih-Chien Chou's Approach

Chou's work was realised in the context of a research project financed by the
National Science Council of Taiwan [Chou 02]. It proposes a software process
modeling language consisting of high-level UML-Based diagrams and a low-level
process language. While UML diagrams are used for process's participants
understanding, the process language is used to represent the process - from UML
diagrams – in a machine-readable format i.e., a program.

3.5.1. Chou's Approach Evaluation
As it was done for the previous approaches, we evaluate this approach according to

the following criteria.

3.5.1.1.Semantic Richness
For the high-level part of the language, the author proposes the using of two

diagrams called P-activity diagram and P-class diagram. These diagrams are
respectively based on a subset of the UML1.4 Activity and Class diagrams [Chou 00].
The P-activity diagram is used to model activities, their sequencing and
synchronization, events and exception handlers. The P-class diagram is used to model
products, roles, tools, schedules, budgets and their relationships. All these elements are
in fact represented as UML classes with attributes and operations. Thus, in a P-class
diagram, you may have a class named "Analyst" which is linked with a named and
directed association (e.g., responsibleFor) with a product called "Specification", which
in its turn is represented as UML class with its attributes (e.g., specName,
projectName, etc) and operations (e.g., editSpec(), createSpec(), etc).

At the end, modeling you process's constituents (i.e., roles, workproducts, etc) will
be viewed the same as if you were modeling any application's structure using a class
diagram in a traditional design phase. The P-activity diagram will determine the flow
of work, i.e., sequencing of activities using an UML Activity diagram. However, there
is no link between the two diagrams (i.e., P-class diagram and P-activity diagram)

The set of UML elements and their notations used for defining both P-x diagrams
are represented in figures 4.10 and 4.11.

Figure 4.10. P-activity diagram notation

69

Figure 4.11. P-class diagram notation

At the lower level, the author uses a proprietary and minimal object-oriented
language for representing the process as a program. The language is described in terms
of BNF (Backus-Naur Form) grammars. A process program represented in the
language is composed of one Process class and one or more other classes which can
be Role classes or Product classes. To represent the synchronization between
process's activities and their sequencing in a Process class, a Task is used. A Task
is defined as an operation of the Process class. A Task may be a concurrent block
(i.e., for calling several process's activities concurrently), an event statement (i.e., a
wait or a sending of a signal), etc. Finally, all process's activities are defined in terms of
operations invoked form Task blocks within the Process class.

Process Elements
 At the higher level, the language proposes the concept of Activity through the P-
activity diagram. The Activity element has no additional attributes than those defined in
the UML1.4 Activity concept [OMG 01]. The notions of Role and Document, Tool are
in fact UML classes described in a class diagram called P-class diagram. These classes
can then be extended for a specific project in order to add specific roles (e.g., Analyst,
Designer, etc.), products (e.g., Specification, Requirement, etc.), etc as well as
relationships between these classes (e.g., isResponsibleFor, isEditedWith, etc). This is
very similar to Di Nitto's approach (c.f., Section 3.3.). Thus, these concepts (i.e., Role,
Document, etc.) have no appropriate metaclasses representing them, but are only
instances of the UML1.4 Class metaclass. The notion of Agent is lacking.

Activities and Actions Coordination
 In the P-activity diagram, proactive control is ensured thanks to Activity sequence
(cf., figure 4.10 (c)) and the synchronization and concurrent bar elements (cf., figure
4.10 (e)). The former allows the traditional finish-start precedence relationship between
activities. The latter can be used to describe a start-start (concurrency) precedence
relationship between activities. The reactive control is ensured using events and
exception handlers. Events can be used to model the finish-finish and start-finish
dependencies between process's activities.

 At the lower level, the Activity sequence is expressed as an operation call to the
process's activity (represented by a process class operation). Concurrency is expressed
in terms of a specific kind of Task defined by the concurrent {} block. This
block will then calls the concurrent activities represented as operations within the

70

process class. Other kinds of Tasks are used to express event statements and
exception handlers. Details can be found in [Chou 02].

Exception Handling
 Exception Handlers are represented as activities in P-activity diagrams. In the
process program, they are expressed as operations. They are triggered explicitly from
operations in case of an unexpected result (e.g. validation of the design fails).

Advanced Constructs
 In P-activity diagrams, there is no means to express loops. Conditions are expressed
as strings on top of the Activity sequence arrow (cf., figure 4.10 (c)). In the BNF
language's grammars, the Branch and Loop statement are defined. However, the
author does not refer to them within the paper and no example is provided.

3.5.1.2.Understandability
The language does not extend UML to define a new language for software process

modeling. Rather, it proposes the use of UML Activity and Class diagrams. The former
is used for modeling the flow of work and the latter for modeling the different
constituents of the process as instances of the UML Class metaclass. These diagrams
represent the high-level part of the language and are very simple to understand by
process participants whom are familiar with UML.

However, there is no link between the two diagrams. They are just used for the
process comprehension. Moreover, there is no automatic generation of process
programs from these diagrams towards the proprietary OO language the author
proposes. This imposes that process modellers need to be familiar with both languages
(UML and the process language) since they have to rewrite the process using the low-
level process language. Besides, every time you add a new class (i.e., a new role,
product, tool, etc.) in the P-class diagram, you have to code its equivalent class in the
process language and to make sure that it is properly linked with other process
constituents (i.e., roles, products, activities, etc.). This requires mastering the process
language, which may be an obstacle for the adoption of the approach by organizations.

3.5.1.3. Precision
In this approach, the activity element is the unique concept used for describing the

process hierarchy at the higher level (i.e. graphical notations using P-activity diagram).
A process can be first depicted as a top-level P-activity diagram, which is composed of
coarse-grained activities (i.e., non-primitive activities using notation in figure 4.10 (a)).
Activities in the top-level diagram can be decomposed to form more detailed P-activity
diagrams if necessary. The decomposition proceeds until all activities are fine-grained
enough (i.e., primitive activities using notation in figure 4.10 (b)).

However, at this level, it is not possible to know neither what are the products
(artifacts), inputs/outputs of each activity nor the roles in charge of each activity. In our
view, these aspects of the process need to be highlighted in process models in order to
increase the agent understanding about the process and to ease the reasoning about the
eventual process issues.

At the lower level, roles and products are defined as classes and are instantiated
within the process class. However, products are not used as parameters of process's
activities (represented as operations within the process class). Instead, they are used as
Role's operation parameters (e.g., a role's operation call: Analyst1.EditSpec (systemReq,

71

subSpec1)). This imposes that activity steps are implemented as operations within roles
in charge of the activity. This hardly limits the reusability of role classes since they
have to be surcharged with operations specific to the activity carried out by the role.

3.5.1.4. Executability
While the P-class and P-activity diagrams are provided as a means to reason about

the process, the approach does not provide an automatic generation of the process
program form these diagrams. The process program has to be implemented by
developers according to what is defined within the diagrams. There is no means to
reflect changes or additions made to the process program into P-activity and P-class
diagrams. The author does not talk about any tool or prototype implementing the
approach.

3.5.1.5. Modularization
Modularization is not addressed by the author. We suppose that it is possible to

combine process programs at the lower level of the language since it is an OO-based
language. Once the process program we want to integrate is instantiated, its operations
representing the implementation of the process's activities can be invoked.

3.5.2. Discussion

Whether the language provides the advantage of directly using UML diagrams for
modeling the process aspects (i.e., flow of work and constituents), the approach
presents some lacks. The first one is the fact that process constituents are represented
as instances of the UML Class metaclass which may not fit the semantics of software
process constituents. Besides, these concepts are not part of the language since they are
instances of the UML Class metaclass. The second obstacle of this approach is the lack
of an automatic generation of process programs from P-x diagrams, which imposes the
rewriting of the process by developers mastering the proprietary OO language the
author proposes. Any addition to the P-class diagram imposes the coding of a new class
and most of all, its linking with the other process classes. This can turn out very
complex in case of large P-class diagrams or in case of constant changes of information
within these diagrams. Finally, no prototype is provided and no further works were
proposed for this approach.

4. Discussion

In the previous section, we evaluated UML-Based approaches for modeling and
executing software processes. Each approach presents some advantages but also some
drawbacks. Thus, we find it interesting to highlight some observations we had. The
first observation is that three of the five approaches we discussed (i.e., Di Nitto et al.,
Promenade and Chou approaches) do not define new concepts or extend UML
metamodel ones. They simply consist in providing a predefined UML class diagram for
defining principal process constituents (i.e., Activity, Role, Artifact, Agent or Tool) in
terms of instances of the UML1.x Class metaclass (i.e., simple UML classes). Thus,
these process elements do no have a proper semantics and notations, which are actually
borrowed from the UML Class metaclass. The second observation is, for these three
approaches, there is no link between the different UML Diagrams they use. Some of
them propose name matching from one diagram into another, which of course cannot
be a reliable solution. In the case of Promenade for instance, the process modeller has

72

to combine between a class diagram and precedence graph described thanks to
precedence rules in order to get a view of the flow of work within the process.

Almost approaches propose all process elements except the notion of Agent, which
lacking in three approaches (SPEM1.1, SPEM2.0 and Chou's approaches) among the
five. Exception handling is also missing by all the approaches except for Chou's one.
Proactive control is more addressed than Reactive control, which in most cases (for the
approaches they provide it) is ensured by means of events modelled within state
diagrams. Most SPMLs do not provide constructs for modeling loops, conditionals,
tool invocations, agent communications, etc.

Regarding understandability, SPEM1.1 is quite a good compromise. It offers
simple concepts through a MOF metamodel extending some UML1.4 concepts.
However, some of its element semantics present some ambiguities [Bendraou 05]. The
lack of SPEM1.1 is that it does not offer any process model execution approaches and
its approach for composing process models presents some obstacles. Conversely,
SPEM2.0 provides panoply of mechanisms for extending and combining chunks of
process and method descriptions however, this adds to the complexity of the standard.
Indeed, the standard proposes three compliance points, seven packages and many
metaclasses, which makes it unreadable. Additionally, SPEM2.0 does not reuse UML
Superstructure concepts, which provide through the Activity and Actions packages all
the necessary concepts for dealing with process's activities sequencing, constraint
expressions, events, and so on. Moreover, SPEM2.0 is not executable. We
demonstrated the limits of the approaches proposed by the standard for SPEM2.0
process model executions. Regarding executability in the other approaches, we saw
that Chou's approach consists in rewriting manually the process program from the
UML diagrams, which is inconceivable. Di Nitto approach consists in generating code
from the three UML1.3 diagrams used for describing the process (i.e., Activity, Class
and State Machine). However, no information is given about, how process aspects (i.e.,
activity sequencing, events, actions, class's operations and attributes) defined in these
diagrams are translated and integrated into the Java code. The Promenade approach
does not provide any execution possibilities.

Looking at the Abstraction, SPEM1.1 and SPEM2.0 are the only SPMLs that
provide a set of concepts with their own semantics and notations through a metamodel
instead of simply using UML diagrams, which, are at the model level (i.e., process
concepts are instances of UML Class metaclass). Unfortunately, this raise in
abstraction was not followed by an automatic generation of code or formalism from
SPEM process model execution. As we addressed in the previous chapter, whether the
MDE claims for raising the abstraction level of modeling languages, it also insists on
the necessity of keeping a tight relationship with lower level languages to ensure model
executions

Finally, regarding the Tooling Support, only the industrial standards (i.e., SPEM1.1
and SPEM2.0) have some implementing tools. However, these tools are more often
used for drawing process models (contemplative models) without any execution
support behind. Additionally, the standard implementation differs from one tool into
another and process models are stored in proprietary formats rendering process model
exchanges impossible, which is in opposition with MDE principles.

All the discussion and evaluation we made is summarized in table 4.1.

73

Approaches
Requirements

SPEM1.1 SPEM2.0 Di Nitto's et al.
Approach

Promenade Chou's Approach

Semantic Richness
Process Elements Depends on the Compliance

point used
provided in terms of
UML1.3 classes (Instances
of the UML Class
metaclass)

provided in terms of
UML1.3 classes
(Instances of the UML
Class metaclass)

provided in terms of
UML1.4 classes (Instances

of the UML Class
metaclass)

Activity Work Definition, Activity. An
Activity may be composed of
Steps

Activity / Task Definition Activity Task Activity

Role Process Role Role Use / Role Definition No Role
Artifact WorkProduct WorkProduct Uses /

WorkProduct Definition
Artifact Document Document

Agent No No Human Agent Agent No
Tool No Tool Definition Software Agent Tool Tool

Activities/Actions
Coordination

Proactive Control Precedes dependency. Kinds of
precedence ensured: start-start,
finish-start or finish-finish. The
start-finish precedence is
lacking

Ensured thanks to the
WorkSequence concept.
Kinds of precedence: start-
start, finish-start or finish-
finish and start-finish

Use of UML1.3 Activity
diagram sequence control
flow for modeling finish-
start precedence. UML
Join and Fork for modeling
start-start

Use of the Precedence
concept. Allows
modeling the start-start,
finish-start or finish-
finish. the start-finish is
lacking

Ensured thanks to UML
Activity sequence¸ fork and
join elements for modeling
start-start and finish-start.

Reactive Control No No In state diagrams, events
are used as means to
trigger transitions allowing
activity state changes

An predefined state
diagram is defined for
Task. However, no
information is given
about event, action, and
states changes

Through events and
exception handlers for
modeling start-finish,
finish-finish

Exception Handling Not addressed Not addressed Not addressed Not addressed Exception Handlers are
represented as activities in
AD and as operations in
the code

Advanced Constructs
(Tool Invocations,

Agent
Communication,

Loops, Conditionals)

No advanced constructs
provided

No advanced constructs
proposed. However the
ExtensibleElement metaclass
provide the possibility to add
user-defined concepts and
process specific constituents
(i.e., specific roles,
workproducts, etc)

Decision nodes through
Activity Diagrams Notions
such as loops, iterations,
tool invocations are not
provided by the language

No advanced constructs
provided

Loops and Conditionals are
proposed in the OO
proprietary language the
author proposes for process
execution.

74

Understandability Good. Simple Metamodel,
reuse of UML1.4 diagrams for
process descriptions. Some
ambiguities about some
concepts (e.g. Process
Performer) identified in
[Bendraou 05] and
[Combemale 06]

Lack: Very complex and
hard to tackle. One has to
deal with many compliance
points. The specification
defines seven packages with
seventy-five metaclasses. The
limit between process
description and method
definition is confusing

Good. Use of UML
diagrams (Activity, Class
and State machine
diagrams) for modeling
process aspects. Lack: no
link between the diagrams.
The reliability of the code
generated for process
execution depends on how
the process modeller
defines state machines

Lack: Process modeller
has to combine between
a class diagrams and
precedence graph in
order to understand and
to reason about the
process. No link between
the two diagrams

Good. Use of UML
Activity and Class diagram
for modeling the process.
Use of proprietary OO
process language for
process execution. Lack:
no link between the
diagrams. No automatic
code generation form
diagrams.

Precision Process hierarchy described
through Phase, Lifecycle,
Iteration, and WorkDefinition
to Activity, and Step concepts.
Lack: There is no way to
express what are the
inputs/outputs of Activity's
steps, who is the role
responsible of each step neither
their constraints

Good. Using "SPEM Process
with Behavior and Content"
compliance point, the Activity
is the only concept for
describing the hierarchy of
the process model. Using the
"SPEM Method Content" or
"SPEM Complete"
compliance points it is
possible to describe the
Method Library in terms of
Tasks that it may contain
Steps

Good. The unique unit of
work is the Activity. The
state diagram provides a
very precise means to
describe activity's states
and events that may trigger
transitions for state
changes. In the class
diagram, classes can be
specialized, new attributes
and operations can be
added

The unique unit of work
is the Task class

At the higher level,
Activity as unique unit of
work. At the lower level,
roles and products are
defined as classes and are
instantiated within the
process class. Activities
implemented as process's
operations

Executability Lack: Out of scope of
SPEM1.1

Lack: Not addressed.
Proposition of two
approaches. We
demonstrated their limits
(c.f., section 3.2.1.4.)

Code for process execution
is generated from Activity,
Class and State machine
diagrams. Lack: no details
on how the code is
generated and how
different information from
the different diagrams are
integrated to the Java code.
If the state diagram is not
complete, code has to be
added manually after
generation

Lack: Not addressed Lack: the approach does
not provide an automatic
generation of the process
program from these
diagrams. Process has to
rewrite the process using a
proprietary OO language

Modularization Through the notion of Process
Component (PC). Lack: to
combine Process Components
a Unification phase is needed
(i.e., renaming all Process

Good. Depends on the
compliance point used. For
concepts for extending
process activities, one has to
use the Activity's "Activity

Not addressed Lack: Based on
renaming classes from
different class diagrams
to be combined for
defining a new process

Not addressed

75

Roles and WorkProducts to
have identical names, linking
explicitly activities from
different PCs)

Use Kind" property
(enumeration). To extend,
reuse or replace process
contents, method libraries,
one has to employ Variability
mechanisms. For process
composition, one can use
Process Component and
Method Plugin mechanisms

Metamodel/ Profile A MOF-Compliant metamodel
extending UML 1.4 concepts /
A UML1.4 Profile is proposed

A MOF-Compliant
metamodel extending the
UML2.0 Infrastructure (no
concept reused from
Superstructure) / A UML2.0
Superstructure Profile
Lack: OCL constraints are
not provided (up to standard
implementers)

Lack: No metamodel, no
profile provided. Authors
provide a set of predefined
classes (instances of the
UML Class metaclass) that
one can specialise for a
specific process

Lack: No metamodel,
no profile provided.
Authors provide a set of
predefined classes
(instances of the UML
Class metaclass) that one
can specialise for a
specific process

Lack: No metamodel, no
profile provided. Author
provides a set of
predefined classes
(instances of the UML
Class metaclass) that one
can specialise for a specific
process

Abstraction Good. Definition of a new
language using a Metamodel
with a proper semantics and
notations. Focusing only on
Software Process Modeling
aspects

Good. Definition of a new
language using a Metamodel
with a proper semantics and
notations. Focusing only on
Software Process Modeling
aspects

Lack: concepts have
neither proper semantics
nor notations. All concepts
are instances of the UML
Class metaclasses then, all
have the same semantics
and notations.

Lack: concepts have
neither proper semantics
nor notations. All
concepts are instances of
the UML Class
metaclasses then, all
have the same semantics
and notations. It is up to
the modeller to write
precedence rules in a
proprietary formalism.

Lack: concepts have
neither proper semantics
nor notations. All concepts
are instances of the UML
Class metaclasses. Process
modeller has to manually
write the process program

Is a Standard/
Standard-Based

Is a standard / Based on the
UML1.4 standard

Is a standard / Based on the
UML2.0 Infrastructure for
the metamodel, based on the
UML2.0 Superstructure for
the Profile

Uses UML1.3 standard
diagrams

Uses UML1.3 standard
diagrams

Uses UML1.4 standard
diagrams

Tooling Support Rational Process Workbench,
IRIS Suite, Objecteering's
SPEM Profile

Eclipse Process Framework,
Objecteering's PRO3

ORCHESTRA Process
Support System for process
execution after Java code
generation. No translator
(from UML diagrams to
Java code) is provided

No tool or prototype is
provided

No prototype is provided

Table 4.1. Evaluation and Comparison of UML-Based approaches for Software Process Modeling and Execution

76

5. Conclusion

The first chapter of this document aimed at presenting the different process
technologies. We saw the different characteristics of each of them and most of all; we
clarified the relationships between a Business Process, a Software Process and a
Workflow. We concluded that each process technology has its specific preoccupations
and concerns, which justifies that many process modeling languages are proposed for
each of the three domains. Comparing between PMLs from the different process
technology domains would not be objective. We fixed our domain, which is Software
Process Modeling.

In the second chapter, we introduced MDE and we presented its principles. If
respected, these principles can considerably improve productivity and decrease
complexity in developing software. We highlighted how the software process modeling
community was attracted by such promises and how it can take advantage of the MDE
vision. One of the MDE principles is the use of high-level and standard formalisms for
modeling purposes. In the last decade, the UML succeeded to be that reference high-
level modeling language. This has naturally influenced the SPM community to explore
the possibility to reuse UML for process modeling and many approaches were
proposed.

 In this chapter, we compared and we evaluated the UML-Based approaches for
software process modeling and execution. These approaches were compared using a
framework we defined. This framework regroups major requirements to fulfil while
designing a process modeling language that we collected from well-known works in
the literature. These requirements are combined with MDE principles introduced in
chapter 3. During the evaluation, we did not limit ourselves to simply describing the
approaches but we identified advantages and drawbacks of each of them. Finally, we
concluded that no approach succeeds in fulfilling the requirements we defined. More
particularly, no approach succeeds in offering a high level of abstraction in modeling
software processes while providing means to execute process models, which is a key
principle within the MDE approach. Thus, a kind of trade-off is needed between
Abstraction and Executability.

In the remaining part of this document, we present our UML-Based proposition for
Software Process Modeling and Execution.

77

.

78

Chapter 5

UML4SPM, a UML2.0-Based Language For
Software Process Modeling

1. Introduction

After the introduction of process technology domains and the presentation of the
different UML-based approaches for software process modeling, in this part of the
document, we present our proposition.

UML4SPM is the UML2.0-Based language we defined for Software Processes
Modeling and Execution. It comes in form of MOF-compliant metamodel extending
the UML2.0 Superstructure standard. In this chapter, we start the presentation of our
solution by giving main motivations that led us to propose UML4SPM. These
motivations are then fixed as design goals and are introduced in Section 2. In Section 3,
the presentation of UML4SPM metamodel is given in two parts. The first part
introduces the UML4SPM MOF-compliant metamodel and describes in details each of
its metaclasses. The second part presents UML2.0 Superstructure concepts we
extended and we reused in the UML4SPM definition. In Section 4, we introduce the
UML4SPM notation, which is principally inspired from the UML2.0 Activity notation
and which we enrich with some features proper to software process modeling. Section
5 concludes this chapter.

2. UML4SPM: Design Goals

The initiative of developing UML4SPM emerged after many observations we had
while exploring the different software process modeling languages proposed by the
literature. These observations were also confirmed by our industrial partners from the
European projects we have been involved in and in which, UML4SPM was part of
[Modelware, Modelplex]. While developing UML4SPM, these observations became
our main design goals. We present them in the following:

 The first one was that first-generation SPMLs were too complicated to be
understood and to be used by non-experts in computer science. They were based on
low-level formalisms and required many programming skills. This observation sets
our first requirement which is the need of raising the Abstraction level of process
modeling languages in order to increase Understandability.

 The second observation was that using a Standard and Well-Known formalism

would make the PML adoption easier and at lower costs. People do not have to
learn a new language and leveraging existing tools is rendered possible. In
UML4SPM, we opted not to start from scratch. Thus, we investigated the
possibility of reusing a standard, powerful and already very popular modeling
language, which is UML2.0 [OMG 07a, OMG 07b]. In [Bendraou 05], we
demonstrated that the newly adopted standard has a high potential as a basis for a

79

SPML through its Activity and Action packages, which have radically changed from
UML1.x previous versions. In UML2.0, Activities are inspired from Petri Nets and
are not only used to model processes, now, they also have some features necessary
to support the automation of these processes [Störrle 04].

Another reason that makes us reusing UML2.0 was our aim to participate in the
OMG's revision of SPEM1.1 (Software Process Engineering Metamodel) standard
[OMG 05a], namely, SPEM2.0. The SPEM2.0 RFP (Request For Proposal)
imposed as mandatory requirements - among them - defining a MOF-compliant
metamodel for introducing concepts proper to software process modeling and
where needed, reusing of UML2.0 Activities in defining the SPEM2.0 metamodel.
The RFP requirement stated: "submissions shall rework activity definition and
modeling -from SPEM1.1-, so as to take advantage of the new UML 2.0 Activity
Diagram features" [OMG 04]. We have considered these requirements in defining
the UML4SPM metamodel.

UML4SPM takes advantage of the expressiveness of UML2.0 by extending a
subset of its elements suitable for process modelling (i.e., Activities and Actions).
By adopting UML2.0 as a basis of our SPML, we take advantage of:

 The expressiveness of the UML2.0 in modelling sophisticated activities
including actions with executable semantics and in orchestrating them;

 The fact that UML is currently the most widely used modeling language in
the industry. People are familiar with the language and a myriad of tools and
training supports are provided;

 Notations and diagrams offered by the standard. UML diagrams are

intuitive and easy to understand;

 Easier adoption by UML and SPEM1.1modelers;

 Finally, the last observation we have noticed is the increasing demand from
industrials for executable process models instead of contemplative process models.
This demand is motivated by the continuous requests for more complex yet reliable
software in short time-to-market. Nowadays, companies are looking for how to
extensively automate all parts participating in the software production, including
the development process itself. However, Executability must not alter the
Simplicity and Understandability of the PML resulting from satisfying our first
design goal, which is raising the Abstraction level of the PML. Thus, a trade-off
between Executability and Abstraction is needed.

The combination of the three design goals we just introduced i.e., Abstraction, the
use of Standard formalisms and Executability is key in applying the MDE vision for the
Software Process Modeling domain. Advantages of MDE and its principles were
introduced in Chapter 3.

In the following, we present the UML4SPM metamodel.

80

3. UML4SPM: The Metamodel

The UML4SPM metamodel comes in form of package hierarchies. The outermost
level contains two packages: the UML4SPM_Foundation package and the
UML4SPM_Extensions package (see figure 5.1). The UML4SPM_Foundation package
contains UML2.0 Superstructure packages and concepts reused as a basis for defining
mechanisms for activities and actions sequencing (e.g., control flows, object flows,
etc), events, exception handling, constraint expressions, etc [OMG 07b]. The
UML4SPM_Extensions package holds concepts in terms of MOF2.0-Compliant
metaclasses with a proper semantics required for software process modelling. These
concepts extend UML2.0 Superstructure metaclasses defined in the UML4SPM_
Foundation. The UML4SPM_Extensions package holds the ProcessStructure package
and may contain any other packages that tend to extend UML4SPM for a specific
purpose. As introduced earlier, since we aimed to participate at the OMG's SPEM
revision, we have intentionally tried to keep the same naming conventions of the
SPEM1.1's metamodel packages and metaclasses [OMG 05a].

UML4SPM_Extensions

UML4SPM_Foundation

Figure 5.1. UML4SPM Metamodel Package Hierarchies
In the following we start the description of the UML4SPM metamodel by the

ProcessStructure package, which is the building block of UML4SPM.

3.1. Process Structure Package

The Process Structure package is the core of UML4SPM. It introduces main
concepts proper to software process modeling such as Software Activity, Role,
WorkProduct, Guidance, etc. These concepts are presented in Figure 5.2, which
represents the MOF-Compliant metamodel. Process Structure metaclasses will then
extend UML2.0 Superstructure concepts we identified as basis of UML4SPM (c.f.
Section 3.2.).

In the following, we give a detailed description of each of the metamodel's
metaclasses. For each metaclass, we give its description, attributes, associations, and its
direct generalizations and constraints if any. Metaclasses are introduced according to
their importance and not in an alphabetical order.

ProcessStructure

<<Import>>

81

ActivityExecutionKind
machineExecution
humanExecution

<<enumeration>>

complexityKind
easy
Medium
Difficult

<<enumeration>>
priorityKind

Low
Medium
High

<<enumeration>>Agent
skills : String
isAvailable : Boolean

ProcessElemen
tKind

name : String

ProcessElement
description : String 0..11

+kind

0..1

+processElement

1

Tool
description : String
isBatch : Boolean
version : String

Team
TimeLimit

milestone : String Guidance

RolePerformer
name : String

1..n

+performers

1..n

SoftwareActivity
isInial : Boolean = false
executionKind : ActivityExecutionKind
priority : priorityKind
complexity : complexityKind
duration : String

0..1

+endsAt

0..1 0..1

+startsAt

0..1
0..n

+guidance

0..n

WorkProduct
idWorkProduct : String
isDeliverable : Boolean
created : String
lastTimeModified : String
uriLocalization : String
version : String

0..n

+impacts

0..n

ResponsibleRole
responsability : String
qualifications : String
rights : String

1..n

0..n

+rolePerformer 1..n

+Role 0..n

1..n

0..n

+responsibleRoles

1..n

+activities

0..n

0..n

0..n

+workProducts
0..n

+performer

0..n
SoftwareActivityKind WorkProductKind

ResponsibleRoleKind

Figure 5.2. UML4SPM Process Structure Package

82

Process Element
Description

The abstract Process Element metaclass represents an abstraction of main process
constituents i.e., Software Activities, Responsible Roles and WorkProducts. The
introduction of this metaclass together with the Process Element Kind metaclass aims
at providing an extension mechanism to the language in order to be adapted for a
specific process or methodology domain. This mechanism is explained in more detail
along this section and is illustrated in the next chapter.

Generalization
 UML Superstructure::Kernel::Classifier.

Process Element extends the Classifier abstract metaclass. A Classifier is a
namespace (i.e., can contain a set of named elements) and may have features which can
be either structural (i.e., properties) or behavioural (i.e., operations). Thus, making a
Process Element extending the Classifier metaclass allows process elements (i.e.,
Software Activity, Responsible Role and WorkProduct) to be enriched with new
properties or operations additionally to the properties we already defined. This can be
very helpful for adapting a process model to specific domain requirements.

Attributes

description: String It gives a description about the process element. For
instance, in case of Software Activity this attribute will
present main lines of the activity, its priority in the process,
etc.

name: String (inherited from Classifier) Name of the process element

Other attributes inherited from UML Superstructure::Kernel::Classifier are given in
more detail in [OMG 07b].

Associations
kind: Process Element Kind [0..1]

It is possible to define different kinds of process element instances. One process
element may have zero or one kind. As an example, we can for instance define
different kinds of WorkProducts such as Document, Code, Check List, Model, etc.
When instantiating a WorkProduct within a process model, we can specify its kind
(e.g., Model) among the set of WorkProduct kinds defined by the process modeller and
which often can be process or methodology-specific. This association is redefined
when used between Process Element subclasses and Process Element Kind subclasses.

Associations inherited from UML Superstructure::Kernel::Classifier are given in
more detail in [OMG 07b].

Constraints
A Process Element Kind (i.e., SoftwareActivityKind, WorkProductKind and

ResponsibleRoleKind) cannot be reused for different subclasses of the Process Element
metaclass (i.e., Software Activity, WorkProduct and Responsible Role). It is applicable
to only one subclass of Process Element or to its subclasses. A kind defined for a
specific WorkProduct cannot be reused as a kind of a Responsible Role or a Software
Activity.

83

To explicitly apply this constraint, we decided to redefine the "kind" association
defined between Process Element and Process Element Kind metaclasses at the
subclasses level of both metaclasses i.e., between Software Activity, WorkProduct and
Responsible Role and respectively SoftwareActivityKind, WorkProductKind and
ResponsibleRoleKind (see figure 5.3).

Other solutions are imaginable such as the definition of a property within the
ProcessElementKind metaclass, which would be an enumeration of possible process
element kinds (i.e., SoftwareActivityKind, WorkProductKind and
ResponsibleRoleKind). However, this would lead to the writing of some OCL rules.
One also can type the ProcessElementKind as a MOF Class. (i.e., create an association
between the two metaclasses) At instantiation time, one applicable class among
Process Element subclasses has to be selected. Here also, OCL rules are needed to
make sure that the Process Element Kind is not applied to different kinds of Process
Elements subclasses.

SoftwareActivity
executionKind : ActivityExecutionKind
priority : priorityKind
complexity : complexityKind
isInial : Boolean = false
duration : String

SoftwareActivityKind

0..1

*

+softwareActivityKind
0..1

*

{redefines kind}

WorkProduct
idWorkProduct : String
isDeliverable : Boolean
created : String
lastTimeModified : String
uriLocalization : String
version : String

WorkProductKind
0..1

**

+workProductKind

0..1 {redefines kind}

ResponsibleRole
responsability : String
qualifications : String
rights : String

1..n

0..*

+responsibleRoles 1..n

+activities0..*
0..*

0..n

+workProducts
0..*

+performer

0..n

ResponsibleRoleKind 0..1

**

+responsibleRoleKind

0..1

{redefines kind}

Figure 5.3. Redefinition of the "Kind" Association

Process Element Kind
Description

The abstract Process Element Kind metaclass is used to define process-specific or
user-defined kinds of process elements (i.e., specific kinds of WorkProducts, specific
kinds of Responsible Roles, etc.)

Generalization

None.

Attributes

name: String It defines the name of the Process Element kind. Example of Kind's
name: a "Model" in case of a WorkProduct kind, a "Phase" in case
of Software Activity, etc.

84

Associations
None.

Constraints
 None.

Software Activity Kind
Description
 Defines user-defined or methodology and process-specific kinds of Software
Activities.

Generalization
Process Element Kind

Attributes

name: String

(from Process Element Kind)

It defines the name of the Software Activity Kind.
Examples: "Phase", "Sprint", "Process", "Discipline",
"Iteration", "Activity", etc.

Associations
None.

Constraints
 None.

WorkProduct Kind
Description
 Defines user-defined or methodology and process-specific kinds of WorkProducts.

Generalization
Process Element Kind

Attributes

name: String

(from Process Element Kind)

It defines the name of the WorkProduct Kind.
Examples: "Document", "Model", "Code", etc.

Associations

None.

Constraints
 None.

Responsible Role Kind
Description

 Defines user-defined or methodology and process-specific kinds of Responsible
Roles.

Generalization
Process Element Kind

85

Attributes

name: String

(from Process Element Kind)

It defines the name of the Responsible Role Kind.
Examples: "Analyst", "Project Manager", "Designer",
etc.

Associations
None.

Constraints
 None.

Software Activity
Description

The building block of any UML4SPM process model is the Software Activity
element. It describes any effort or piece of work to be performed during the software
development process. It has a name and a description property (inherited from Process
Element) that briefly outlines what has to be done by Responsible Roles of the activity,
a priority ranging from "low" to "high" to highlight its importance within the process
and a complexity property to show its degree of difficulty (i.e., easy, medium and
difficult). For instance, a Software Activity with priority set at "medium" and
complexity set at "high" would imply people that are more skilled and fewer rigors
regarding the schedule, tests and resource allocations.

A Software Activity may have a Kind, which can be user-defined or process
specific. Examples of Software Activity Kinds could be a "Process", an "Activity", a
"Phase", a "Discipline" (in RUP for instance), a "Sprint" (in the Scrum agile process),
"Iteration", etc.

The isInitial property is to tell whether the activity is the initial one within the
process or not. This is very crucial in the sense that, in runtime, the initial activity is
treated differently than the other activities. A special behavior is assigned to it and it is
considered as the current context of the process (i.e., the process containing all other
sub-processes or Software Activities). Thus, any UML4SPM process model should
have an outermost Software Activity with its isInitial property set at "true" and, which
encapsulates or invokes all subsequent activities. The idea is to have one metaclass to
represent a process, a sub-process, a phase, a Software Activity, etc. This aims at
facilitating the reusability of Software Activities for building processes that are more
complicated.

A Software Activity can be totally executed by a machine. Then, the
ActivityExecutionkind property is set to "machine execution". Otherwise, it is fixed at
"human execution" if a human expertise is required. The possibility to express
Software Activity milestones is given thanks to the TimeLimit metaclass. This helps in
defining the starting time and ending time of an activity, a very useful option for
process monitoring. Otherwise, it is possible to simply specify the Software Activity's
duration through the duration property. Finally, a Guidance may be needed to realise
the activity.

Software Activity Lifecycle
A Software Activity being indirectly a Classifier (cf. Section 3.2.) and to formally

determine the Software Activity lifecycle, we decided to explicitly provide it with a

86

predefined set of states (i.e., Initialized, Assigned, Running, Suspended, Terminated,
and Aborted). These states can be reached thanks to built-in methods we defined for
each Software Activity as it is shown in figure 5.4. This state diagram can be used in
defining an execution engine for UML4SPM and is inspired from works done in [Di
Nitto 02] and [Dami 98]. More details of Software Activity built-in methods are
introduced in Chapter 8.

First, when an instance of the Software Activity is created its state is fixed at
"Initialized" and waits for an agent's agreement to perform the task. Role Performers
suitable for handling the activity are selected according to the Responsible Role
qualifications in charge of the activity. A matching is performed between qualifications
required to undertake the role and agent skills. When the Software Activity instance is
assigned to agents susceptible to take in charge the activity, the "Assigned" state is
reached. If an agent accepts the responsibility of performing the work, the Software
Activity enters the "Running" state. While running, the Software Activity can be
"Suspended" for some reasons (e.g., schedule, agent availability, project manager
order, etc.), or "Aborted" if any problems or by order of the project manager. Finally,
when the Software Activity is completed with success, the "Terminated" state is
reached. The "Aborted" state can be reached from any state.

Figure 5.4. UML4SPM Software Activity Lifecycle
Generalization

Process Element

 UML Superstructure::Activities::Activity

87

A Software Activity being a Process Element, process modellers can define their
process or methodology-specific kinds of Software Activity. A Software Activity
extends the UML2.0 Superstructure Activity (cf. Section 3.2.1 bellow).

Attributes

name: String (from Classifier) Name of the Software Activity (or of the Process,
Phase, etc depending on its Kind)

description: String (from Process Element) Gives a brief description of the
Software Activity

executionKind: ActivityExecutionKind Defines whether the Software Activity
execution is fully automated or has to
be executed by a human

priority: priorityKind Specifies the activity's priority within the process
(i.e., low, medium or high)

complexity: complexityKind This information helps in assigned the appropriate
skills and resources to the activity depending on its
degree of complexity

isInitial: Boolean Specifies whether the activity is the initial one
within the process or not. If isInitial is set to "true",
the software activity is considered as the container
and context of all other sub-activities.

duration: String Duration of the activity in terms of days

Associations

responsibleRoles: ResponsibleRole[1..n] A Software Activity may have one or more
Responsible Roles in charge of performing
the activity

softwareActivityKind:
SoftwareActivityKind [0..1]

Defines the kind of the Software Activity. This
association redefines the ProcessElement::kind
association

requires: Guidance [0..n] For performing a Software Activity zero or more
Guidance may be required such as guidelines, tool
tutorials, check lists, etc.

startsAt: TimeLimit [0..1] A process modeller can affect a start time and an
end time in order to control the process schedule
and activities monitoring

endsAt: TimeLimit [0..1] Specifies the end time of a Software Activity

Constraints
In a UML4SPM process model, it is required that one and only one Software

Activity has its isInitial property set to "true". That latter is considered as the process
context. The OCL rule for this constraint is as follow:

88

context Model inv:
 self.allOwnedElement()->select(oclIsKindOf(SoftwareActivity))->select(sa | sa.isInitial)->size()=1

Activity Execution Kind
Description

Activity Execution Kind is an enumeration defining the possible kinds of executing
a Software Activity. The literal values of this enumeration are:

- machineExecution: for a Software Activity which is completely
executable by a tool, a software or a service.

- humanExecution: for any Software Activity which requires agents
involvement.

Generalization
None.

Attributes
 None.

Associations
 None.

Constraints
 None.

Priority Kind
Description

The Priority Kind enumeration defines the Software Activity's priority within a
process. There are some activities within a process, which are strategic and may require
more attention at performing time. The literal values of this enumeration are:

- Low

- Medium

- High

Generalization
None.

Attributes
None.

Associations

None.

Constraints
None.

Complexity Kind
Description

89

The Complexity Kind enumeration defines the Software Activity's priority within a
process. Activities with complexity set to "Difficult" would require people that are
more skilled or may need more time than those set to "Easy". The literal values of this
enumeration are:

- Easy

- Medium

- Difficult

Generalization
None.

Attributes
None.

Associations
None.

Constraints
 None.

Responsible Role
Description

Responsible Roles are also important constituents of UML4SPM process models.
The Responsible Role metaclass defines responsibilities and qualifications/skills
required for performing a Software Activity. At process execution time, Responsible
Roles are undertaken by Role Performers, which can be an Agent, a Team of a Tool. A
Responsible Role is also responsible of the WorkProducts realised within the process. It
is possible to define Kinds of Responsible Roles s. Examples of such role kinds would
be "Analyst", "UML Modeller", "Java Tester", "Designer", "Project Manager", etc. At
instantiation time, the Responsible Role instance can be assigned with one of these role
Kinds.

Generalization
Process Element

A Responsible Role being a Process Element, process modellers can define their
process or methodology-specific kinds of Responsible Roles.

Attributes

name: String (from Classifier) Name of the Responsible Role

description: String (from Process Element) A description about what it is
expected from the Responsible Role,
some guidelines, important
characteristics, etc.

responsibility: String A Responsible Role has some responsibilities regarding the
performing of a Software Activity or a WorkProduct. They
are given here

qualification: String Defines the qualifications required from a Responsible Role.

90

Examples of such qualifications would be: UML Design,
Java programming and testing, SQL, QVT, etc.

rights: String In some cases or in some information systems, roles may
have a limited access to process's activities or a restricted
manipulation of process's workproducts (i.e., only in reading,
not in modification, etc.)

Associations

activities: SoftwareActivity [0..n] The Software Activities the Responsible Role
is in charge. A Responsible Role may be
assigned to zero or more Software Activities

workproducts: WorkProducts [0..n] A Responsible Role may have the
responsibility of zero or more WorkProducts.
It is in charge of delivering them on time and
in respect with the project or application
requirements

responsibleRoleKind:
ResponsibleRoleKind [0..1]

Defines the kind of the Responsible Role.
This association redefines the
ProcessElement::kind association

rolePerformer: RolePerformer [1..n] A Responsible Role may be undertaken by
one or more RolePerformers. At execution
time, a matching is done between
qualifications required for a Responsible Role
and Role Performer's skills and knowledge.
Role Performers that satisfy those
qualifications are then proposed to the project
manager for selection and assignment

Constraints
 None.

WorkProduct
Description

WorkProduct represents any physical piece of information consumed, produced or
modified during the software development process. It has a name, a description and
may be under the responsibility of zero or more Responsible Roles. A WorkProduct
may be composed of other WorkProducts and the modification of one WorkProduct
may affect other WorkProducts. This is indicated thanks to the impacts reflexive
association. A WorkProduct has a unique identifier specified by the idWorkProduct
property. A WorkProduct can be a process deliverable or not, this is indicated thanks to
the isDeliverable property. The uriLocalization property serves at determining the
WorkProduct location during process execution. The created, version and
lastTimeModified properties were introduced in order to help developers in avoiding
confusion while manipulating different versions of the same WorkProduct during
development activities

91

A WorkProduct may have a Kind, which can be for instance, "Code", "Document",
"Model", etc. these Kinds are to be defined by process modellers according to a process
or methodology domains.

Finally, WorkProducts are used as inputs / outputs of Software Activities and of
atomic actions within Software Activities. However, this facility is not directly
supported by the MOF-compliant metamodel we propose, but will be introduced by
extending UML2.0 Superstructure Activity concepts. This facility is addressed in more
detail in Section 3.2.

Generalization
Process Element

UML Superstructure::Deployments::Artifacts::Artifact

A WorkProduct being a Process Element, process modellers can define their
process or methodology-specific kinds of WorkProducts. The WorkProduct metaclass
extends the UML2.0 Superstructure Artifact. This is addressed in more detail in Section
3.2.2 hereunder.

Attributes

name: String (from Classifier) WorkProduct name

description: String (from Process Element) Gives a description about the
WorkProduct to be used/produced by
the Software Activity or by one of its
atomic actions (steps)

idWorkProduct: String A unique identifier of the WorkProduct within the
software development process

isDeliverable: Boolean Not all WorkProducts used within the process are
deliverables. It is important to distinguish between
transient artifacts and deliverables, which represent
the result of the development process. A deliverable
requires more attention from process participants
than simple artifacts. A WorkProduct can start the
process as no deliverable and ends as a process
deliverable

created: String WorkProduct creation time

lastTimeModified: String Specifies the last time the WorkProduct was
modified.

version:String Gives the version of the WorkProduct. In case of tool
documentations for instance or a language guidelines,
checklists, Code classes, libraries, etc. it is important
to make sure that all process participants are using
the right version of the WorkProduct.

uriLocalisation: String Specifies WorkProduct localization at run time

Associations

performer: ResponsibleRole [0..n] Refers to Responsible Roles in charge of the

92

WorkProduct

workProductKind:
WorkProductKind [0..1]

Defines the kind of the WorkProduct. This
association redefines the
ProcessElement::kind association

impacts: WorkProduct [0..n] A modification of one WorkProduct may
affect other WorkProducts.

Constraints
None.

Role Performer
Description

A Role Performer is an abstract metaclass and represents the entity that may
undertake a Responsible Role in order to perform a Software Activity. Subclasses of
Role Performer are Team, Agent and Tool

Generalization
None.

Attributes

name:String Name of the Role Performer

Associations
 None.

Constraints
 None.

Tool
Description

A Tool is defined by its name, a description (e.g., a link to online tutorials), an
isBatch property if the tool is to be used in batch or in user-interface mode and a
version number. That latter can turn out to be very helpful especially during the design
and implementation phases of the software development process. Indeed, source codes
may be handled under different tool versions (e.g., Compiler version 1.4), which may
be confusing for developers. The version property should avoid these conflicting
situations.

Generalization
Role Performer.

Attributes

name (from Role Performer): String Name of the Tool

description: String A description on how to use the tool, the facilities it
provides, some guidelines or a web link to online tutorials,
etc.

isBatch: Boolean Indicates if the Tool is to be used in batch or through a
GUI

93

version: String Indicates the version of the Tool used in performing the
Software Activity or in handling the WorkProducts.

Associations
 None.

Constraints
 None.

Team
Description

A Team is Role Performer in charge of undertaken a Responsible Role in order to
perform one or more process's activities. A Team can be composed by Agents or by
other Teams.

Generalization
 Role Performer.

Attributes

Associations

performers: RolePerformer [1..n] A Team can be composed of one or more
Agents or Teams.

Constraints
A Team can only be composed by Agents or by other Teams. A Team cannot be

composed of Tools. Hereunder the OCL rule corresponding to this constraint.
context Team inv:
self.performers->forAll (roleperformer |roleperformer.isKindOf (Team) or roleperformer.isKindOf(Agent)

Agent
Description

Agent is the human that may undertake a Responsible Role in order to realize a
Software Activity. It may also have the responsibility of some WorkProducts. An Agent
can be part of a zero or more Teams.

Generalization
Role Performer.

Attributes

name: String (From RolePerformer) Agent's name

skills: String Represents the Agent's skills. These skills
have to be compared with qualifications
required from a Responsible Role. If they
match, the Agent will be proposed as a
potential Role Performer

isAvailable: Boolean Indicates the availability of the Agent.

name: String (From RolePerformer) Team's name

94

Required when assigning Agents to
Responsible Roles.

Associations
 None.

Constraints
 None.

Guidance
Description
 In order to perform process activities, some guidelines are required. They help in
understanding the work to be done, give some hints and tips for a better comprehension
of the Responsible Role in charge of realizing the activity. In the software process
development discipline, this is called Guidance. Many Kinds of Guidance can be
defined depending on the methodology or process followed for building software.

Generalization
WorkProduct.

Attributes
 See the WorkProduct metaclass for attributes.

Associations
None.

Constraints
None.

Time Limit
Description

Represents the time at which a Software Activity may start or has to finish.

Generalization
 None.

Attributes

milestone: String Indicates the Start or End time of a Software Activity

Associations
 None.

Constraints
 None.

The UML4SPM metaclasses we introduced in the Process Structure package
represent the set of constructs and semantics required for modeling primary elements of
software process models. However, this set is incomplete. Coordination of Software
Activities (i.e., control and data flows), the ability to express events, decisions,

95

constraints, iterations, exceptions, and actions with operational semantics is still
lacking. This is where the UML4SPM Foundation package comes into action.

3.2. UML4SPM Foundation Package

In this package, we regroup the set of UML2.0 Superstructure concepts we
identified as a basis of UML4SPM. As we stated earlier, the Process Structure package
introduces only the set of concepts proper to software process modeling. Concepts
proper to the sequencing of activities, synchronization, event and exception handling
and more important, the possibility to define actions with an executable semantics are
provided by the UML4SPM Foundation package. Indeed, instead of reinventing the
wheel, we privileged reusing the expressiveness of UML2.0 Activity and Action
packages, which show a high potential for modeling processes [Störrle 04] [Vitolins
05] [OMG 07b].

In addition, as we highlighted it in Section 2 (cf. Design Goals), since we aimed to
participate in the OMG's SPEM standard revision, we had the constraint to respect
RFP's mandatory requirements, which advocated reusing UML2.0 Activity diagrams as
a basis [OMG 04].

 The UML4SPM Foundation package contains not only metaclasses and packages
required for defining Activity diagrams (represented as shaded boxes in figure 5.5), but
also their direct and indirect super metaclasses. Figure 5.5 gives an overview of the
UML2.0 Superstructure packages needed to define Activity diagrams. However, in the
following we will introduce only UML2.0 Superstructure metaclasses we extended or
we reused within UML4SPM. More details on metaclasses not addressed here as well
as their semantics are given in [OMG 07b].

96

 Figure 5.5. UML4SPM Foundation Package

3.2.1. Activity
In UML2.0, an Activity is the specification of a parameterized behavior defined in

terms of a coordinated sequencing of Actions [OMG 07b]. The sequencing of these
actions is ensured using an Object and Control flow model. The former is used to
sequence data produced by one action that are used by other actions (e.g., data outputs

97

of action A are to be used as B's inputs). The latter is used to explicitly sequence the
execution of actions (e.g., action B starts when A finishes). Actions within activities
may be initiated because other behaviors in the model terminate, because objects and
data become available, or because events occur external to the flow. UML2.0 defines
various kinds of actions, which vary as follows:

 Occurrences of primitive functions;

 Invocations of behavior (e.g., CallBehaviorAction, CallOperationAction);

 Communication actions, such as the sending of Signals;

 Handling of objects, such as the reading or writing of attributes or
associations.

Activities also include Control Nodes, which structure control and object flow
between actions. In addition to Initial and Final Nodes, these include Decision Node to
express choices, Fork Node for expressing concurrency (parallelism), Join Node for
synchronization and Merge Node to accept one among several alternate flows.

Object Nodes in activities are to represent objects and data as they flow in and out
of invoked behaviors.

As we made the UML4SPM Software Activity element extending the UML2.0
Activity, we take advantage of all its properties, associations and capabilities (see figure
5.6). Thus, a Software Activity can be composed by other Software Activities
(capability inherited -indirectly- from Classifier) and may contain Actions (cf. Section
3.2.3), Object Nodes (i.e., Pins, Activity Parameter Nodes, etc.) and Control Nodes
(i.e., Fork, Join, Merge, Decision nodes, etc.). Actions will be then considered as the
atomic components (steps) of a Software Activity.

A UML2.0 Activity being indirectly a Classifier, the possibility to specify new
properties and new operations is then offered to Software Activities. Thus, the process
modeller can customize the definition of process Software Activities by adding new
properties depending on process domains (e.g. to add the weight property to express
that a Software Activity represents 10%, 20% or more of the entire process), define new
operations and helpers or specify composite activities. A Software Activity being now a
specialization of UML2.0 Activity metaclass, the specification of pre and post
conditions on the execution of a Software Activity is also rendered possible. (e.g., Post-
Condition: the activity's WorkProduct output state ="Validated").

Semantics of the UML2.0 Activity is given in more details in [OMG 07b] and will
be addressed further in this document for the purpose of UML4SPM process model
executions (cf. Chapter 8). In the following, we give generalisations, attributes,
associations, and constraints of the UML2.0 Activity metaclass, which are inherited by
the UML4SPM Software Activity metaclass. The subset of Activity diagram elements
(i.e., Control Nodes, Object Nodes, Flows, etc.) we reused in UML4SPM are depicted
at the end of this chapter in figure 5.9.

98

Figure 5.6. UML4SPM Software Activity extending UML2.0 Activity

Generalization
 Behavior (from BasicBehaviors)

More details on the Behavior metaclass can be found in [OMG 07b]

Attributes

isReadOnly : Boolean = false

(From Basic Activities)

If true, this activity must not make any
changes to variables outside the activity or
to objects. (This is an assertion, not an
executable property. It may be used by an
execution engine to optimize model
execution. If the assertion is violated by the
action, then the model is ill formed.) The
default is false (an activity may make non-
local changes).

isSingleExecution : Boolean = false
(from Complete Activities)

If true, all invocations of the activity are
handled by the same execution.

Associations

SoftwareActivity
executionKind : ActivityExecutionKind
priority : priorityKind
complexity : complexityKind
isInial : Boolean = false
duration : String

Behavior
(from BasicBehaviors)

Constraint
(from Kernel)

*
+precondition
*

{subsets ownedRule}
{subsets namespace, subsets context}

*
+postcondition

* {subsets ownedRule}

{subsets namespace, subsets context}

InputPin
(from BasicActions)

OutputPin
(from BasicActions)

Pin
(from BasicActions)

Action
effect : String

*

1

+inputPin
{filters input}*

+action

{filters owner}
1

*

1

+output{ordered, union
subsets ownedElement}

*

+action

{filters owner} 1

TypedElement
(from Kernel)

Classifier
(from Kernel)

1
+type

1

ValueSpecification
(from Kernel)

0..1

1

0..1

+specification
1

{subsets ownedElement}

MultiplicityElement

Activity
(from StructuredActivities)

0..*

0..1

+/action
{ordered filters node}

0..*

0..1

99

group: ActivityGroup [0..*]

(from Fundamental Activities)

Top-level groups in the Activity.. Activity Groups
are a generic grouping construct for Activity
nodes and edges.

node: ActivityNode [0..*]

(from Fundamental Activities)

Nodes coordinated by the activity. {Subsets
Namespace::ownedElement}. Subclasses of
Activity Node are Actions, Object Nodes(e.g.,
Pins, Activity Parameter Nodes, etc.) and Control
Nodes (e.g., Fork, Merge, Join, etc)

edge: ActivityEdge [0..*]

(from Basic Activities)

Edges expressing flow between nodes of the
activity. {Subsets Namespace::ownedElement}.
The expression of Guards on Edges is possible.
Guards are evaluated at runtime to determine if
the edge can be traversed.

partition: ActivityPartition [0..*]

(from Intermediate Activities)

Top-level partitions in the activity

structuredNode:
StructuredActivityNode [0..*]

(from Structured Activities)

Top-level structured nodes in the activity. A
structured activity node represents a structured
portion of the activity that is not shared with any
other structured node, except for nesting

variable: Variable [0..*]

(from Structured Activities)

Top-level variables in the activity

Constraints
[1] The nodes of the activity must include one ActivityParameterNode for each
parameter.

[2] An activity cannot be autonomous and have a classifier or behavioural feature
context at the same time.

[3] The groups of an activity have no super groups.

3.2.2. Artifact
The UML2.0 standard defines an Artifact as a Classifier that represents a physical

entity. It may have properties that represent its features, and operations that can be
performed on its instances. It can be involved in associations to other Artifacts (e.g.,
composition associations). Examples of Artifacts include model files, source files,
scripts, and binary executable files, a development deliverable, etc.

The UML4SPM WorkProduct element extends UML2.0 Artifact. An Artifact being
a Classifier, WorkProducts can be defined as parameters of Software Activities in terms
of Activity Parameter Nodes and as inputs/outputs of Actions in terms of InputPins and
OutputPins. They can also have additional properties and operations than those we
explicitly defined. It is possible to specify composite WorkProducts thanks to the
"nested artifact" association, the set of model elements that are utilized in the
construction of the WorkProduct through the "manifestation" association (see figure
5.7). Finally, a WorkProduct may be associated with a state machine that defines its
allowable states and operations to switch between these states. Contrarily to a Software

100

Activity, WorkProducts do not have predefined states and built-in methods. It is up to
the process modeller, depending on the process domain, to define them at design time
if needed.

Abstraction
(from Dependencies)

PackageableElement
(from Kernel)

Manifestation

1

*

+utilizedElement

1

{subsets
suppl...

*

Property
(from Kernel)

Operation
(from Kernel)

Artifact
fileName : String

*

+nestedArtifact

*

{subsets ownedmember}

*1

+manifestation

*

{subsets
ownedElem...

1

*

0..1

+ownedAttribute
*

{ordered, subsets
attribute, subsets
ownedMember}

0..1 {subsets
namespace,

subsets
featuringClassifier,
subsets classifier}

*

0..1

+ownedOperation *

{ordered,
subsets feature,

subsets ownedMember}

0..1

Classifier
(from Dependencies)

WorkProduct
idWorkProduct : String
isDeliverable : Boolean
created : String
lastTimeModified : String
uriLocalization : String
version : String

0..n+impacts 0..n

Figure 5.7. UML4SPM WorkProduct extending UML2.0 Artifact
Generalization

- Classifier (from Kernel, Dependencies, PowerTypes)

- DeployedArtifact (from Nodes)

- NamedElement (from Kernel, Dependencies)

More details on these metaclasses can be found in [OMG 07b]

Attributes

fileName: String

A concrete name that is used to refer to the Artifact in a physical
context. Example: file system name, universal resource locator,
etc.

Associations

nestedArtifact: Artifact [*] The Artifacts that are defined (nested) within the
Artifact. The association is a specialization of the

101

 ownedMember association from Namespace to
NamedElement.

ownedAttribute : Property [*] The attributes or association ends defined for the
Artifact. {Subsets Namespace::ownedMember}

ownedOperation : Operation [*] The operations defined for the Artifact. {Subsets
Namespace::ownedMember}

manifestation : Manifestation [*]

The set of model elements that are manifested in
the Artifact. That is, these model elements are
utilized in the construction (or generation) of the
artifact. {Subsets
NamedElement::clientDependency, Subsets
Element::ownedElement}

Constraints
 None.

3.2.3. Actions
The UML2.0 Superstructure standard defines an Action as the fundamental unit of

behavior specification [OMG 07b]. An Action takes a set of inputs (called Input Pins)
and converts them into a set of outputs (Output Pins), though either or both sets may be
empty.

To express most semantics of executable actions that can be found in programming
languages, UML2.0 offers four Actions packages (shaded boxes in figure 5.8.):

- Basic Actions: This package includes what it is called Invocation Actions. This
regroups actions that perform operation calls (i.e., CallOperationAction), signal
sends (i.e., SendSignalAction), and direct behavior invocations (i.e.,
CallBehaviorAction). The CallBehaviorAction may be used within an Activity
in order to call (synchronously/asynchronously) another Activity. The Opaque
Action is also defined in this package, which represents an action with
implementation-specific semantics.

- Intermediate Actions: This package introduces various primitive actions. This
includes actions for accessing object's structural features (i.e.,
ReadStructuralFeatureAction), for object and link creations/destructions (i.e.,
CreateObjectAction, CreateLinkAction, DestroyObjectAction, etc). Besides,
more invocation actions are defined for broadcasting signals to the available
“universe” and transmitting objects that are not signals (i.e.,
BroadcastSignalAction).

- Complete Actions: Defines additional actions dealing with the relation between
object and class and link objects. In addition, in this package, actions are
defined for accepting events (i.e., AcceptEventAction), including operation calls
(i.e., AcceptCallAction), and retrieving the property values of an object all at
once, etc.

- Structured Actions: These actions operate in the context of Activities and
Structured Nodes. Variable actions support the reading and writing of variables.
Variable actions can only access variables within the activity of which the
action is a part. An action is defined for raising exceptions (i.e.,

102

RaiseExceptionAction) and a kind of input pin is defined for accepting the
output of an action without using flows (i.e., ActionInputPin).

In the following we introduce the set of Actions we reuse in UML4SPM.

CompleteActions

IntermediateActions

AssociationClasses

<<merge>>

BehaviorStateMachines

CommunicationsStructuredActivities

StructuredActions

BasicActions

Kernel

<<import>>

<<import>>
<<import>>

<<import>>

<<import>>

<<import>> <<import>>

Figure 5.8. UML2.0 Actions Packages

UML2.0 Actions reused within UML4SPM
In the context of UML4SPM, we identified the set of UML2.0 Actions that can be

reused for software process modeling. This set regroups actions that provide our
language with powerful capabilities to express Proactive and Reactive controls. This
encompasses actions for calling activities and operations, sending events, raising
exceptions, etc. For more flexibility, we also opted for reusing the Opaque Action as a
means to specify implementation-specific actions within process descriptions.

Besides, we believe it is not useful to support fine-grained actions provided by the
standard. Examples of such actions include reading and writing of structural features,
link creations, object destructions, and so on. These actions are too low-level and deals
with object memory access, primitive functions, etc. [OMG 07b]. Using them within
UML4SPM would make process models too complex and unreadable. In addition, a

103

main software process characteristic is that they are too human-oriented. Thus, the only
actions that can be automated are those needed to ensure process's activities
coordination and sequencing, WorkProducts routing, roles affectations, etc (cf. Chapter
2, Section 4.1).

 In the following, we briefly introduce the actions we reuse in UML4SPM. More
details can be found in [OMG 07b]. Their notations are depicted in Appendix A of this
document. Their execution semantics and implementations are given in Chapter 8.

CallBehaviorAction
 Probably the action that we will use the most since it represents the mechanism by
which an activity calls (initiates) another activity (in more general, a behavior). Calls
may be synchronous or asynchronous. For synchronous calls the execution of the call
behavior action waits until the execution of the invoked behavior completes and a
result is returned on its output pin. The action completes immediately without a result,
if the call is asynchronous. The call may have arguments which are specified in the
action's input pins.

CallOperationAction
 CallOperationAction is an action that transmits an operation call request to the
target object. Since an activity is indirectly a Classifier, it can own Operations. These
Operations can be invoked synchronously or asynchronously thanks to the
CallOperationAction. This capability is very attractive since that a process modeller
can define within activities, operations with computational instructions. These
instructions can be defined using the UML behavior model or a specific
implementation language such Java. The call may have arguments, which are typed.

SendSignalAction
 It represents the way for defining reactive controls within UML4SPM. The
SendSignalAction creates a Signal instance and sends it to a specific activity execution.
This action can be used within process's activities as means to generate events that can
be caught by other activities participating in the process. This action is to be used with
the AcceptEventAction that represents the receptacle that will catch the generated
signal. A variant of SendSignalAction is SendObjectAction, which transmits an object -
whatever its type (and not only an instance of Signal) - to another object. The instance
of the object is already created when the action is executed (has to be created in case of
SendSignalAction).

AcceptEventAction
 This action complements the SendSignalAction. It waits for the occurrence of an
event meeting a specified condition in order to trigger. If the accept event action is
executed and the object (in our case, an instance of Activity) detected an event
occurrence matching one of the triggers on the action, then the AcceptEventAction
completes and outputs a value describing the occurrence. UML2.0 defines three types
of events. Time Event, Change Event and Message Event. The former specifies a point
in time. At the specified time, the event occurs. A Change Event models a change in
the system configuration that makes a condition true. Finally, a Message Event
specifies the receipt by an object of either a call or a signal.

BroadcastSignalAction

104

This action is very useful in case of sending a signal to all activity instances
(objects in general). However, the manner of identifying the set of objects that are
broadcast targets is a semantic variation point and may be limited to some subset of all
the objects that exist.

RaiseExceptionAction
In case of an unexpected situation during the activity execution, a

RaiseExceptionAction occurs indicating the exception type. All flows within the
activity are stopped and the appropriate handler is assigned.

OpaqueAction
OpaqueAction is introduced for implementation-specific actions or for use as a

temporary placeholder before some other action is chosen. In the context of
UML4SPM, we can imagine using this action for modeling manual actions or human
interactions.

Figure 5.9 regroups the subset of most significant UML2.0 Superstructure Activity
and Action concepts we reused in UML4SPM. Their semantics and their
implementation are addressed in Chapter 8.

In the next section we present the UML4SPM notation.

105

Behavior Parameter
+ownedParameter

{ordered,
subsets ownedMember}

*0..1 *0..1

Parameter

ActivityParameterNode

ObjectNode

TypedElement

InitialNode

Pin

+parameter
11

ControlFlow

ObjectFlow

ActivityEdge

ExecutableNode

Activity

*

0..1

+edge*

{subsets ownedElement}

+activity0..1
{subsets owner}

ActivityNode
1

*

+target1 +incoming

*
*1 +outgoing *+source1

0..1

*+activity
0..1

{subsets owner}

+node*

{subsets ownedElement}

Action ForkNode

JoinNode

ControlNode

FlowFinalNode

FinalNode

DecisionNode

ActivityFinalNode

MergeNode

CallAction

InvocationAction

CallBehaviorAction

Behavior

SendSignalAction

InputPin
CallOperation

Action

Operation

*

+behavior 1

*

1

0..1

+target
1{subsets input}

0..1

1

+target

1

{subsets input}

0..10..1 1

*

+operation
1

*

1

AcceptEventAction

OutputPin*

1

+/output

*

1

*
+result

*
0..*

+result

0..*
{subsets output}

MessageEvent

SignalEvent

ChangeEventTimeEvent

Trigger

1..*

0..1

+trigger

1..*

0..1

Event

1

+event

1

Signal

*

1

*

+signal
1

**

+signal

1

BroadcastSignalAction

+signal

*

1

*

1

RaiseExceptionAction

InputPin
*1

+/input

*1

*

+argument

*

{ordered,
subsets input}

1

0..1

+exception1

{subsets input}

0..1

OpaqueAction

Figure 5.9. Subset of the UML2.0 Activity and Action concepts we identified as a basis of
UML4SPM

4. UML4SPM Notations

The graphical representation of a UML4SPM Software Activity is given in
figure_5.10. As we can notice, it differs slightly from the one proposed by the UML2.0

106

standard. This is because it owns new properties and associations specific to software
process modeling that we newly defined.

Figure 5.10. UML4SPM Software Activity Notation
Precision was a major requirement for this notation. At a glance, the Agent or the

developer can know the name of the activity, its input and output parameters, its
priority in the process, its duration, activity post and pre conditions, its assigned agents,
tools required for performing the activity, accepted and triggered events.

We also allow the possibility to express the multiplicity of Software Activity
parameters and their states. A star sign (*) on the top-right corner of a Software Activity
parameter means that while calling the activity, the parameter may be omitted. This is a
very powerful feature since we can have the same activity that might be called by
different activities, many times, with different parameters.

A state machine-like initial blob may be placed on the top-left corner of the
Software Activity to distinguish between the initial activity and the others. To indicate
that the Software Activity is totally machine-executable an "M" letter is placed on top
of the activity name. Otherwise, an "H" letter is to indicate that human expertise is
required.

As we saw in the UML4SPM metamodel description (cf. Section 3), there is a
possibility to model user-defined and method-specific kinds of Software Activities.
This is done through the Software Activity Kind element. The Kind of the Software
Activity, if any, is given between double occurrences of the less than symbol "<<" and
greater than symbol ">>" as it is done for UML Profile Stereotypes. Examples of
Software Activity Kinds would be <<Phase>>, <<Process>>, <<Iteration>>, etc.

A Software Activity may be protected by an Exception Handler in case an exception
occurs. The exception parameter and the exception type may be explicitly indicated on

Exception Parameter

A a

Inputs
Outputs

Exception Handler
Exception Type

 << Software Activity Kind>> -M/H-
Software Activity Name

{Optional: Priority, Complexity, Duration}

Role Performer (s): x Tool (s): xx

{Accepted Events} {Triggered Events}

Pre-Condition:

Post-Condition:

 *
[State]

IsInitial=true

107

the activity representation. Of course, the presentation of all these pieces of information
is optional and the modeller has to choose the most relevant ones for process
description.

The complete presentation of the notation of Software Activity constituents, which
represent a subset of UML2.0 Activity elements, is given in Appendix A. Some
notations are modified or enriched with symbols in order to take into account some
element's important features (properties) for process modeling purposes (e.g. to
indicate that the CallBehaviorAction is synchronous or not). Additionally, for UML2.0
Activity and Action concepts, which do not have a notation, we propose one. Semantics
of these concepts are given in more details in [OMG 07b]. Some of them are addressed
in the next chapter through the UML4SPM evaluation and in Chapter 7 and 8 for
UML4SPM process model executions.

5. Conclusion

We started this chapter by giving our main design goals for UML4SPM which are:
the raise in Abstraction; the use of a Standard and Well-Known formalism; and finally,
Executability. The aim of this chapter was to present the UML4SPM metamodel and to
give an insight of some of the language features that might help us in reaching these
goals.

As a basis of our software process modeling language, we opted for reusing some
UML2.0 Activity and Action concepts instead of starting from scratch. After the
identification of these concepts for their appropriateness for process modeling, they are
extended or reused by the metamodel we defined, which was validated in [Bendraou
05a]. While UML2.0 Activity elements provide mechanisms and concepts for control
flows, triggering of events, exception handling, constraints, etc, our metamodel defines
the set of concepts with semantics proper to software process modeling. UML2.0 is a
standard and well-known modeling language providing high-level abstractions, which
would help us in satisfying the "Abstraction" and "Standard-based" design goals. The
potential of UML4SPM in terms of expressiveness and understandability are
demonstrated in the next chapter through a process example and the language is
evaluated according to the criteria we defined in the previous chapter.

Regarding Executability, we presented in this chapter the capability to express
actions with executable semantics within UML4SPM process models. This is made
possible by reusing some of the action elements proposed by UML2.0. At this effect,
we identified the set of actions suitable for process modeling and how they can be
reused to coordinate process activity executions. To reach the Executability
requirement, we will explore different solutions to execute these actions. These
solutions are presented in Chapter 7 and Chapter 8.

Finally, we presented the UML4SPM notation, which is mainly based on UML2.0
Activity notations. Some modifications were introduced in order to take into account
some features proper to software process modeling but also to increase
understandability. For UML2.0 Activity elements and Actions for which no notation is
proposed by the standard, we proposed one.

108

Chapter 6

UML4SPM Language Evaluation

1. Introduction

In the previous chapter we introduced the UML4SPM metamodel and the notation
of its elements. The aim of this chapter is to evaluate the expressiveness of the
UML4SPM Process Modeling Language. The evaluation is done according to the
SPML requirements we defined in Chapter 4 of this document. The different
capabilities of the language are presented except Executability which is addressed in
the next chapters (i.e., Chapter 7 and 8). This evaluation is presented in the Section 2.

In Section 3, we use UML4SPM for modeling a part of the well-known ISPW-6
software process example, a benchmark for comparing and evaluating software process
modeling approaches. A discussion on the outcomes of this evaluation is given at the
end of the section.

Finally, some observations on the result we have through the evaluation of
UML4SPM conclude this chapter.

2. Evaluation of UML4SPM according to SPML
Requirements

After having introduced the UML4SPM metamodel in the previous chapter, in the
following, we go through the requirements we defined in Chapter 4, in order to
evaluate our proposition. We start by the semantic richness requirement.

2.1. Semantic Richness

As we saw in Chapter 4, this requirement covers many aspects. Herein, we detail
each of them in the context of UML4SPM.

Process Elements
The notion of Activity is given through the Software Activity metaclass. In

UML4SPM, a Software Activity represents any effort or piece of work to be performed
during the software development process. It has a kind specified by the Software
Activity Kind element. Thus, it is rendered possible to define any user-defined or
methodology-specific kind of activities. A Software Activity can be a "Process", a
"Phase", an "Iteration", a "Sprint", etc.

The notion of Role is offered by the Responsible Role metaclass. As for software
activities, it is possible to define process and domain-specific roles thanks to the
Responsible Role Kind. A Responsible Role may be in charge of one or more software
activities but also of WorkProducts. UML4SPM WorkProduct element is the
equivalent of Artifact and may have specific kinds such as "Document", "Model",
"Code", etc.

109

A Responsible Role can be undertaken by one or more Role Performers. The Role
Performer is the abstraction of the elements suitable for performing a role. It regroups
the Team, Agent (which represents the notion of Human) and Tool metaclasses. A
Team may be composed by Agents or by other Teams.

The set of concepts used in UML4SPM are not limited to basic process elements
[Dowson 91], [Humphrey 92], [Conradi 95], but also includes, the notion of Guidance,
Time Limit, Constraints, Actions, etc (cf. Chapter 5 Section 3).

Coordination and Sequencing of Activities and Actions
In UML4SPM, there are two levels of sequencing. Actions sequencing and

Software Activities sequencing.

Sequencing and Coordination of Action
Regarding Actions sequencing, a Control Flow between an action "A" and an action

"B" is to indicate that "B" starts when "A" is finished. This is the means to express the
basic finish-start precedence between Actions. Actions being atomic units of work, the
finish-start precedence is the only precedence relationship that we can have between
actions.

Control Flows that are more complicated can be expressed by combining the use of
Control Flow and specializations of Control Nodes (figure. 6.2.). A Control Flow
combined with a Fork node allows the specification of parallel action executions. A
Join node is used to synchronize multiple flows that is, the action after the Join node
will not start until all actions corresponding to incoming flows of the Join node
terminate. One advanced property of the Join node is the "JoinSpec" property, a
specification giving conditions under which the Join will succeed. An example using a
Join Node is given in figure 6.3. Unlike the Join node, in the Merge node, the
completion of one among multiple alternate actions would be sufficient to start the
action after the node.

FlowFinalNode

ForkNode

JoinNode

ControlNode

FinalNode

DecisionNode

ActivityFinalNode

MergeNodeIni tialNode

FlowFinalNode

ForkNode

JoinNode

ControlNode

FinalNode

DecisionNode

ActivityFinalNode

MergeNodeIni tialNode

Figure 6.2. Control Nodes

110

Figure 6.3. An example using a Join Node

In the absence of an explicit Control Flow, an Object Flow can be used instead. An
Object Flow between an action "A" and an action "B" is to indicate that the data or the
object produced by "A" is to be consumed by "B". As Control Flows, Object Flows can
be combined with Control Nodes for specifying flows that are more complex.

Sequencing and Coordination of Activities
For Software Activity coordination within UML4SPM, we take advantage of Events

and Invocation Actions of UML2.0. In the past, experiences with first-generation PMLs
using events have demonstrated their effectiveness [Cohen 88], [Sutton 95b] and [Dami
98].

UML2.0 proposes three kinds of events: Message Event, Time Event and Change
Event. Message Event specifies the receipt by an object (in our case, an instance of
Software Activity) of either an Operation Call or a Signal. When a Signal is sent for
instance by an activity "A" to activity "B", its reception is handled by an
AcceptEventAction, which may trigger a behavior specified within "B".

The Change Event models a change in the system configuration that makes a
condition true. It allows Software Activities to react instantaneously to WorkProduct
state changes or to the completion or starting of other Software Activities.

Message Event and Change Event represent a very powerful mechanism to activate
the execution of an activity without using a Control or an Object Flow, contrarily to
most PMLs where the activation of an activity had to be specified explicitly through
control flows. They are also the means to coordinate and to synchronize between
executions of different Software Activities. Combined with Control Nodes, Message
Event and Change Even allow the modeling of all kinds of precedence relationships
between activities (i.e., start-start, start-finish, finish-start, and finish-finish).

The last kind of event is the Time Event. It specifies a point in time. At the specified
time, the event occurs. This is very useful for instance to model a monitoring progress
activity within a software development process. When an activity deadline event
occurs, the project manager, depending on the activity progression, will decide either to
extend its deadline or to pass by to another one.

Another means to initiate a Software Activity is by using the CallBehaviorAction, a

specialization of UML2.0 Invocation Actions. It allows the activation of a Software
Activity execution from another one. Thus, in absence of Events, this mechanism can
be used for activity sequencing. One important advantage is that the called Software
Activity can start without requiring that the caller one terminates. The call may be

Modify
Test Unit

Modify Code

Apply Test

{JoinSpec= Code.state==Compiled}

Action Join Node Control Flow

111

synchronous or asynchronous which determines if the caller activity has to wait for the
execution result of the called activity or can continue executing. Combined with
Control Nodes, the CallBehaviorAction can be used to synchronize between executions
of different activities. For example, the parallelization of Software Activity invocations
can be expressed by combining the CallBehaviorAction with a Fork Node.

Another significant advantage is that parameters can be added to the Software
Activity call. Parameters may be typed or untyped and have a multiplicity which adds
more flexibility. Thus, through this mechanism, WorkProducts (being Classifiers) can
be exchanged or transferred across Software Activities as it is done in common
programming languages where parameters are passed to operations through operation
calls. Software Activity parameters are represented via the Activity Parameter Node
concept. Examples of the use of that latter and the CallBehaviorAction will be
illustrated in Section 4.

Workflow Patterns
Additionally to control flows and precedence relationships presented previously,

there is what we call Workflow Patterns. Workflow Patterns represent some recurrent
business situations and problems that one may have to describe within process models.
The Workflow Patterns initiative is a joint effort of Eindhoven University of
Technology (led by Professor Wil van der Aalst) and Queensland University of
Technology (led by Associate Professor Arthur ter Hofstede) which started in 1999
[WfP].

The aim of this initiative was to provide a conceptual basis for process technology.
In particular, the research provides a thorough examination of the various perspectives
(control flow, data, resource, and exception handling) that need to be supported by a
workflow language or a business process modelling language.

The results can be used for examining the suitability of a particular process
language or workflow system for a particular project, assessing relative strengths and
weaknesses of various approaches to process specification, implementing certain
business requirements in a particular process-aware information system. They can also
be used as a basis for language and tool development.

This initiative distinguishes between four kinds of Workflow Pattern perspectives.
The Control-Flow perspective, which captures aspects related to control-flow
dependencies between various tasks (e.g. parallelism, choice, synchronization etc).
Originally twenty patterns were proposed for this perspective, but in the latest iteration
this has grown to over forty patterns. The Control Flow perspective is of particular
interest for our purpose. The Data perspective deals with the passing of information ,
scoping of variables, etc, while the resource perspective deals with resource to task
allocation, delegation, etc. Finally the patterns for the Exception Handling perspective
deal with the various causes of exceptions and the various actions that need to be taken
as a result of exceptions occurring.

Workflow Patterns are described through: conditions that should hold for the
pattern to be applicable; examples of business situations; problems, typically semantic
problems, of realization in current languages; and implementation solutions [Van Der
Aalst 03a].

The Workflow Patterns initiative evaluated many propositions and standards for
process modeling covering both workflow and business process domains. Examples of
such standards are (BPMN, XPDL, BPEL, UML, etc.).

112

The evaluation of UML2.0 dealt with the capacity of UML2.0 Activity diagrams to
support the set of patterns defined by the group. UML2.0 Activity diagrams proved
their expressiveness and ability to represent most of the significant Control Flow
patterns. More than thirty patterns of the forty control flow patterns inventoried by the
group were satisfied. The list of these control flow patterns is presented in table 6.1. If
a standard directly supports the pattern through one of its constructs, it is rated +. If the
pattern is not directly supported, it is rated +/-. Any solution which results in spaghetti
diagrams or coding, is considered as giving no direct support and is rated -. Note that a
pattern is only supported directly if there is a feature provided by the language which
supports the construct without resorting to any of solutions mentioned in the
implementation part of the pattern.

 More details on this evaluation are given in [Wohed 04] [Russel 06]. Comparison
between UML2.0 and other standards for business process modeling such as BPEL,
XPDL, etc and the description of each pattern is given in [WfP].

Additionally to its high abstraction level and the fact that it is standard and wild-
spread, UML2.0 also provides some powerful mechanisms to deal with most
complicated control flows. These results reinforce our choices in using the UML2.0
Activity concepts as a basis of UML4SPM.

 UML2.0
Control-Flow Patterns
Sequence +
Parallel Split +
Synchronization +
Exclusive Choice +
Simple Merge +
Multi-Choice +
Structured Synchronizing Merge -
Multi-Merge +
Structured Discriminator +/-
Arbitrary Cycles +
Implicit Termination +
Multiple Instances without Synchronization +
Multiple Instances with a Priori Design-Time Knowledge +
Multiple Instances with a Priori Run-Time Knowledge +
Multiple Instances without a Priori Run-Time Knowledge -
Deferred Choice +
Interleaved Parallel Routing -
Milestone -
Cancel Activity +
Cancel Case +
Structured Loop +
Recursion -
Transient Trigger +
Persistent Trigger +
Cancel Region +
Cancel Multiple Instance Activity +
Complete Multiple Instance Activity -

113

Blocking Discriminator +/-
Canceling Discriminator +
Structured N-out-of-M Join +/-
Blocking N-out-of-M Join +/-
Canceling N-out-of-M Join +
Generalized AND-Join -
Static Partial Join for Multiple Instances -
Canceling Partial Join for Multiple Instances -
Dynamic Partial Join for Multiple Instances -
Acyclic Synchronizing Merge +/-
General Synchronizing Merge -
Critical Section -
Interleaved Routing -
Thread Merge +
Thread Split +
Explicit Termination +

Table 6.1. Control-Flow Patterns supported by UML2.0 Activity Diagrams

Exception Handling
Like Events, exception handling in UML4SPM provides Software Activities with a

reactive control flow. Thus, in case of exceptions, this mechanism will redirect the
control flow to a predefined behavior. That latter is also described in terms of a
Software Activity containing Actions or may be implementation-specific. Exception
handling is ensured thanks to the UML2.0 RaiseExceptionAction and
ExceptionHandler elements. In case of an unexpected situation during the Software
Activity execution, a RaiseExceptionAction occurs indicating the exception type. All
flows within the Software Activity are then stopped and the appropriate handler is
assigned. In the literature, exception handling is not well addressed by PML and only
few ones address it [Cass 00].

Advanced Constructs:

To add more flexibility, Decision Nodes are provided. They offer to the process
modeler the ability to express conditional branches with Guards under which the
control flow will be directed if it is evaluated at true. To describe iterations, the
modeler can use the Loop Node element and for more structured decisions, she/he can
use Conditional Nodes. These two last elements are very similar to common loop and
conditional constructs in usual programming languages.

A weakness of most PMLs is the absence of elements that model the storage and
retrieval of WorkProducts used during the Software Activity performing. Among
exceptions, the HI-PLAN process modeling language. It proposes the concept of
Deliverables Store [Hyungwon 96], a physical storage of related artifacts that can be
used or produced by an activity.

In UML4SPM, we decided to reuse an UML2.0 construct with a similar semantic
and which fulfills this role. A DataStoreNode in UML2.0 models a kind of a buffer for
no transient information (i.e., persistent). It keeps all tokens that enter to it, copying
them when they are chosen to move downstream. Incoming tokens containing a
particular object replace any token in the DataStoreNode containing that object. In

114

UML4SPM, we take advantage of this element while replacing the notion of token with
WorkProduct. WorkProducts management versioning is ensured thanks to the
"version" property we defined for each WorkProduct.

2.2. Understandability

Understandability is a very crucial requirement. It is what can induce people to use
one PML instead of another. This is what has strongly influenced us at investigating
the reusability of UML2.0 for software process modeling [Bendraou 05].

UML4SPM reuses a set of UML2.0 elements and notations. This is considered as a
serious advantage given that UML has attractive features. It is standard, graphical,
intuitive, and easy to understand. A wide community of software developers is already
familiar with UML and variety of tools and training supports are proposed. UML being
so popular and widely used, UML4SPM has an important competitive advantage
compared to any specialized PML.

For documenting and specifying software processes, we decided to exploit UML2.0
diagrams while restricting those to be used as in SPEM1.1 [OMG 02].

In UML4SPM, the UML2.0 Activity diagram is used to model the sequencing of
Software Activities and WorkProducts exchange between Actions. The State Machines
diagram is used to model the allowable states and operations of Software Activities,
WorkProducts or Agents. For the specification of operation calls between Software
Activities, process modelers can use a Sequence diagram. Finally, Class diagrams are
used to show the relationships between different process model elements (i.e.,
inheritance, dependency, associations). An example of its use would be for instance to
represent the "nestedArtifacts" and the "impacts" associations between different
WorkProducts. So in one sight, we can see which WorkProduct is part of other
WorkProducts and those it may impact if it has to be modified.

2.3. Precision

The building block of UML4SPM process models is the Software Activity element.
A Software Activity may be composed of other Software Activities and has a Kind.
Example of Software Activity kinds are a "Process", a "Sprint", a "Task", a "Phase", an
"Iteration", an "Activity", etc. Thus, it is possible to represent any user-defined or
methodology-specific hierarchy of processes. For instance, in the RUP process
[Kruchten 03], it is possible to define different level of hierarchy. A Process may be
composed of Disciplines. A Discipline may be composed of Phases. A Phase may be
composed of Iterations. Iteration may be composed of Activities and so on. With
UML4SPM, it is possible to represent such hierarchy concepts by combining the
Software Activity and the Software Activity Kind elements.

Software Activities can be also described in terms of Actions with computational
semantics. This is due to the fact that the UML4SPM Software Activity element extends
the UML 2.0 Activity one.

For modeling process's activities, UML4SPM offers two levels of abstractions. The
Process view which aims at giving an abstract description of all process's Software
Activities. The Activity view which aims at modeling every Action to be performed
during the Software Activity with its constraints, events, inputs and outputs in terms of
WorkProducts with their actual state and their type.

115

In Section 4, we give a description of the ISPW-6 process example while using
both views. Also, we can notice that the fact of using UML2.0 Actions within
UML4SPM not only brings precision, but it also provides process models with the
degree of details required to execute them. This is how precision relates to
executability which presented in the next subsection.

2.4. Executability

The intent of UML2.0 Activity constructs has changed radically from UML1.x.
Activities are not only suitable to model processes; they also have some features
necessary to support the automation of these processes [Hausmann 05].

Besides, UML2.0 offers four Action packages (BasicActions, IntermediateActions,
Structured Actions and CompleteActions) in order to express the semantic of most
executable actions that we can find in common programming languages. Thus, the
specification of software process models with operational semantics is rendered
possible. This facility makes it possible to automate the mapping of UML4SPM
process models towards programming languages or workflow and business process
execution formalisms in order to execute them. In the previous chapter (c.f. Section
3.2.3.) we identified the set of Actions suitable for process executions. In chapter 7, we
will explore the possibility to map UML4SPM process models towards a well-know
formalism for business process execution called BPEL (Business Process Execution
Language) [WSBEPL 07].

Some efforts were also done as an attempt to formalize UML2.0 Activities [Vitolins
05] [Sarstedt 06] and UML virtual machines and simulators are already under study in
some research projects [UML 06] [STL 06] [MODELWARE].

Furthermore, the OMG issued a new RFP (Request For Proposal) named:
Executable UML Foundation [OMG 05c]. The objective of this RFP is the definition of
a computationally complete and compact subset of UML 2.0 to be known as
“Executable UML Foundation”, along with a full specification of the execution
semantics of this subset. “Computationally complete” means that the subset shall be
sufficiently expressive to allow definition of models that can be executed on a
computer either through interpretation or as equivalent computer programs generated
from the models through some kind of automated transformations. This initiative is
also explored for the purpose of UML4SPM process model executions. In Chapter 8,
an introduction to the approach as well as the implementation we propose are
presented.

All these initiatives we just enumerated and the potential that UML2.0 Activity and
Actions provide in terms of executability comfort us in our decision of reusing UML2.0
as a basis of UML4SPM.

2.5. Modularization

Considering that a UML4SPM Software Activity can define an internally consistent
Process (respectively, an internally consistent Phase, Iteration, Sprint, Activity, etc.
depending on the Software Activity Kind value), Software Activities are then considered
as modularization units. To combine, to coordinate or to compose a new Software
Activity from (between) other Software Activities we take advantage of the flexibility
offered by the CallBehaviorAction.

116

The CallBehaviorAction allows to Activities to be interconnected in a practical way.
The advantage of this construct is that behaviors are invoked as it is done for methods
in classical programming languages. Making this way, modelers don’t have to carry out
the unification of Software Activities inputs and outputs (i.e., make names of a
Software Activity's outputs identical with another Software Activity's inputs).

In Java for instance, parameters of a method call can be named differently in the
operation signature. CallBehaviorAction being a CallAction, casting of parameters is
done implicitly when activities are invoked thanks to the abstraction given by
InputPins and OutputPins concepts.

In figure 6.4., we give an example in order to demonstrate how CallBehaviorAction
can be used to allow Software Activity compositions. The example introduces two
Software Activities. Shaded boxes of the figure represent the “Class Diagram
Realization” activity. It is composed of a set of actions linked through control flows
(not represented in the figure for readability sake). The aim of these actions is to guide
the developer through the construction of a UML Class Diagram. One output of these
actions is the Class Diagram WorkProduct (CD in the figure).

This output is used as an input argument when calling the “Class Diagram-To-RDB
Transformation” Software Activity which is represented in lighted boxes in the figure.
The action used to connect between both activities is the CallBehaviorAction. The two
activities are interconnected thanks to ActivityParameterNode and no unification
procedure is needed.

Then, Software Activity compositions are realized just by adding a
CallBehaviorAction. A new Process definition can be established simply by defining an
orchestration of CallBehaviorActions aiming at invoking the different Software
Activities composing the process. They can even be specified at execution-time. This
offers more flexibility and spares many efforts to process modelers.

117

Figure 6.4. Software Activity interconnections thanks to the CallBehaviorAction.

3. Evaluation of UML4SPM with the ISPW-6 Software
Process Example

In order to evaluate the expressiveness of our language, we found it interesting to
use the ISPW-6 process example as basis of our evaluation. In the following, we start
by introducing the software process example as well as the motivations that led to this
proposition. Then, UML4SPM is used to model some of the process example tasks.

3.1. ISPW-6 Software Process Example

In order to compare and to understand the various software process modeling
approaches, a working group, in conjunction with the sixth International Software
Process Workshop (ISPW-6), has developed a benchmark consisting in a software
process modeling example problem [Kellner 91b]. The original ISPW-6 Software
Process Example was carefully designed to incorporate important process aspects and
issues. The aim behind is to aid in the evaluation and deduction of the relative strengths
and weaknesses of the process modeling approach under examination. Different
modeling approaches have been applied to this common process example [Kellner

ClassDiagramRealization :
Software Activity

Identify Objects : Action

Identify object classes: Action

.... : Action

CallModelTransformationActivity :
CallBehaviorAction

: OutputPin

CD : WorkProduct

ClassDiagramToRDBTransformation :
Software Activity

 : ActivityParameterNode

 : Parameter
CD_UML :
InputPin

output

type

parameter

type type

Load SRC & TRG
metamodels : Action

Load source
Model : Action

.. : Action

behavior

node

node

node

node

node node

node

node

node

argument

: InputPin

: ObjectFlow

argument

target

source

parameter

node

edge

118

91a]. As a result, they have extended and enhanced their approaches in response to
working through it.

However, it should be recognized that a determination of strengths and weaknesses
must be based upon some set of goals and objectives which a given approach is
intended to achieve. For example, direct executability is of paramount importance for
an approach whose major goal is to provide automated support for process enactment;
on the other hand, it may be relatively inconsequential for an approach focused upon
facilitating human understanding and communication regarding the process.

In order to facilitate understanding and comparisons, this problem has been
painstakingly designed to contain a large number of different types of process issues
seen in real-world software processes. This provides an opportunity to demonstrate the
capability to model over a dozen different categories of process issues.

The example problem consists of a core problem and several optional extensions.
Solution of the core problem is required, in order to provide a common ground for
beginning to understand different modeling approaches. The optional extensions
provide additional opportunities to demonstrate the capabilities of different approaches,
and are much more open-ended.

The Core Problem
The core problem focuses on the designing, coding, unit testing and management of

a rather localized change to a software system. This is prompted by a change in
requirements and can be thought of as occurring either late in the development phase or
during the support phase of the life cycle.

The problem begins with the project manager scheduling the changes and assigning
the work to appropriate staff. The example ends when the new version of the code has
successfully passed the new unit tests.

The component activities (steps) of this process example are:

1. Schedule and Assign Tasks;

2. Modify Design;

3. Review Design;

4. Modify Code;

5. Modify Test Plans;

6. Modify Unit Test Package;

7. Test unit;

8. Monitor Progress.

The details of what has to be performed within each activity, their sequencing, their
inputs, outputs, roles, and constraints are given in [Kellner 91b].

Optional Extensions
Optional extensions to the core problem aim to provide a variety of issues for

showcasing capabilities of a given modeling approach that may not be demonstrated by
the core problem. Each extension is built upon the core problem, and they can be
considered independently of each other. They are rather open-ended, leaving
considerable freedom to orient them as desired.

119

Examples of these extensions are to provide the means to express automatic tool
invocations, to differentiate between different product versions during code
modifications, improve communication between agents, express modeler's choices and
process change.

3.2. Modeling the ISPW-6 Software Process Example with UML4SPM

In this chapter we are not going to include all ISPW-6 process tasks we modeled
using UML4SPM. They are given in Appendix A of this document. Hereunder, we
illustrate the use of UML4SPM notation and we highlight some important features of
the language through the modeling of the Modify Design and Review Design tasks. In
the following, we present each task. The way these tasks relate to other process's tasks
can be found in [Kellner 91b].

4.2.1. Modify Design

Description

This step involves the modification of the design for the code unit affected by the
requirements change. It is a highly creative task. The modified design will be reviewed,
and ultimately implemented in code. This step may also modify the design based upon
feedback from the design review.

Inputs

1. Current design (from software design document file) (hand carried)

2. Design review feedback (from design review) (hand carried)

Outputs

1. Modified design (to review design, modify code, modify unit test package)
(hand carried)

Responsibility

This step is carried out by the assigned design engineer.

Constraints

1. This step can begin as soon as the task has been assigned by the project
manager.

2. Subsequent iterations can begin as soon as the design review is completed
(when the design is not approved).

3. This step ends when its output has been provided.

UML4SPM Notation

Figure 6.5 represents the Modify Design task modeled thanks to UML4SPM.

120

Figure 6.5. The Modify Design Task

Looking at the figure, we can notice many aspects. First, the use of a Merge Node
in order to accept one flow among the two flows incoming to the node. The "Modify
Design" action will not start unless one of these flows is activated. The first flow is an
Object Flow and comes from the "Design Document" ActivityParameterNode. This
flow is activated when the activity is called for the first time. The second flow, also an
Object Flow, comes from the "Design Review Feed Back" ActivityParameterNode and
may be activated when calling the activity from the Review Design task. Another use
of control nodes is illustrated with the Join Node which is used for synchronizing the
reception of the "Design Document" (with state Reviewed) and the "Design Review
FB" document.

The second aspect relates to the use of the CallBehaviorAction in order to activate
the execution of another activity. To express parallel activity calls, a Fork Node is
combined with three CallBehaviorActions (Review Design, Modify Code and Modify
Unit Test Package activity calls). A half arrow on the CallBehaviorAction is to indicate
that the call is asynchronous. We also add the possibility to express the parameter of
the call as well as its kind (i.e., in, out, inout).

Other important aspects are the WorkProduct persistency and management. At this
aim we use the DataStoreNode element represented in the figure by a cylinder. An
arrow and a double rectangle from the DataStoreNode mean that a copy of the
WorkProduct is offered to the action. An incoming arrow to the DataStoreNode means
that WorkProduct version entering the node will replace the existing one.
WorkProducts are represented with their actual states to avoid any confusion however
it is not mandatory.

Finally, we can notice that the Kind of the Software Activity is set to <<Task>>
according to the context of the ISPW-6 process example, that it has to be carried out by
a human (the "H" symbol at the top-right corner) and its complexity is fixed at "high".

121

This would imply that the activity need to be affected with very skilled people and may
need more attention during the process execution.

4.2.2. Review Design

Description

This step involves the formal review of the modified design. It is conducted by a team
including the design engineer who produced the design modifications. There are three
alternative outcomes of the review:

1. Unconditional approval -- The design is totally approved; the approved
modified design is incorporated into the software design document.

2. Minor changes recommended -- Minor changes to the design are required and
feedback is provided to the designer. The re-review is expected to be
perfunctory.

3. Major changes recommended -- Major changes to the design are required and
feedback is provided to the designer.

At the conclusion of the review, the project manager is notified of the outcome. Due to
the fact that formal design reviews are a relatively new step in this organization's
process, they are recording certain measurements to help evaluate its impact. In
particular, the number of defects identified, and the aggregate effort of the review team
in preparing for and conducting the review are reported to the project manager.

Inputs

1. Modified design (from modify design) (hand carried)

Outputs

1. Design review feedback (to modify design) (hand carried)
2. Approved modified design (to software design document file) (hand carried)
3. Outcome notification, number of defects identified, aggregate effort (to monitor

progress) (e-mail)

Responsibility

This step is carried out by the design review team assigned by the project manager.
This team includes the design engineer, QA engineer, and two other software
engineers.

Constraints

1. This step will be carried out when it is scheduled to occur, provided that the
modified design is available at that time. (Note that in cases of delay, the
monitor progress step will reschedule the review to a later date.)

2. This step ends when its outputs have been provided; assume that all outputs are
produced simultaneously.

122

UML4SPM Notation

Figure 6.6 represents the Review Design task modeled using UML4SPM

Figure 6.6. Review Design Task

The Review Design is activated from the Modify Design task. This is done thanks to
an asynchronous CallBehaviorAction that transmit the modified Design Document to
the Review Design task. Once the ActivityParameterNode triggered by the reception of
the document, the "Review Design" action can start. The absence of the multiplicity
tag (i.e. "*") means that the parameter is mandatory for executing the activity.

A Fork and Join Nodes are used to parallelize the execution of different actions.
The first flow concentrates on the editing of the Review Report Outcome that will be
sent to the Monitor Progress task (not represented here). The second flow is
conditioned by the result of the review action. For evaluating the result of the review
action, a Decision Node is used. If the design is approved then, the "Design Document"
state is set to "Approved". Otherwise, a document containing the review design feed
backs is created and sent to Modify Design using an asynchronous CallBehaviorAction.

Finally, a Join Node is used to synchronize between the different flows before
ending the task.

Process View

As discussed in the previous section (c.f. 3.3. Precision), UML4SPM offers an
Activity View (e.g. figure 6.5. and figure 6.6.) and a Process View (figure 6.7). That
latter gives an abstract description of the whole process in terms of activities while
masking action details. Sequencing of activities, their parameters in terms of
WorkProducts with their actual states are represented. However, what has to be done
within the activity are not represented.

123

In figure 6.7., a description of a part of the ISPW-6 example is given, but not all
activities are represented, just those presented in this section and those that relate to
them are depicted. The Develop Change and Test Units activity represents the high
level abstraction of the process described in the core problem. It contains all
subsequent activities, actions to activate them and initial and final nodes.

124

Figure 6.7. UML4SPM Process View

Develop Change and Test Unit
Complexity: High

Pre-Condition: Verbal authorization form CCB, Requirements Change

Post-Condition: Changes applied

Modify Design
 Complexity: High

Pre-Condition: if not first iteration, wait for
review design to complete

Post-Condition: Modified Design document
as Output
 R. Role: Design Engineer

Req. Change *
[Created]

Design *
Review FB

Design
Document
[Modified]

Review Design
Complexity: High

Pre-Condition: Design Documents
Modified available, Verbal authorization
form CCB

Post-Condition: All Outputs provided

Design Review Team: Design engineer, QA

Design
Document
[Modified]

Req.
Change

[Created]
Design Review FB

[Created]

Monitor Progress
Complexity: Medium

Pre-Condition: authorization from CCB

Post-Condition: outputs provided
 R. Role: Design Engineer

Req. Change *
[Created]

Req. Change
[Created]

Edit Req.
Change

 Schedule & Assign Tasks
 Complexity: High

Pre-Condition: authorization from CCB

Post-Condition: outputs provided
 R. Role: Design Engineer

Req. Change *
[Created]

Req. Change *
[Created]

Sch. & Ass
Tasks

Completion

-H-
-H-

-H-

-H-

<<Process>>

125

3.3. Discussion

In the previous section we saw some activity representations modeled using
UML4SPM. Our first goal behind the UML4SPM notation is to make sure that the
process modeler or process agent can easily understand what he/she has to do during
the development process. This implies a fine-grained description of process's activities.
Additionally, if the ultimate goal of the process description is to be executed, the
process model has to be precise enough to be mapped to some programming languages
or to be directly executed.

While comparing some PMLs that attempted to describe the ISPW-6 example
[Kellner 91a], we found that for most of them, process descriptions were restricted to
the description of activity resources (i.e., inputs, outputs, agents) and to the way they
are coordinated. However, what has to be actually performed within the activity, is not
modeled anywhere. Unlike these PMLs, where a software activity is modeled as a
black box with just its name and resources attached on it, UML4SPM offers two levels
of abstractions. The Activity View which allows giving all details about the execution of
the activity (parameters, loops, guards, workproducts states, events, etc.) and the
Process View for a more abstract representation of the process.

The description of the benchmark process by UML4SPM was not just limited to the
eight activities of the core problem (not all presented here) but it also succeeded to
express most optional extensions.

Regarding the Core problem, we succeeded in modeling all the activities using
concepts we introduced in Chapter 5 and in Section 3 of this chapter. Regarding
optional extensions, which mainly deal with process execution, they were not
introduced here. In this chapter we only saw that UML4SPM provides the set of
actions and concepts that will allow the specification of executable process models by
using for instance, CallBehaviorActions, actions related to the raising of exceptions,
sending of events, etc. The ways they will be effectively executed are presented in the
following chapters

Finally, we also see that thanks to the DataStoreNode concept and the possibility to
specify WorkProduct states while transferring them along activity nodes, ISPW-6
optional issues related storage and management of WorkProduct can be handled.
Optional extensions that deal with dynamic process changes and evolutions are not
ensured by UML4SPM.

4. Conclusion

In this chapter, we evaluated UML4SPM through the set of SPML requirements we
introduced in Chapter 4. We saw that UML4SPM succeeded in fulfilling the majority
of them. Semantic richness is provided thanks to a rich set of process elements we
defined in the metamodel, to powerful mechanisms for activity and action coordination
and sequencing borrowed from UML2.0, etc. Modularization is addressed by using the
CallBehaviorAction as means to compose, to call or to coordinate between activity
executions. The Precision requirement is reached thanks to the set of concepts such as
Software Activity, Action and Software Activity Kind elements which allow the
modeling of any process hierarchy. Regarding Understandability, undeniably,
UML4SPM has a serious advantage since it reuses UML2.0 notation and diagrams.
UML2.0 is wide-spread and many people are already familiar with its use. Finally, we

126

demonstrated the potential and the possibility of UML4SPM for defining executable
process models. This is ensured thanks to the set of UML2.0 actions with executable
semantics we identified. Execution possibilities and issues are introduced in the
following chapters.

Another evaluation of UML4SPM consisted in representing the well-known ISPW-
6 software process example using our language. The process example comes in form of
core problem and optional extensions. With UML4SPM, we succeeded in modeling all
process's activity aspects and issues related to the core problem. Additionally, we
addressed main parts of optional extensions that relate to WorkProduct storage and
management. Those that relate to process executions are treated in the following
chapters (i.e. 7 and 8) while presenting the different approaches we explored for
UML4SPM process model executions. Finally, optional extensions related to process
changes and evolutions are not ensured by UML4SPM. The evaluation of UML4SPM
was validated in [Bendraou 06].

In the following chapters, we address the last part of our proposition which deals
with the execution of UML4SPM software process models.

127

128

Chapter 7

Execution of UML4SPM Software Process Models:
the UML4SPM-2-WSBPEL Approach

1. Introduction

The previous parts of this document focused on giving the state of the art of process
technology domains as well as of some significant UML-Based SPMLs. We then
introduced our proposal, namely, UML4SPM, a UML2.0-Based language for modeling
software processes. UML4SPM promotes understandability, expressiveness, precision
and modularization through its reuse of some powerful UML2.0 Activity and Action
concepts. We presented the metamodel of the language, its notation and we evaluated it
against main SPML requirements. The next step of our proposal is to deal with the
execution of UML4SPM process models. This last part of the document is dedicated to
this topic.

For not starting from scratch, we decided to explore the existing propositions in the
Business Process Management community. The idea behind is to leverage the maturity
level of this domain but most of all, to take advantage of process engines and tooling
supports already provided in the BPM field.

To do so, in the following, we will start by giving the main motivations that led us
to investigate the possibility of using a business process execution language called WS-
BPEL as a target language for executing UML4SPM process models. Our choice of
using WS-BPEL is motivated by the fact that recently, WS-BPEL became the de facto
standard for process executions. WS-BPEL is introduced in Section 3. In order to
transform UML4SPM process models into a WS-BPEL code, we identified a set of
mapping rules that we present in Section 4. Human interactions being the heart and
soul of software development processes, in Section 5 we address some issues and how
WS-BPEL deals with this point. The transformation of UML4SPM to WS-BPEL is
given in Section 6. To illustrate the approach, a software process example is used. We
also present main steps of the transformation and we discuss some issues related to the
transformation. Before concluding this chapter, a discussion and some feed backs about
the approach are given in Section 7.

The work exposed in this chapter was realized in collaboration with our industrial
partner Softeam, in the context of the MODELPLEX project [Modelplex].

2. Combining UML4SPM and WS-BPEL for Software
process model executions

The principal ingredients that participate in the success of UML - among others -
are its ability of abstracting the complexity of systems under specification and the fact
that the standard provides an intuitive and understandable set of notations and
diagrams. This made us exploring the possibility of using UML as a SPML

129

[Bendraou_05a] as many other approaches (UML1.3 and UML1.4 based) did it before
[Jäger 98] [OMG 02] [Di Nitto 02] [Chou 02]. However, whether UML provides a
high-level of abstraction and understandability in representing process models, it lacks
of some semantics, concepts and tools for their execution [Rumpe 02].

The recently adopted UML2.0 standard brings many new concepts and facilities
that make UML suitable for process modeling [Hausmann 05]. These concepts relate to
Activity Diagrams which provide expressiveness in modeling most complex patterns of
control and data flows [Russel 06]. Additionally, the standard provides a set of actions
with an executable semantics that allow the sequencing and synchronization between
activities, raising exceptions, sending of events, etc. These actions were introduced in
Chapter 5 and some examples of their usability were presented in Chapter 6.

Nevertheless, whether the executable semantics of Activity and Action concepts is
provided by the standard in natural language, UML2.0 does not propose a concrete
syntax or a proper implementation of these semantics. This has led to the emergence of
many propositions of Action Languages. Most popular of them are the Action
Specification Language promoted by the Kennedy Carter Group [Raistrick 04] and the
Executable UML initiative promoted by S.J. Mellor et al [Mellor 02].

On the other hand, in the Business Process Management (BPM) domain, recently, a
consolidation has led to a single language for business process executions: the Business
Process Execution Language for Web Services (WS-BPEL or BPEL for short)
[WSBPEL 07]. Rapidly, BPEL gained importance in the industry and became the de
facto standard for business process orchestrations. Many tool vendors already provide
training supports and process engines for this standard [ActiveBPEL] [ApacheAgila].
However, whether BPEL proved to be an efficient executable process language, it
remains too low-level to be used for process comprehension and communication
between actors of the process. The main design goal of BPEL was to provide a
machine-readable language (XML-based) for orchestrating and composing
automatically different business processes rather than a language for documenting
software development processes.

Instead of reinventing the wheel and in order to execute UML4SPM process
models, we decided to explore the possibility of combining both languages i.e.,
UML4SPM and BPEL. While UML4SPM comes with a high degree of abstraction,
expressiveness, concepts and notations suitable for modeling software processes, BPEL
provides constructs and precision required for their execution support. Thus,
UML4SPM is used as a high-level language for modeling software processes.
UML4SPM process descriptions will be then mapped to BPEL in order to be executed.

Our main motivations for combining both languages are:

 To keep a clear separation between the business concerns of software
process descriptions (i.e., Phases, Activities, Roles, etc.) and all the
technical and organizational features needed for their execution support
(Task sequencing, Artifacts assignment, alarms, events and exception
handling, etc);

 To leverage the maturity level of the BPM field and the bunch of existing

tools instead of starting from scratch. This approach will reinforce the
connection between process modeling tools and process execution tools.

In the next section, we briefly introduce WS-BPEL.

130

3. WS-BPEL2.0

WS-BPEL (Business Process Execution Language for Web Services) is an XML-
based standard for specifying the way a set of web services can be orchestrated in order
to implement business processes [WSBPEL 07]. It is standardized by the Organization
for the Advancement of Structured Information Standards (OASIS) [OASIS].

3.1. Origins

The origins of WS-BPEL result from a collaborative work done between IBM and
Microsoft. They both had defined their own orchestrating language, namely WSFL and
XLANG (respectively). They then decided to combine them into a new language,
BPEL4WS. In April 2003, BEA Systems, IBM, Microsoft, SAP and Siebel Systems
submitted BPEL4WS 1.1 [BPEL4WS 03] to OASIS for standardization via the Web
Services BPEL Technical Committee. Although BPEL4WS appeared as both a 1.0 and
1.1 version, the OASIS WS-BPEL technical committee voted on 14 September 2004 to
name their spec WS-BPEL 2.0. This change in name was done to align BPEL with
other Web Service standard naming conventions which start with WS- and accounts for
the significant enhancements between BPEL4WS 1.1 and WS-BPEL 2.0. For short,
people use to employ BPEL instead of WS-BPEL or BPEL4WS. We will refer to WS-
BEPL2.0 as BPEL in the following.

BPEL is built upon WSDL (Web Services Definition Language) [WSDL 01] for
describing outgoing/incoming messages between web services. It also uses XML
Schema as means to specify variable types [XML Schema 04a, XML Schema 04b].

3.2. WS-BPEL Process

A “program” in WS-BPEL is called a Process. A Process consists of a set of nested
Activities. Activities fall into two categories: Basic Activities and Structured Activities.

Basic Activities correspond to atomic actions. This includes invoke, for invoking an
operation on a web service; receive, for waiting a message from a partner; reply, for
replying to a partner; assign, in order to assign a value to a variable; exit, for
terminating the entire process instance; empty, doing nothing; and so on. In WS-
BPEL2.0, new activities were introduced such as if-then-else, repeatUntil, validate,
forEach (parallel and sequential), rethrow and extensionActivity.

Structured Activities impose behavioral and execution constraints on a set of
activities contained within them. These include: sequence, for defining an execution
order; flow, for parallel routing; switch, for conditional routing; pick, for capturing a
race between timing and message receipt events; while, for structured looping; and
scope, for grouping activities into blocks to which event, fault and compensation
handlers may be attached [Ouyang 06].

WS-BPEL processes are closely coupled with WSDL. A WS-BPEL process
provides a web service interfaces described in WSDL and at the same time deals with
services that also have to be described in WSDL. From this point of view, a WS-BPEL
process represents a compound web service.

A WS-BPEL process is a reusable definition that can be deployed in different ways
and in different scenarios, while maintaining a uniform application-level behavior

131

across all of them. The description of the deployment of a WS-BPEL process, as well
as of WSDL is out of scope of this document.

3.3. WS-BPEL Interaction Model

WS-BPEL defines a model and a grammar for describing the behavior of a business
process based on interactions between the process and its partners. The interaction with
each partner occurs through Web Service interfaces, and the structure of the
relationship at the interface level is encapsulated in what is called a partnerLink.

The WS-BPEL process defines how multiple service interactions with these
partners are coordinated to achieve a business goal, as well as the state and the logic
necessary for this coordination. A PartnerLink has a PartnerLinkType, which defines
which WSDL PortType is used in a relationship with some partner and which PortType
is used when a partner interacts with the process itself. These two relationships are
defined in the partnerRole and myRole attributes of the PartnerLinkType.

For two-way relationships, both roles are specified. An important aspect is that the
use of PortTypes means that WS-BPEL only refers to services in an abstract way and it
is up to an execution engine to determine which port - and therefore binding - should
be used for each PortType. Generally, the bindings can be specified statically at
deployment time or dynamically – either from within the process or using some
engine-specific mechanism [Dobson 06].

WS-BPEL also introduces systematic mechanisms for dealing with business
exceptions and processing faults. Moreover, WS-BPEL introduces a mechanism to
define how individual or composite activities within a unit of work are to be
compensated in cases where exceptions occur or a partner requests reversal.

3.4. Related XML Specifications

WS-BPEL utilizes several XML specifications: WSDL 1.1 [WSDL 01], XML
Schema 1.0 [XML Schema 04a, XML Schema 04b], XPath 1.0 [Xpath 99] and XSLT
1.0 [XSLT 99]. WSDL messages and XML Schema type definitions provide the data
model used by WS-BPEL processes. XPath and XSLT provide support for data
manipulation. All external resources and partners are represented as WSDL services.
WS-BPEL provides extensibility to accommodate future versions of these standards,
specifically the XPath and related standards used in XML computation.

Obviously, the aim of this section is not to present in detail all features of the
language. More information as well as examples can be found in [WSBPEL 07].

In the next section, we present mapping rules between UML4SPM concepts and
WS-BEPL constructs.

4. From UML4SPM to WS-BPEL

In this section, we address the mapping between UML4SPM and WS-BPEL. Since
UML4SPM is UML-based, we start by introducing some related works done in
literature concerning the mappings between UML and BPEL. Then, we will present the
mapping rules we identified between UML4SPM and WS-BPEL Finally, we discuss
some obstacles we faced while establishing these mapping rules.

132

4.1. UML to WS-BPEL Related Work

In the literature, we can find some works done concerning the mapping of UML
Activity diagrams to BPEL. In [Mantell 05], the author defines a UML Profile for
automated business processes and maps UML1.4 elements to BPEL1.1. In UML1.4,
Activity diagrams were completely different from UML2.0 ones. They were a special
case of state diagrams and no actions with executable semantics were provided. This
resulted to a very coarse-grained mapping with only few correspondence rules
proposed (see table 7.1.).

Profile Construct BPEL4WS Concept

<<process>> class BPEL process definition

Activity graph on a <<process>> class BPEL activity hierarchy

<<process>> class attributes BPEL variables

Hierarchical structure and control flow BPEL sequence and flow activities

<<receive>>, <<reply>>, <<invoke>> activities BPEL activities

Table 7.1. UML1.4 Profile to BPEL4WS by [Mantell 05]

With the adoption of UML2.0, Activity diagrams are enriched with executable

action semantics. These actions reduced the gap between both languages (i.e., UML2.0
and BPEL.) In [Korherr 06], authors define a UML2.0 Profile for BPEL1.1 and
propose a mapping between the two formalisms. However, this was only restricted to
actions and did not cover activity elements such as Fork node, Decision node, Control
Flow, etc. Similarly, in [Bodbar 04], author concentrated on UML2.0 actions.
Mappings for Control Nodes (fork, join, merge, etc.), Loops, and Exception constructs
were not defined. Moreover, authors map the UML2.0 Control Flow as a BPEL1.1
Sequence activity. However, a UML Control Flow can only link two activities (i.e.,
When activity A finishes, B starts). While the BPEL Sequence activity defines a block
where one or more activities are to be performed sequentially.

4.2. Mapping Rules

Table 7.2 lists major mapping rules we identified between UML4SPM and WS-
BPEL2.0. UML4SPM proposes new concepts that deal with the modeling of software
process concerns (.i.e., Roles, Guidance, Artifact, TimeLimit, etc.) and reuses UML2.0
Activity and Action package elements, which deal with actions sequencing and
synchronization, exceptions, events, invocation, etc.

In the following, we present the set of mapping rules we identified between
UML4SPM and WS-BPEL. For their establishment, we've been studying carefully the
WS-BPEL specification as well as the UML2.0 standard since we use it as a basis of
UML4SPM. Discussion on these mapping rules is given in Section 4.2.

133

UML4SPM WS-BPEL2.0
Software Activity BPEL Process
SoftwareActivityKind BPEL Variable

Software Activity's attributes and
associations

BPEL Variable with name = "attributeName"
(respectively "associationEndName") and type.
The type may be simple or complex and can be
defined in a XML Schema file

Software Activity hierarchy and
enclosing elements (actions,
inputpins and ouputpin, control
nodes, etc)

BPEL Sequence or Flow elements

Pre and Post Conditions of a SA
(derived through transitive
associations between Activity and
Constraint from the UML2.0
metamodel)

BPEL Transition Condition element

Value of the Pre/Post Condition The text element of the BPEL Transition
Condition

WorkProduct input or output of
Actions

BPEL Variable with attribute MessageType
equals to the WorkProduct Type defined in the
WSDL (respectively in the XML Schema). If
the Action has more than one WorkProduct
than one WSDL Message Part
(name=workProductName) with its type is to
be defined for each WorkProduct within the
MessageType. The attributes of the
WorkProduct have to be defined in the type of
the WorkProduct in an XML Schema file

WorkProductKind BPEL Variable
Responsible Role BPEL Variable
ResponsibleRoleKind BPEL Variable
TimeLimit of a SA (Associations
startsAt, endsAt between a Software
Activity and a TimeLimit)

BPEL Variable

Guidance BPEL Variable
Team BPEL Variable
Agent BPEL Variable
Tool BPEL Variable
AcceptEventAction BPEL Receive Activity
AcceptEventAction that waits for an
event among a list of possible events

BPEL Pick activity. Accepts a message among
a list of possible expected messages

AcceptCall Action et ReplyAction to
model synchronious calls

BPEL Receive activity with a Reply and input
and output specification

Variable (in the context of a
StructuredActivity) BPEL Variable

ReadVariableAction followed by a
WriteVariableAction (with an
explicit control flow between the
Read action and the Write action)

BPEL Assign with From (for reading) and To
(for writing) within the Copy element

134

CallBehaviorAction (Sync / Async) BPEL Invoke activity (with input and output
specification / Only input specification)

CallOperationAction (Sync / Async) BPEL Invoke activity (with input and output
specification / Only input specification)

RaiseExceptionAction. The
exception type is defined by the
action's InputPin

BPEL Throw activity. Throw has a
FaultVariable attribute that corresponds to the
exception type

An AcceptEventAction that wait for
a TimeEvent

BPEL Wait activity. Waits for a deadline (use
of Until element) or a duration (use of For
element)

AcceptEventAction onEvent in the EventHandlers section
OpaqueAction N/A
InitialNode BPEL Receive with a "CreateInstance=true"

FinalNode BPEL Exit activity may be used to abort the
process

ControlFlow BPEL Link element combined with Source and
Target elements

ObjectFlow BPEL Assign with From (the source) and To
(the target) within the Copy element

DecisionNode (with control flows
that follow the decision node). The
Condition is expressed via the
association decisionInput:Behavior.

BPEL IF activity witht Condition element to
express the condition

ExceptionHandler BPEL FaultHandlers with Catch
ForkNode to express parallelism. BPEL Flow Activity

JoinNode BPEL Link element combined with Source and
Target elements
While activity with element Condition
RepeatUnitl activity

LoopNode with Test expressed via
the association test:ExecutableNode

ForEach activity
StructuredActivity (defines an
activity with its actions, control
nodes, variables limited to the
activity scope, etc.)

BPEL Scope Activity with all its partnerlinks,
variables, faulthandlers, etc.

Table 7.2. UML4SPM to WS-BPEL2.0

4.3. Discussion

While establishing these mapping rules we have noticed many observations. The
most important one relates to the fact that all elements in UML4SPM that provide
semantics proper to software process modeling have no equivalent in WS-BPEL. All
elements such as Responsible Role, Guidance, Time Limit, etc are converted to BPEL
process variables. On the other hand, all elements dealing with the coordination of
activities, events, exception handling, etc. map easily to WS-BPEL concepts. This
observation comforted us in our choice of combining the two languages, UML4SPM as
a language providing high level abstractions for process modeling and communication,
and the WS-BPEL for process execution.

135

The second observation is that there is no one-to-one correspondence between
UML4SPM elements and WS-BPEL elements. As we can see in table 7.2, an
UML4SPM element (e.g., LoopNode) can be mapped into different WS-BPEL
elements (i.e., While, Repeat Until, or ForEach activities). This implies that during the
transformation phase, the process modeler has to choose one mapping rule among
those proposed (if multiple choices) and always apply the same one along the process
specification. On the other hand, there are some WS-BPEL concepts that have no
equivalent in UML4SPM such as Validate, Empty, or Extension Activities.

Another important issue relates to the impossibility of WS-BPEL to support some
Control Flow patterns, more commonly known as workflow patterns [Van der Aalst
03a]. Indeed, BPEL lacks support of multiple merges pattern (merge many execution
paths without synchronizing) and discriminators pattern (merge many execution paths
without synchronizing. Execute the subsequent activity only once). It also does not
allow the synchronization of multiple instances of the same activity and lacks support
of arbitrary cycles. These lacks then have to be taken into account while modeling
software processes with UML4SPM in order to avoid the use of patterns that are not
supported by WS-BPEL. To avoid for instance arbitrary cycles we propose to combine
the use of a SendSignalAction and an AcceptEventAction. These concepts can be an
alternative to cycles and map to WS-BPEL concepts (Invoke and Receive activities for
instance).

Finally, the last issue relates to human interactions within the process execution and
which we address separately in the next section.

5. Human Interactions

While some business processes can be fully automated, software processes are
composed of creative activities (e.g., modeling, checking, communicating, decisions,
etc.) that make them need a support for human interactions. Even in the field of BPM,
it has been recognized that the human dimension is essential for process realization.
We can notice in Table 7.2 that WS-BPEL does not provide any support for this kind
of activities.

The interaction scenarios can be very simple, like manual approval. However, more
complicated scenarios like entering data, assignment of tasks to other users and
managing long-running processes may appear. In UML4SPM, we have the possibility
to express that an activity is automated or has to be carried out by a human. Opaque
Actions are also used to model manual tasks and human interactions. One solution
would be to map this data as WS-BPEL process variable that the process engine can
take into account at enactment time. However, this would not be a long term and
reusable solution, especially if we have to deal with complicated interactions.

In the BPM domain, the current state of the art clearly distinguishes two approaches
that aim in solving the human interaction issue. In the following, we present them.

5.1. The Workflow Service

To face WS-BPEL's lack in supporting human interactions within processes, many
vendors have solved this problem by implementing manual tasks as a "normal"
asynchronous Service (from the perspective of the orchestrating process). The WS-
BPEL keeps its original functionality and does not need any extensions, but each task
needs its own interface specified in the WSDL. Whenever a task needs knowledge

136

about the process state it must be passed within the invoke call to this task. This means
a lot of manual work must be done for each task.

To solve this problem the notion of Workflow Service is introduced [Juric 07]. This
service can be called asynchronously from WS-BPEL to perform operations like
adding, updating, completing, renewing and routing tasks. User applications, on the
other hand, can communicate with the Workflow Service to acquire the list of tasks for
selected users, render appropriate user interfaces, and return results to the Workflow
Service, which forwards them to the BPEL process. A schematic overview is given by
[Juric 07] in Figure 7.1.

Figure 7.1. Workflow integration with WS-BPEL

Obviously, the advantage of this approach is that the WS-BPEL standard is not
modified. The Workflow Service can be implemented within an application server as
long as it provides a WSDL interface to the WS-BPEL process engine. The WS-BPEL
process doesn't have to know how user tasks are handled. This gives the opportunity to
use various kinds of communication channels with users. However, no standard exists
specifying the interface of such a Workflow Service. Each vendor implements its own,
resulting in non-portable WS-BPEL processes which may penalize this approach.

5.2. BPEL4People

In order to deal with the human interaction issue, we decided also to explore a very
interesting proposition introduced by industrials (i.e. IBM and SAP) known as
"BPEL4People" [Kloppmann 05].

In BPEL4People, a new BPEL activity called People activity is introduced. A People
activity is a basic activity, which is not realized by a piece of software but an action
performed by a human being. It can be associated with a group of people, a generic
role, etc. BPEL4People describes the following generic human roles interacting with
processes:

- Process Initiator, the person who actually creates an instance of the process
- Process Stakeholder, a person who can influence the progress of a process

instance
- Potential Owner, a person who can claim and complete a people activity
- Business Administrator, is defined for a process and can perform administrative

actions on the business process, such as resolving missed deadlines

Workflow
Service

<invoke>

<invoke>

WS-BPEL
Process

Assign Task

Task Complete

API

User
application

User
application

WSDL

Java

WSDL

137

These generic human roles are associated with a group of people by a so-called
people link. A people link commonly contains a query against an organizational
directory in order to determine the actual individuals with which it is associated. The
actor of a People activity is determined by a people link. A People activity can be
associated with different groups of people, one for each generic human role.

People activities have the same properties as standard BPEL activities, but their
implementation is different. People activities are implemented by tasks. So instead of
invoking some kind of web service, a BPEL engine (actually, an extended BPEL
engine implementing BPEL4People) must create a task for a certain user. These tasks
are indivisible units of work performed by a human being. They specify an action that a
user must perform. Some properties of a task are a description, a priority, expected
data, a deadline and a user interface [Kloppmann 05].

The extended BPEL engine creates for each People activity - depending on its
contents - a list of tasks, also called work items ("to-dos") and affect them to the
appropriate process participants. A generic user interface is associated with each task
of the activity in order to highlight inputs/outputs of the activity, deadlines, to add the
possibility to attach other materials (e.g., guidelines) and to ease communication
between agents.

Regarding the implementation of tasks, BPEL4People leaves the choice to the
modeler between five possible configurations (see figure 7.2). These five
configurations fall into two kinds: Inline Tasks and Standalone Tasks.

Inline tasks are defined as part of the People activity or of the BPEL process (they
have access to the process context, variables, etc.) while Standalone tasks are defined
outside the process.

Figure 7.2. BPEL4People Models for Implementing Human Interactions from
[Kloppmann_05]

An inline task can be defined in a people activity (model 1 in figure 7.2) or as a top-
level construct of the BPEL process (model 2). In this case, the same task can be used
within multiple People activities. Both models have the advantage of the possibility of
context sharing between task and process. This can be used, for example, to implement
the "Chained Execution" interaction pattern which consists in the ability of the WS-

138

BPEL engine to automatically start the next work item in a case once the previous one
has completed. The process knows who has performed the previous tasks and can then
assign the next task to the same person.

Standalone tasks may be accessed through 1) implementation-specific invocation
mechanisms (i.e., no WDSL), 2) a Web service interface defined with WSDL or 3) a
BPEL Invoke activity that calls a Web service implemented by the task (WSDL +
binding).

Model 3 shows an implementation specific definition of a task outside a process
without a specific interface. Thus leaving all the communication between process and
task implementation specific. In that way application vendors can expose their
functionality as tasks which can be called from process engines.

In Model 4 the task is also defined standalone, but with an interface specified using
WSDL. This is a more generic approach but an extra standard is needed to propagate
state changes between process and task. This "coordination protocol" can be used for
example, for performing life cycle operations on the task, such as terminating it.
However, BPEL4People authors didn't specify a protocol solving this problem.

Model 5 is the most generic case. In this case the task is called with a standard WS-
BPEL invoke activity. The BPEL standard remains unharmed, but each task needs its
own WSDL definition. The advantage of this model is that, unless the WSDL
definition stays the same, the implementation of the task can change. It is even possible
to replace a human task with a business rule without the need to change the calling
WS-BPEL.

For tool vendor who wants to implement BPEL4People, all these models have to be
supported by the process engine.

5.3. Discussion

Looking at the human interaction problem, we can obviously conclude that there is
a real need for standardizing this issue in WS-BPEL. Adopting the first approach i.e.,
Workflow Service means no standardization at all, since each vendor defines its own
Workflow Service depending on its specific needs.

BPEL4People on the other hand comes with a more long term solution and
provides a solid base. However, the big issue with BPEL4People is that it extends the
existing WS-BPEL standard with new activities and task definitions, extensions that
not all tool vendors are ready (agree) to adopt. Currently, existing WS-BPEL tools that
handle human interactions do it without using BPEL4People. Instead, they provide a
specific web service that manage human tasks and which may be invoked from a WS-
BPEL process. Of course, this remains proprietary solutions. When writing this
document, some tool vendors claimed their intention to incorporate the BPELPeople
proposition in their tool suites. We can cite the Intalio's BPMS Community Edition
[Intalio], IBM's WebSphere Process Server [Websphere] and Oracle's BPEL Process
Manager [Oracle].

Another obstacle in using BPEL4People is that it imposes the implementation of
the five interaction models.

A compromise between both approaches would be more appropriate. This would
consist in standardizing the port Type and basic features of the so-called Workflow
Service. Defining its standard interface should be done in WSDL. Once the Workflow

139

Service is standardized, WS-BPEL processes will be then portable between different
vendors. However, vendors can still implement the Workflow Service in their own way
and integrate it with application servers, and so on, as long as they apply to the
standard interface definition.

6. Transforming UML4SPM Process Models to WS-BPEL2.0

As we said in the introduction of this chapter, this work is done in collaboration
with our MODELPLEX industrial partner Softeam. Our intention was more to explore
the feasibility of the UML4SPM-2-WSBPEL2.0 approach than to provide a fully
implemented prototype. We started from a simple software process example described
in a natural language. This process example is then modeled using UML4SPM. Finally,
a transformation is carried out in order to get the WS-BPEL2.0 code. In the following,
we present each of these steps.

6.1. Software Process Example

In this section we introduce a simple yet representative example of a portion of a
software development process. This process example was provided by our industrial
partners within the IST European Project MODELPLEX, which this work is part of
[MODELPLEX 06]. The process example will be first described in natural language
and then represented using UML4SPM.

The process is composed of two phases: "Inception" and "Construction" phases. In this
document we only address the "Inception" phase. The "Inception" phase is composed
of two activities. The "Elaborate Analysis Model" activity and the "Validate Analysis
Model" activity.

The "Elaborate Analysis Model" activity takes as input "Requirement Documents"
(i.e. work specifications) and produces a UML "Analysis Model". The "Analysis
Model" is then taken as input by the "Validate Analysis Model" activity which is
composed of the following steps: 1) Check the UML Analysis Model; 2) Edit a
Validation Report. If the "Analysis Model" is valid then send an email to the
development team and go to the next phase. If the "Analysis Model" is invalid, then
send an email to the development team informing them that the validation of the UML
Analysis Model failed and terminate the activity. The role in charge of both activities
of this phase is ensured by the "Analyst".

Looking at the process description we can notice some aspects that characterize
software development processes. The first one is the hierarchy of the process. We have
a Phase, which may contain Activities, which in their turn may contain steps. The
second aspect is the presence of both human activities and automated activities, which
makes it difficult to automate the entire process. Finally, the transformation process of
artifacts from one activity into another and the necessity to know the artifact's state at
any time of the process.

6.2. The Software Process Example Modeled Using UML4SPM

The process description focuses on the "Inception" phase and activities it owns
(figure 7.3a, 7.3.b and 7.3.c).

140

Figure 7.3.a The "Inception" phase

Figure 7.3.b The "Elaborate Analyze Model" activity

Inception

Pre-Condition: Requirement Documents available

Post-Condition: UML Analysis Model Validated

Role (s): Analyst

 Validate Analysis Model
 (in: UML Analysis Model)

UML Analysis
Model

[Created]

Requirement
documents

 Elaborate Analysis Model
 (in: Requirement Document)

Validation
Report

[Created]

[Else] [Validation Ok]

SendMessage
(Start Construction Phase)

SendMessage
(Rework Analysis Model)

 Construction Phase

<<Phase>>

Elaborate Analysis Model

Pre-Condition: Work Specifications available

Post-Condition: UML Analysis Model Created

Role (s): Analyst Tool (s): UML Editor

Elaborate UML
Analysis Model

UML Analysis
Model

[Created]

Requirement
documents

<<Activity>>

141

Figure 7.3.c The "Validate Analysis Model" activity

As we can notice, the "Inception" phase activity represents the context of this
process. This is indicated by the start-blob in the top-left corner. It is used to coordinate
between different activities and workproducts of the process.

One important aspect is the use of CallBehaviorActions in order to initiate/call
process's activities (e.g., "Elaborate Analysis Model" call). In the call, we have to
precise 1) whether the call is synchronous (use of a compete arrow in the top-left
corner) or not (half arrow, e.g., "Construction Phase" call); 2) the parameters of the
call, which represent workproducts inputs/outputs of the activity. The parameter types
may be in, out or inout.

Another aspect is the use of Decision, Merge and Join nodes. The decision node
allows expressing a choice of actions to do depending on a condition (in this case
whether the analysis model is valid or not). The merge node here is used to regroup the
two branches coming out of the decision node. Whatever the branch, the first one that
will reach the merge node will end-up the activity execution. Finally, the join node is
used to synchronize between the control flow starting the activity and the availability
of the Requirement Document before calling the "Elaborate Analysis Model activity".

In the following, we describe the transformation of UML4SPM models into WS-
BPEL2.0 code.

6.3. Transformation

For experimentation purposes, the transformation of UML4SPM process models
into WS-BPEL2.0 code is currently carried out by a Java program. However, we plan
to formalize the transformation with a model transformation language such as ATL
[ATL 06]. The Java program takes as input the UML4SPM model and generates the
corresponding WS-BPEL2.0 code. Hereunder, we present in natural language main
steps of the transformation algorithm.

Validate Analysis Model

Pre-Condition: UML Analysis Model available

Post-Condition: UML Analysis Model Checked

Role (s): Analyst Tool (s): UML Checker

UML Analysis
Model

[Created]

Check UML Analysis Model

Validation
Report

[Created]
Edit Validation Report

<<Activity>>

142

In our transformation algorithm we concentrate on the target model by creating
WS-BPEL description parts one-by-one and extracting required information from the
UML4SPM model. As a typical WS-BPEL description, the target model contains the
following parts:

 WSDL imports – for declaring involved web services. By default this part
contains “Workflow Administration” service declaration which corresponds
to the notion of "Workflow Service" introduced in Section 5.1.

 Variables – data used in the process
 Flow and Sequence– containing activities, service invocations, receive, reply.
 Links – for transition declarations
 Event Handlers – processing incoming events

These parts are filled according to the mapping we defined in table 7.2. In the
following, we give the main lines of our algorithm.

- The transformation algorithm starts by the creation of an empty WS-BPEL
process definition from a template. The template contains an import for the
WSDL description and the partner link definition for the “Workflow
Administration”;

- Generation of the "import" and "variable" section. All UML4SPM elements in

table 7.2 that map to a WS-BPEL variable are processed here. Variables are
created for each software activity, for all its attributes, responsible roles,
guidance, used tools, etc. and for storing input and output WorkProducts if any;

- Then, the "flow" or "sequence" section is created (depending of the process
model if it starts by a parallel flow or a sequence flow) followed by the "links"
declaration. All UML4SPM control flows are generated as WS-BPEL "links" and
the Source and Target elements are documented;

- The WS-BPEL "flow" or "sequence" activity initiating the process starts with a
"receive" activity, which is used for communicating input Work Products to the
BPEL process. This activity should also contain "createInstance" attribute equals
to "true" to indicate that the process is instantiable;

- “Human” actions (defined as opaque action within UML4SPM process models)
are transformed into a pair of linked "invoke" / "receive" activities implementing
an asynchronous call of "Workflow Administration" web service which is the
service dealing with human interactions.

- The remaining UML4SPM elements are transformed according to what was
defined in Table 7.2;

- Finally, the "import" section is filled manually in order to document the "partner
link" and the WSDL location of web services the process uses, in particular here,
the "Workflow Administration" web service.

143

After applying the algorithm, the transformation results in a WS-BPEL process
containing the following WS-BPEL activities:

- "Receive" for instantiating the process and getting Requirement Documents
as input;

- "Invoke"/"Receive" for Analysis Model Elaboration – "Invoke" for calling
Workflow Administration service providing Analyst with Requirement
Documents. "Receive" for getting back an Analysis Model;

- "Invoke"/"Receive" for Analysis Model Validation – "Invoke" for calling
Workflow Administration service providing Analyst with the Analysis
Model. "Receive" for getting back a Validation Report;

- "if" activity for assessment of the validation result.
- "Invoke" for informing Project Manager and Analyst about results of the

software activity.

The generated WS-BPEL process is to be deployed with a conventional BPEL
engine, ActiveBPEL in our case [ActiveBPEL]. Then, the process is run according to
the WS-BPEL process definition. All human tasks are to be redirected to the
"Workflow Administration" web service which provides a console for guiding the
agent in performing the task. Listing 1 given in Appendix B of this document gives a
sample of the generated process example defined using UML4SPM (presented in
section 6.2).

7. Discussing the Approach

Whether WS-BPEL provides a rich set of concepts for executing processes, it lacks
of the abstraction and expressiveness needed in modeling human-readable and
understandable process definitions. Its deficiency in supporting some workflow
patterns, the lack of graphical notation and its no support for human interactions and
arbitrary cycles makes it inappropriate for the modeling, communicating and
understanding of software processes. On the other hand, UML4SPM provides a high
level of abstraction, expressiveness, notation and a set of elements and concepts with
executable semantics; however it lacks of enactment support. In this chapter we
demonstrated how the two languages are combined in order to complement each other
and to fully support both process modeling and execution.

However, even if this approach presents the advantage of leveraging existing BPEL
process engines and takes advantage of the execution support, it still suffers from some
issues.

The first one deals with the fact that during the transformation process all the
aspects and semantics proper to software process activities (roles, guidance, deadlines,
etc) are lost or scattered as BPEL variables. The only concepts that have equivalents in
BPEL are those that deal with the sequencing of activities, events headlining, etc and
which already have executable semantics (i.e.,UML2.0 Activities and Actions). This
has as direct effect, the loss of data needed for process measurement and improvement.

Another issue is that the process modeler has to choose the right concepts, which
can be mapped to WS-BPEL while modeling the process. Otherwise, there will be no
support for them. As we saw in the mapping rules we defined, some UML4SPM
concepts may have many corresponding WS-BPEL elements. Thus process modelers
have to choose one of them and to make sure that it will always use the same

144

corresponding WS-BPEL element for a given UML4SPM concepts. Some UML4SPM
elements don't have equivalent in WS-BEPL. This also has to be taken into account
while modeling software process models using UML4SPM.

Finally, the last issue relates to the fact that the generated WS-BPEL is not usable
straightforward after the transformation. A configuration step is needed in order to set
Partner Link properties (service locations used by the process). This step can be
automated during the transformation and process modeler would be asked for instance
to enter these information However, if the process modeler adds new elements or
variables for execution aims after the transformation, this would raise the issue of
traceability between UML4SPM process definition and the generated WS-BPEL code,
and how coherence between the two definitions can be preserved.

8. Conclusion

In this chapter we explored the feasibility of using WS-BPEL as a target execution
language for UML4SPM process models. At this aim, we introduced the language and
its main features. We also gave detailed mapping rules between UML4SPM concepts
and WS-BPEL constructs. While identifying these mapping rules we raised some
issues. Main ones related to the fact that UML4SPM elements with a semantic proper
to software process modeling (i.e., WorkProduct, Role, Guidance, etc) have no
equivalent in WS-BPEL. They are only represented as process variables. Also, we
raised the fact that there is no one-to-one correspondence between elements of the two
languages and BPEL's lack in supporting some control flow patterns. This imposes a
certain rigor while modeling the software process using UML4SPM (i.e., some
concepts are not represented in BPEL, avoiding arbitrary cycles, in case of multiple
mappings always use the same, etc.). The mapping rules we proposed are not only
UML4PSM-to-WS-BPEL specific since all rules that deal with UML2.0 concepts can
be reused by any UML2.0-Based language or profile for business process modeling.

Another important point we addressed in this chapter was human interactions. We
presented the different propositions that can be applied with WS-BPEL in order to take
into account the human dimension. We also discussed the advantages and lacks of each
approach.

For illustrating the approach, we gave a software process example that we modeled
using UML4SPM. We then presented the main steps transforming the UML4SPM
process model into WS-BPEL code.

Finally, we discussed the different issues of the approach. We can sum them up in
the following points. The first point is the unquestionable advantage of to be able to
reuse the myriad of WS-BPEL process engines and training supports provided by the
Business Process Management community. The field is very mature and very active,
which opens very large perspectives. We don't have to deal with all issues related to
resource management, distribution, exceptions, etc. All these aspects are already
implemented within process engines.

Another advantage of this approach is to hide the complexity of process executions
by using UML4SPM as SPML for communicating, exchanging and understanding of
the process. Thus, a clear separation between the business aspects of software
processes and their execution is allowed.

On the other hand, the approach presents some lacks. The first one deals with the
lack of WS-BPEL in supporting human interactions. Even if we presented some

145

initiatives, no one succeeded to get standardized or fully adopted by tool vendors.
Another lack deals with the fact that sometimes process modelers may have to modify
the WS-BPEL code for execution purposes which may raise the problem of how these
changes will be traced-up to the UML4SPM process models. In case of exhaustive
modifications this may lead to incoherent versions between the UML4SPM process
model and the WS-BPEL code. This approach also imposes that process modelers have
to learn BPEL and to be familiar with its constructs in order to maintain or to modify
the generated code.

This approach was validated in [Bendraou 07c] and is currently under evaluation
within the MODELPLEX [MODELPLEX 06]. Future perspectives of this work are the
formalization of the transformation by means of well-established model transformation
languages such as ATL [ATL 06] or QVT [OMG 05b]. This will reduce human
intervention and ambiguities due to multiple mappings that one UML4SPM element
may have into BPEL. In addition, the support of OCL2.0 as a language for the
specification of Pre and Post condition is underway. When writing this chapter, the
implementation of the GUI was not yet provided by our partner Softeam which was in
charge of realizing the "Workflow Administration" service.

146

Chapter 8

Execution of UML4SPM Software Process Models:
the UML4SPM Executable Model Approach

1. Introduction

In the previous chapter we presented an approach for UML4SPM process model
executions. It consisted in transforming UML4SPM process models into WS-BPEL in
order to execute them. As we highlighted it, this approach presents the advantage of
leveraging the existing business process engines. Aside from that, it suffers from
several lacks. Most important ones in our view are:

- BPEL's lack in representing UML4SPM concepts having semantics proper to
software process modeling (i.e., Responsible Role, Guidance, Time Limit,
WorkProduct, etc.);

- Process modelers have to deal with two languages, UML4SPM and BPEL.

Additionally, for any changes in the process model, a new BPEL code generation
has to be carried out and a configuration phase is required before deploying the
process;

- Any modification in the BPEL code can't be traced-up to the UML4SPM process

model which may lead to incoherencies between UML4SPM process models and
the generated BPEL code.

All these obstacles can be surmountable if the process of transforming UML4SPM

process models into BPEL has to be carried out only once. However, since software
processes evolve rapidly, process models have to be updated frequently which requires
a new BPEL code generation each time the model is modified. Moreover, sometimes
the process currently under execution has to be modified at runtime in order to take
into account some new requirements or to react to urgent situations. Definitely, the
UML4SPM-2-BPEL approach can't be a long term solution since it can't answer this
kind of flexibility.

In this chapter we present a new approach for executing UML4SPM process
models. It aims at overcoming the UML4SPM-2-BPEL approach lacks by introducing
an Execution Model for the UML4SPM Metamodel. The goal of the Execution Model
is that once process modelers have defined their UML4SPM process models, they just
can run them without any intermediate step.

In the following, we start by presenting the UML4SPM execution model approach.
Then, in Section 3, we present each of its classes and we go deeply in details through
the implementations we propose. The UML4SPM Execution Model is then used as
basis of the Process Execution Engine we propose in section 4. We also introduce the
UML4SPM Process Model Editor and we give an example of UML4SPM process
model execution. Section 5 summarizes all the important aspects of the approach and
discusses them. Section 6 concludes this chapter and draws some perspectives.

147

2. UML4SPM Execution Model Approach

The UML4SPM Execution Model tends to bring life to elements of the UML4SPM
metamodel. By life, we mean a precise specification of the runtime behavior of each
element of the metamodel. Therefore, a UML4SPM process model once edited can be
straightforward executed upon a simple click without any additions or intermediate
steps. The only condition is that process models are well formed. By well formed, we
mean that the model should respect the structure and constraints defined in the
metamodel. It also supposes that the process model is complete in the sense that it
specifies a coherent sequence of actions, control nodes, object nodes, etc that allows its
execution. For instance, a software activity, without an initial node and without activity
parameter nodes can never be started. A process model containing several software
activities with no one with its "isInitial" attribute set to "true" also will never be
launched since we need one and only one initial software activity within the process.

The idea of the Execution Model is inspired from the RFP (Request For Proposal)

issued by the OMG called: Executable UML Foundation and which LIP6 is part of the
standardization working group [OMG 05c]. The objective of this initiative is the
definition of a computationally complete and compact subset of UML 2.0 to be known
as “Executable UML Foundation”, along with a full specification of the execution
semantics of this subset. “Computationally complete” means that the subset shall be
sufficiently expressive to allow definition of models that can be executed on a
computer either through interpretation or as equivalent computer programs generated
from the models through some kind of automated transformations. The execution
semantics of this subset is based on the semantics of UML2.0 elements, which is given
in natural language in the standard.

Since that the building blocks of UML4SPM are UML2.0 Activity and Action
packages, we found it interesting to take advantage of the execution model proposed by
the Executable UML specification, while focusing on UML2.0 elements we reused in
our SPML. In UML4SPM, activity elements and actions are used for sequencing the
process's flow of work and data, for expressing actions, events, decision, concurrency,
exceptions and so on. Thus, the implementation of the execution behavior for these
concepts will be used as the core engine of UML4SPM. While writing this document,
there was only one Executable UML submission document which is rather a draft than
a complete specification. Thus, we reused some parts of the executable model
proposed, we modified others and we add what we believed essential and which was
lacking by the model. We will detail these concepts while presenting realization steps
in the following sections.

The Executable UML specification introduces the execution model in form of class

diagrams; each class represents the executable class of a UML element. By executable
class it is meant, a class having a set of operations aiming at describing the execution
behavior of the UML element as it is specified in the UML2.0 standard in natural
language. However, the specification does not offer an implementation of these
operations. The one who wants to use the executable model still needs to implement
each of the operations defined within the class diagrams with respect to the semantics
defined in the UML2.0 standard. In the context of UML4SPM we did implement these
operations in order to realize our process engine. The implementation of the UML

148

executable model was restricted to Activity and Action elements we reused within
UML4SPM and respects the UML2.0 semantics.

In the following we introduce the UML4SPM Executable Model before going
through the realization steps of the UML4SPM process engine.

3. The UML4SPM Executable Model

The Executable UML Foundation specification defines the minimal subset of UML
metamodel elements that allows the specification of complete and executable models.
By complete we mean all the required metaclasses, properties and associations
representing the necessary data for a UML model to be executed. This subset is called
UML Foundational subset (fUML). The contents of the foundational subset are
determined partly by two opposing criteria:

- Compactness: The subset should be small. This facilitates definition of a clear

semantics, and implementation of execution engines;

- Ease of translation: The subset should enable straightforward translation from

common surface subsets of UML to fUML and from fUML to common
computational platform languages.

For the definition of fUML, simplifications are carried out upon the UML2.0

metamodel. These simplifications span, properties, associations, methods, but also
some metaclasses. For instance the CallEvent, ChangeEvent and TimeEvent
metaclasses are not taken into account considering that a SignalEvent can be used for
all situations. The same thing is applied to DecisionNode, claiming that a
ConditionalNode can be used instead. In the context of UML4SPM, we cannot manage
with these kinds of simplifications since we use these concepts for process model
definitions. We will see for instance that in the case of DecisionNode, we define an
execution class for this element, a set of operations and their implementations
describing the DecisionNode behavior according to the UML2.0 semantics. More
details on simplifications operated on the UML2.0 metamodel in order to obtain the
fUML can be found in [OMG 06e].

The next subsection presents the rationale of the executable model before

introducing its different classes and operations.

3.1. Executable Model: Rationale

The Executable Model we defined for UML4SPM specifies the precise execution
behavior of UML4SPM metamodel elements. It takes as a basis the one defined in the
Executable UML Foundation specification and adds some features (properties,
operations and classes) and semantics proper to software process modeling.

The execution model is inspired from the GoF Visitor pattern [Gamma 94]. The

idea is to decouple the elements defined in the UML4SPM metamodel from their
runtime behavior. Thus, for each element in the UML4SPM metamodel for which a
behavior is to be defined, there is a runtime “Execution” visitor class in the execution
model that represents a single execution of that element. Therefore, we will have for

149

the Software Activity element, an ActivityExecution class, for the ActivityNode an
ActivityNodeExecution class, for the ForkNode a ForkNodeExecution class, and so on.
Each class having a set of operations that once implemented, reproduce the execution
behavior of the element. The Visitor pattern typically requires implementation of a
“visit” operation on the visitor class and an “accept” operation on the visited class. In
the execution model, execution classes have an association that points to the
UML4SPM element to which they add behavior. This is in line with the purpose of the
Visitor pattern which “represents an operation to be performed on the element(s) of an
object structure” and allows the addition of behavior to the elements in UML4SPM
without actually modifying them.

Figure 8.1 draws the big picture of the execution model principle by giving the

example of Software Activity, Activity Edge and Activity Node elements and their
corresponding executable classes in the execution model. The operations defined in the
executable classes slightly differ from those specified in the Executable UML
specification. We added new operations in order to take into account some software
process modeling aspects or because that during the realization phase, we realized that
they were lacking. We ignored others that we found useless in the context of
UML4SPM, or we redefined them for execution purposes.

While presenting the different execution classes, we will highlight the important

features of this approach and of the implementation we provide. We will also give
details on operations and features we added.

150

Figure 8.1. The Execution Model approach

In the following we start the presentation of the executable model by the Process
Model Execution class.

3.2. Process Model Execution Class

The Process Model Execution class represents the context of the process and a kind
of container of all process's Activity Executions, WorkProducts and Responsible Roles

UML4SPM
Metamodel

UML4SPM
Executable Model

151

(see figure 8.2). It is a sort of "main" of the process execution and it is not represented
in the UML4SPM metamodel. This execution class has these main objectives:

 Loading of the UML4SPM software process model to be executed. The location of

the process model to execute can be given in an interactive way or stored in a
configuration file. The loading of the process model consists in representing the
process model in terms of objects in memory;

 Once the process model loaded, get the list of the process's Software Activities.

Check whether there is one and only one Software Activity with its isInitial
property set at true, otherwise the process can't execute (can't know which one is
the initial among all the activities). If the process model contains only one
Software Activity and even if its isInitial property is not specified, it will launch its
execution;

 Creating for each Software Activity in the process model, an Activity Execution

instance;

 Calling the Initialize () operation on all Activity Execution instances in order to
instantiate Activity Execution Contents (ActivityEdgeInstances and
ActivityNodeExecutions) and to prepare the activity to be executed;

 Once Activity Executions initialized, look for Role Performers susceptible to take in

charge the performing of these activities. Role Performers are selected by matching
their skills with Responsible Roles required qualifications;

 Once Role Performers assigned to Activity Executions, start the initial Activity

Execution by calling its Execute () operation.

 Figure 8.2. The Process Execution and Activity Execution Classes

152

Coupling of UML4SPM Process Models and their Execution Class Instances

The Process Execution class keeps a trace of all its contents (Activity Executions,
WorkProducts, Responsible Roles, etc.) and of all the mappings between the
UML4SPM process model elements and all their corresponding execution classes. In
addition, all instances of the UML4SPM execution model have a reference to their
corresponding elements in the UML4SPM process model loaded in memory. Thus, at
runtime, when it is necessary, instances of execution classes extract data from process
model elements. The data is not duplicated within the execution classes. This strong
(coupling) relationship between the process model and its execution model makes that
execution instances are always up-to-date with their corresponding process elements in
case of these are modified.

The Process Execution class is proper to the UML4SPM execution model. Its Java
implementation is given in the Appendix C of this document. In the next section, we
present the Activity Execution class, which represents the execution behavior of
UML4SPM Software Activities.

3.3. Activity Execution Class

An Activity Execution represents the execution behavior of a Software Activity.
Before to launch the Activity Execution by calling its Execute () operation, the Activity
Execution instance calls the set of operations required for creating the
ActivityEdgeInstances and ActivityNodeExecutions (e.g., ControlNodeExecution
instances, ObjectNodeExecution instances, ActionExecution instances, etc) it contains.
These operations are called from the Initialize() operation. Thus, the activity execution
creates as many ActivityEdgeInstance instances and ActivityNodeExecution instances as
ActivityEdge and ActivityNode instances, respectively, owned by the Software Activity
corresponding to the Activity Execution.

Once the Activity Execution contents created, the AssignRolePerformer() operation
is called in order to assign a role performer to the activity. The role performer is
selected according to the "qualifications" described in the Responsible Role element
defined in the process model and which is in charge of the Software Activity. When a
role performer's (e.g., an Agent) skills match the qualifications of the activity's
Responsible Role and its state is "available", the agent is selected as a potential
performer of the activity. It is required that only one agent accepts to take in charge the
realization of the activity in order to start the execution of the activity (call the
Execute() operation).

Activity Execution contains also operations for suspending or resuming the
execution of the activity (i.e., Suspend() and Resume()), for aborting the activity (i.e.,
Abort()) and finally terminating the activity (i.e., terminate()).

The execution of an activity is effectively realized by the execution of its activity
node executions, therefore the Execute() operation of the class Activity Execution
triggers the execution of the activity by concurrently calling the receiveOffer()
operation on all of its ActivityNodeExecution instances that correspond to activity
nodes with no incoming edges (nodes that need not to wait for any input to begin
executing) and by putting a control token on all activity's Initial Nodes. The details of
how activity nodes are executed are discussed in the following subsections and depend
ultimately on the kind of the activity node to execute (ActivityNodeExecution is an

153

abstract class having as subclasses, ControlNodeExecution, ObjectNodeExecution, and
ActionExecution).

Execution of an activity terminates when all its node executions are terminated or
when the execution of an ActivityFinalNode (by an ActivityFinalNodeExecution)
completes.

 Comparing with the Activity Execution class defined in the Executable UML
specification, the one we defined in the context of UML4SPM execution model has
eleven operations more. These operations deal principally with the initialization of the
activity execution (e.g., CreateActivityEdgeInstance(),
CreateControlNodeExecutionInstance(), etc.) but also with the control aspects of the
activity execution (e.g., Suspend(), Resume(), AssignRolePerformer(), etc.). We
implemented these operations in Java. The code of the Activity Execution's operations
is given in the Appendix C of this document.

 For the execution of a Software Activity, the definition of an Activity Execution is
not enough. We still need to define execution classes of its contents. As we know, a
UML4SPM Software Activity inherits a UML2.0 Activity. At the higher level, a
UML2.0 Activity is composed of Activity Edges (i.e., Control Flows and Object Flows)
and Activity Nodes (i.e., Control Nodes, Object Nodes and Actions). Thus, we need to
define the execution classes of Activity's contents. In the following, we present the
ActivityEdgeInstance and ActivityNodeExecution classes which represent the building
bloc of the Activity Execution. Then, we will go through the presentation of their
subclasses.

3.4. ActivityEdgeInstance and ActivityNodeExecution Classes

The execution of an Activity is carried out by the execution of its
ActivityEdgeInstances and ActivityNodeExecutions. They represent the pivotal classes
of the execution model (see figure 8.3.). More particularly, the ActivityNodeExecutions
class, which capitalizes/generalizes the execution behavior of all its subclasses (i.e.,
ObjectNodeExecution, ControlNodeExecution and ActionExecution) which in their
turns have subclasses (e.g., DecisionNodeExecution, InputPinExecution,
CallBehaviorActionExecution, etc). The semantics of the execution behavior respects
the one given by the UML2.0 standard. Once these execution classes defined, their
subclasses can directly inherit this execution behavior and then only few operations
have to be redefined in order to take into account the execution behavior proper to the
subclass. Examples of such operations are the fire() operation (in case of
ObjectNodeExecution and ControlNodeExecution) and doAction() operation (in case of
Action Execution subclasses (CallbehaviorActionExecution,
CallOperationActionExecution, etc.).

ActivityEdgeInstances and ActivityNodeExecutions being so important, in the
following we describe them in details. At the end of this subsection, a UML2.0
sequence diagram will sum up the set of operations involved in the execution behavior
of these classes and when they are triggered. In the Appendix C, we provide the Java
implementation of these classes and their operations.

154

Figure 8.3. The Building Blocks of Activity Execution: The ActivityEdgeInstance and
ActivityNodeExecution classes.

Execution Behavior
In UML2.0, the execution semantics of activities is based on token flows. By flow,

we mean that the execution of one node affects, and is affected by, the execution of
other nodes, and such dependencies are represented by edges in the activity diagram. A
token contains an object, datum, or locus of control, and is present in the activity
diagram at a particular node. Each token is distinct from any other, even if it contains
the same value as another. The UML2.0 standard does not concretely define a Token
metaclass however; this notion is only used to express the semantics of activities.

UML
Metamodel

UML4SPM
Executable Model

155

In the UML4SPM execution model, we defined the token class and we differentiate
between two kinds of tokens. Control tokens and Object tokens. When an Action
Execution completes, it creates a control token and offers it to its all outgoing
ActivityEdgeInstances. Also, if an Activity Execution contains an InitialNodeExecution,
at initialization phase of the Activity Execution, a control token is created and placed in
the initial node. Object tokens are exchanged between object nodes (Input and Output
Pins of actions, Data Store Nodes, etc.) and may traverse control nodes. For instance,
when an Action Execution completes and if it provides an output, an object token with
a reference to the OutputPinExecution type is created and placed in the
OutputPinExecution instance of the Action Execution. In the context of UML4SPM, an
OutputPinExecution can only be typed by WorkProducts or subclasses of the
WorkProduct metaclass.

ActivityNodeExecutions and ActivityEdgeInstances follow token flow rules as
defined by the UML2.0 standard. ActivityNodeExecutions control when tokens enter or
leave them. ActivityEdgeInstances have rules about when a token may be taken from
the source ActivityNodeExecution and moved to the target ActivityNodeExecution. A
token traverses an ActivityEdgeInstance when it satisfies the rules for target
ActivityNodeExecution, ActivityEdgeInstance, and source ActivityNodeExecution, all at
once. This means that a source ActivityNodeExecution can only offer tokens to the
outgoing ActivityEdgeInstances, rather than force them along the ActivityEdgeInstance,
because the tokens may be rejected by the ActivityEdgeInstance or the target
ActivityNodeExecution on the other side.

The ActivityEdgeInstance acts as a mediator between its source
ActivityNodeExecution offering tokens and its target ActivityNodeExecution taking
tokens. Tokens are effectively held by the offering ActivityNodeExecution until the
receiving one is ready to take them. As such mediator, an ActivityEdgeInstance
provides the following functionality: checks whether its source is offering any token,
send offers of tokens from its source to its target and take the offered tokens from its
source to its target ActivityNodeExecution (see figure 8.4).

The execution of an ActivityNodeExecution instance begins when its receiveOffer()
operation is called (either by its containing Activity Execution or by an incoming
ActivityEdgeInstance). This causes a call to isReady() operation on itself to check
whether the execution can proceed. This is true if the ActivityNodeExecution has no
incoming edges. Otherwise, it calls sourceHasOffer() operation on all its incoming
ActivityEdgeInstance. In turn, this causes the ActivityEdgeInstance to call hasOffer()
operation on its source ActivityNodeExecution to check whether it is still making an
offer. If this is the case, returns of hasOffer(), sourceHasOffer() and isReady() will be a
Boolean value of true. Then the ActivityNodeExecution calls the fire() operation on
itself. This is an abstract operation whose method is found in each of the concrete
ActivityNodeExecution and ActionExecutions. If, in order to execute, the
ActivityNodeExecution needs to take tokens from its incoming edge it calls
takeTokens() on its incoming edge, which in turn calls takeOfferedTokens() on its
source ActivityNodeExecution. This causes the removal of all offeredTokens and the
setting of the offering attribute to false (so that the source ActivityNodeExecution is no
longer holding any token and hence no longer making an offer).

Tokens will be consumed by the executing ActivityNodeExecution accordingly
depending on its type and, eventually, as a result of executing the fire() operation,
tokens may be produced and written to the offeredTokens of the executing

156

ActivityNodeExecution (where they will be held up to its consumption), which also sets
its offering attribute to true (to indicate it is now making an offer) and then
concurrently calls sendOffer() on all its outgoing edges (and, consequently, this will
cause each outgoing ActivityEdgeInstance to call receiveOffer() on its target
ActivityNodeExecution).

The sequence diagram given in figure 8.4 summarizes the sequence of operation
calls aiming at preparing the ActivityNodeExecution to execute its behavior. More
details on how we implemented these operations can be found in the Appendix of this
document

Comparing to the execution model proposed by the Executable UML initiative, the
ActivityEdgeInstance class we defined is enriched with new operations. These
operations deal with guard evaluations, an important aspect which was not taken into
account in the Executable UML specification. The expression of guards is important in
the context of software process modeling, since they drive the process workflow. In the
UML4SPM execution model, we take in charge the evaluation of guards expressions
thanks to the hasGuard() and evaluateGuard() operations (figure 8.4). Guard can be
expressed upon any Process Element's property (Software Activity, WorkProduct and
Responsible Role) of the process model. The syntax of the guard expression that have
to be specified while editing UMl4SPM process models is:
"ProcessElementKind.ProcessElementName.PropertyName=Value".
As an Example (cf. Chapter 7, section 6.2), the following guard expression upon a
WorkProduct called UMLAnalysisModel:
WorkProduct.UMLAnalysisModel.state=checked. In the current
implantation of our process engine, only guard expressions on WorkProduct's
properties are taken into account.

In the near future, we envisage to use OCL as language for expressing more
sophisticated guards upon elements of the process model and to integrate an OCL
checker to our process engine.

In the following subsections, we present the execution behavior of the
ActivityNodeExecution subclasses i.e., ControlNodeExecution, ObjectNodeExecution
and ActionExecution. We start by the ControlNodeExecution.

157

Figure 8.4. ActivityNodeExecution and ActivityEdgeInstance interactions

3.5. ControlNodeExecution Class

The ControlNodeExecution abstract class represents the execution behavior of
UML2.0 Control Nodes. The general behavior is inherited from the
ActivityNodeExecution class and then is refined by redefining the fire() operation
principally and other operations such as hasOffer(), receiveOffer(), etc. within each of
the ControlNodeExecution subclasses i.e. InitialNodeExecution,
DecisionNodeExecution, ForkNodeExecution, MergeNodeExecution,
ActivityFinalNodeExecution, and JoinNodeExecution (see figure 8.5).

ControlNodeExecutions act as traffic switches (i.e., Tokens cannot “rest” at
ControlNodeExecutions) managing tokens as they make their way between
ObjectNodeExecutions and ActionExecutions, which are the nodes where tokens can
rest for a period of time. InitialNodeExecutions are exceptions from this rule [OMG
07b].

158

Figure 8.5. ControlNodeExecution Abstract Class and its Concrete Execution Subclasses.

The firing of an InitialNodeExecution produces a control token which is then
offered on all its outgoing ActivityEdgeInstances. The execution of an
ActivityFinalNode involves taking all tokens from all its incoming edges and call the
terminate() operation on the Activity Execution directly containing the executing
ActivityFinalNodeExecution.

The execution of a JoinNode is completed by taking tokens offered by all of its
incoming edges and then offering them. JoinNodeExecution redefines the isReady()
operation to check that all the source ActivityNodeExecution instances which are source
of its incoming edges are offering tokens.

The execution of a MergeNodeExecution is completed by taking tokens offered by
any incoming ActivityEdgeInstance whose source ActivityNodeExecution has
completed and offer them. In the UML4SPM execution model, in order to specify the
MergeNodeExecution behavior we redefined the receiveOffer(), fire(),
takeOfferedTokens() and hasOffer() operations. This is due to the fact that as we said
earlier, Control Nodes act as traffic switches and then, they simply have to forward the
offers they receive or confirmations of offers. The same think is done regarding tokens;
they are simply transferred form the source ActivityNodeExecution instance to the
target ActivityNodeExecution instance without "resting" in the MergeNodeExecution.
Finally, the call of the isReady() operation on this execution node returns always true.
The Java code implementing this execution semantics is given in Appendix C. Each
line of code is documented in natural language. Of course only the redefined operations
are presented. For the operations and properties inherited from the
ActivityNodeExecution, please see the code of the ActivityNodeExecution class (also
given in Appendix C).

159

The Executable UML specification does not define an execution class for the
UML2.0 Decision Node element, claming that it can be replaced by the Conditional
Node element. In UML4SPM process models, we make an extensive use of Decision
Nodes since they are used to drive the process work flow. This can be done
automatically under the condition that guards are specified on outgoing edges. In the
absence of guards on outgoing edges, the DecisionNodeExecution interacts with the
process modeler or agent in order to ask him/her to choose between one of the outgoing
ActivityEdgeInstances.

The Java code describing The DecisionNode behavior is given in Appendix C. That
latter is described within the fire() operation. The hasOffer() and takeOfferedTokens()
operations were also redefined so that, as in the case of MergeNodeExecution, it just
forwards the request asking if the node is making an offer to the source
ActivityNodeExecution and to take tokens from the source ActivityNodeExecution. For
the operations and properties inherited from the ActivityNodeExecution, please see the
code of the ActivityNodeExecution class (see Appendix C).

Finally, when writing this document the behavior implementation of the
ForkNodeExecutioni was underway. Its execution semantics can be found in the
UML2.0 specification [OMG 07b].

In the next subsection, we present the ObjectNodeExecution class and its subclasses
PinExecution (InputPinExecution and OutputPinExecution) and
ActivityParameterNodeExecution.

3.6. ObjectNodeExecution Class

Figure 8.6. ObjectNodeExecution and its subclasses.

As any Activity Node, Object Nodes are live objects and have a behavior which is
represented at runtime by an ObjectNodeExecution (see figure 8.6). The
ObjectNodeExecution class is an abstract class, which inherits its general behavior

160

from the ActivityNodeExecution class. The behavior of its subclasses is then described
by implementing the fire() operation.

InputPinExecution is an ObjectNodeExecution where Object Tokens can rest before
to be consumed by the Action Execution owning the InputPinExecution. Thus, when an
InputPinExecution receives an offer (i.e., a call of the receiveOffer() on the
InputPinExecution) it just forwards the offer to its Action Execution. If the Action
Execution is ready, then tokens are taken from the source ActivityNodeExecution
making an offer to the InputPinExecution and added to the InputPinExecution
OfferedToken list. This done by calling the fire() operation on the InputPinExecution
(see the Java implementation of the fire() on Appendix C).

When the Action Execution behavior is fired, Object Tokens are removed form the
OfferedToken list of the InputPinExecution, consumed by the action, and if any Object
Tokens are to be produced by the Action Execution, they are transferred to its
OutputPinExecutions. The isReady () operation is redefined in the context the
OutputPinExecution class to always return true.

Finally, ActivityParameterNodeExecutions (APNE) are to represent the execution
behavior of the UML2.0 Activity Parameter Node metaclass. Activity parameter nodes
are object nodes at the beginning and end of flows that provide a means to accept
inputs to an activity and provide outputs from the activity, through the activity
parameters.

The ActivityParameterNodeExecution implements the fire() operation depending on
whether it is an input APNE (if it has no incoming edges) or an output APNE (if it has
no outgoing edges) ActivityParameterNode. In the first case, it takes the value of its
corresponding input parameter and offers it as an object token. In the latter case, it
takes the tokens offered by the source ActivityExecutionNode instances of its incoming
edges and offers them as object tokens. The Java implementation of the APNE class is
given in the Appendix C of this document.

 In the UML4SPM execution model, we assume that the multiplicity and upper
bound properties of the PinExecution and APNE are always equal to one.

3.7. ActionExecution Class

Figure 8.7 lists the set of Action Execution classes taken into account by the
UML4SPM execution model. The abstract Action Execution class capitalizes the set of
operations that have to be invoked by each of its subclasses whatever its kind.
Examples of such operations are the CreateActionInputPinExecution() and
CreateActionOutputPinExecution() operations which aim at creating the PinExecution
instances of the Action Execution.

The Action Execution's isReady() operation is redefined in order to check, in
addition to that sources of all its incoming edges are still making an offer, that its
InputPinExecutions are ready. This done by calling from the isReady() operation, the
isInputPinExecutionReady() operation.

161

Figure 8.7. UML4SPM Action Execution Classes

Once the Action Execution is ready to execute, it calls the fire() operation. This will
in first step trigger the firing (by calling the fireInputPins () operation) of the action's
InputPinExecutions. This will cause the transfer of Object Tokens from source
ActivityNodeExecution to the action's InputPinExecution instances. In a second step,
Control Tokens on action's incoming edges are consumed by calling the

162

consumeControlTokens() operation. Then, the Action Execution calls the doAction()
operation on it. This operation is to be defined on each subclass of the Action Execution
class. It represents the behavior proper to the kind of action. We will see an example in
the case of the CallBehaviorExecutionAction's doAction() operation. In figure 8.8 we
give a sequence diagram that summarizes the general Action Execution behavior.

Comparing with the Executable UML specification [OMG 06e], the Action
Execution class we propose identifies nine operations more. These operations deal with
action's PinExecution creations, the firing of InputPinExecutions and
OutputPinExecutions, and token consumptions/creations. The Java implementation we
propose for this class is given in the Appendix C of this document.

163

 Figure 8.8. Action Execution Behavior Sequence Diagram
164

In the following, we address only the CallBehaviorActionExecution and
OpaqueActionExecution classes (see figure 8.8), which represent the execution
behavior of the UML2.0 CallBehaviorAction and OpaqueAction, respectively. These
actions are very important since they are extensively used in UML4SPM process
models.

Synchronous and Asynchronous Software Activity calls
The CallBehaviorAction is used within a Software Activity in order to trigger the

behavior of another Software Activity. The call can be synchronous or asynchronous. In
the first case, the Software Activity waits that the called Software Activity terminates in
order to pursue its execution. In case of an asynchronous call, the Software Activity has
not to wait for the called Software Activity to terminate and both software activities
execute concurrently.

Once prepared and in order to execute, the CallBehaviorActionExecution starts by
checking that parameters of the call match with the Activity Parameter Nodes of the
called Software Activity in number and types. This is ensured by calling the
checkCallParametersConformity() operation, which in its turn calls the
checkNumberOfParameters_In(), checkParametersConformityTypes() and
checkNumberOfParameters_Out() (in case of synchronous call) operations.

If the checkCallParametersConformity() returns true then, the
initializeCalledBehaviorActPNodes() is called. This operation aims at initializing the
ActivityParameterNodeExecutions of the called activity by putting Object Tokens on
them. If the call is asynchronous, a new thread is created, so that the current activity
does not have to wait for the called Software Activity to terminate. If the call is
synchronous the Software Activity waits for the called activity to terminate before
getting back the result by calling the getCallResult() operation. The getCallResult()
operation takes care of transferring the result of the called activity to the
OutputPinExecution instances of the CallBehaviorExecutionAction. These
OutputPinExecutions are then fired by calling the fireOutputPins() operation. Finally,
before terminating, the action put a Control Token on its offeredTokens list (call of the
putControlToken() operation) and send an offer on all its outgoing edges by calling the
sendOffer() operation.

All these steps are carried out within the CallbehaviorActionExecution's doAction()
operation. We give the corresponding Java implementation of this operation in the
Appendix C of this document.

Comparing to the Executable UML specification, we defined seven more operations
for the CallBehaviorActionExecution. These operations mostly deal with call
parameters conformity checking, the initialization of Object Tokens in and out (to) of
the called Software Activity and for controlling if whether the call is synchronous or
not.

Process Execution Interactions with external applications
The last action execution class we present in this subsection is the

OpaqueActionExecution class. In the UML4SPM execution model, this action has an
important place since it allows the biding of the process execution to any external
business application. By business application, we mean any executable application
whatever its purpose. It may be a Graphic User Interface (GUI) to interact with the
agent. The GUI can inform the agent with steps he has to carry out in order to realize
the action, a link to guidance giving some hints and best practices, action deadlines,

165

WorkProducts inputs to the action, the set of output WorkProducts he has to realize,
etc. The agent can also give the action's progress percentage through the GUI, which
can be used by a process monitoring application in order to anticipate some unexpected
delays.

The OpaqueActionExecution class can also be used to interact with company's
business applications or workflows, which opens many perspectives such as calling
distant applications, binding to databases, calling web services, and so on.

In order to allow this kind of flexibility, in the current implementation of the
OpaqueActionExecution we provide the means to execute the (Java) code specified in
the body property of the OpaqueAction. At runtime, the doAction() of the
OpaqueActionExecution starts by extracting the Java code from the action's body
property. Then, it creates a Java class with a method called ExecuteBody() having as a
body, the Java code extracted from the action. Using the Java Runtime Interface, the
class is compiled without interrupting the OpaqueActionExectuion. Finally, we use the
Java reflect API in order to load the Java class we compiled and which contains the
Java code held by the OpaqueAction's body property. Then, a call to the ExecuteBody()
operation is performed from the OpaqueActionExectuion's doAction operation to
execute the code. All this is performed while the process is still running.

The general behavior of the OpaqueActionExecution can then be specialized by
more specific actions. Currently, we are working to specify three kinds of actions. The
first one aims at specifying a standard GUI to be used in actions requiring human
interactions. The second kind of action is to allow tool modeling service calls while
using the Model Bus approach, a work done in our team at LIP6 in order to allow
interoperability between modeling tools. Finally, an action execution that allows
calling distant web services from the process execution.

The Executable UML specification does not propose any execution class for the
OpaqueAction. In the Appendix C of this document, the reader can find the Java
implementation we propose for the OpaqueActionExecution.

In the next section, we present the UML4SPM process engine, which is based on
the UML4SPM execution model we introduced here.

4. Execution of UML4SPM Process Models

Before presenting the UML4SPM process engine, we start by introducing the
UML4SPM Process model Editor that will be used to produce process models input to
the UML4SPM Process Execution Engine.

4.1. UML4SPM Process Model Editor

For the realization of the UML4SPM Process Model Editor we used the Eclipse
Open Source Development Environment combined with the EMF and UML2.0 Plugins
[eclipse].

Our first step for the realization of our editor was the definition of our metamodel.
As we presented it in chapter 5, UML4SPM comes in form of MOF-compliant
metamodel which extends some UML2.0 metaclasses. Figure 8.9 shows our
metamodel defined within Eclipse using the EMF and UML2.0 APIs. We can notice
for instance how the Software Activity metaclass inherits the UML2.0 Activity

166

metaclass. Also, the WorkProduct metaclass which inherits the UML2.0 Artifact
metaclass, and so on.

Figure 8.9. UML4SPM Metamodel Defined Within Eclipse

Once the metamodel defined, the UML4SPM Process Model Editor is generated on
a simple click. It is now possible to define UML4SPM process models, which conform
the UML4SPM metamodel. Process models will be stored using the OMG standard
XMI format [OMG 05b]. Figure 8.10 gives an overview of the process model editor.

If the UML4SPM metamodel have to be modified, then the UML4SPM editor have
to regenerated. This will not take more than few seconds. Additionally, if the
modification is an extension to the metamodel (i.e., addition of a new attributes or

167

metaclasses), the process models defined in a previous version can still be used within
the new editor. If the modification to the UML4SPM is a suppression of a metaclass or
attribute, then process models have to be migrated to the new version of the language
though a model transformation. Model transformations are out of the scope of this
document.

Figure 8.10. UML4SPM Process Model Editor
Once process models edited with the UML4SPM Process Model Editor, they can be

directly executed using the UML4SPM Process Execution Engine, which we present in
the following subsection.

4.2. UML4SPM Process Execution Engine

The UML4SPM Process Execution Engine is based on the UML4SPM Executable
Model we presented in the previous section. It implements each of the class's
operations defined in the executable model. The implementation we propose is in Java.

The process execution engine takes as input an UML4SPM process model and
executes it according to the execution behavior defined in the UML4SPM executable
model. The path to the process model can be defined in a file or given in an interactive
way by the agent.

When the process model is loaded in memory, the process engine creates for each
element in the model, its corresponding execution class. The mappings between the

168

UML4SPM elements and their execution classes are defined in an external
configuration file in form of a pair of: UML4SPM element name=> Execution Class
name (e.g. SoftwareActivity => ActivityExecution, InitialNode =>
InitialNodeExecution, etc.). The main goal behind this configuration is to give more
flexibility in case of extending the UML4SPM language. Indeed, for instance, if a new
kind of action (metaclass) has to be added to the UML4SPM metamodel, then,
developers have simply to:

- Define the execution behavior of the new action metaclass in an execution
class;

- Make the newly defined action execution class inheriting the

ActionExecution abstract class. Thus, the new action will inherit the
general behavior of actions (and transitively ActivityExecutionNode) and
then can receive token offers, fire its input and output pins, etc;

- Add the entry NewMetaClass name=> Execution Class name in the

configuration file;

- Put the new action execution class in the same workspace (location) of the

other execution classes;

These steps apply to any new metaclass that have to be added to the UML4SPM
metamodel whatever the metaclass it extends (ActivityEdgeInstance,
ControlNodeExecution, ObjectNodeExecution, etc).

To start the execution of the process, the engine looks among the process's software
activity executions, for the one with its isInitial property set to true. If no activity
execution satisfies this requirement the process will not be executed. The same thing
happens if more than one activity execution has its isInitial property set to true. If the
process model contains only one software activity, than the process will be launched
whatever the value of the software activity's isInitial property is.

When the process is launched, the execution of software activities and of their
contents (i.e. ActivityEdgeInstances, ControlNodeExecutions, ActionExecution and
ObjectNodeExecutions) follows the execution behavior described in the UML4SPM
executable model. If a human interaction is needed, the Process Engine gives the hand
to the Agent and wait for its entries in order to continue the execution. This case for
instance with Decision Nodes without guards.

In the current implementation of the process engine we do not yet take in charge all
the aspects related to resource management such as role affectations, WorkProduct
versioning, etc.

Our process execution engine classes are given in figure 8.11. In the next section,
we take the same example we used in the previous chapter and we execute it using the
UML4SPM process execution engine.

169

Figure 8.11. Process Execution Engine Classes

4.3. Software Process Example

In this section we show how the software process example we used in the previous
chapter (UML4SPM-2-WSBPEL) approach is executed using the UML4SPM process
engine. The process example modeled using the UML4SPM notations as well as its
description are given in chapter 7, Section 6.2 of this document.

 Figure 8.12 gives the whole process example modeled within the UML4SPM
Process Editor. Some of the UML4SPM process model elements are highlighted on the
figure.

170

Software Activities
and their kinds

Action with input
and output pins

Control Node:
Merge Node

Control Node:
Decision Node

Object Flows
with Guards

Control Flows

Activity
Parameter Nodes

Guidance

Responsible Role Kind
WorkProduct Kind

Process's
WorkProducts

Figure 8.12. Software Process Example modeled with UML4SPM Process Editor

171

We can notice for instance that software activities have a kind. The Inception
software activity is of kind Phase while the ElaborateUMLAnalysisModel is of kind
Activity. Similarly, WorkProducts and Responsible Roles have kinds. In the process
example, we have the WorkProduct kind Model and Document, the Responsible Role
Analyst, etc. Of course these kinds of process elements are domain specific and the
process modeler can add as Software Activities, WorkProducts and responsible role
kinds as necessary.

The second aspect we can highlight is the use of CallBehaviorActions to call other
Software Activities from the Inception Phase. CallBehaviorActions have Input and
Output Pins which are typed by the process's WorkProducts. Object Flows are used to
connect between action's output pins and another action's input pins. In case of the of
Decision_To_SendFailMessage and Decision_To_SendSuccMessage object flows,
edges have guards. These guards will be evaluated at runtime by the process engine
and the flow of work will depend on the result of guard evaluations.

Finally, in the case of the ElaborateUMLAnalysisModel and
ValidateAnalysisModel software activities, ActivityParameterNodes are used to bring
the data flow to the activity. These activities are called synchronously from the
Inception Phase.

Software Process Model Execution
This software process example is passed to the UML4SPM process engine which

executes it directly, without any intermediate step or configuration phase. The
execution traces are given in the Appendix C of this document.

 In the next section, we discuss the approach as well as the results we had using the
UML4SPM Execution Model.

5. Discussion

The previous sections aimed at presenting the UML4SPM executable model
rationale as well as the details of each of its classes and their implementations. In this
section, we summarize all the aspects we addressed while discussing the important
points of this approach.

 UML4SPM Executable Model: the UML4SPM Executable Model we propose is
based on the Executable UML Foundation specification [OMG 06e], a work on
progress at the OMG. During the implementation of this executable model in the
context of UML4SPM, we realized that many aspects were lacking or not taken
into account by Executable UML. We highlighted them and we proposed new
operations on already existing execution classes and we also defined new execution
classes in order to overcome these lacks. Of course, in addition to execution classes
proper to UML4SPM, the operations and execution classes we newly defined
concern UML2.0 Activity and Action package metaclasses and respect the
execution semantics given by the UML2.0 standard;

 UML4SPM Executable Model Implementation: in addition to the proposition of

an executable model in form of classes and operations, we give a Java
implementation of this model. This implementation is then used as basis of the
UML4SPM Process Execution Engine;

172

 Reusability of the UML4SPM Execution Model for UML2.0 Activity Diagram
Executions: since UML4SPM is based on UML2.0 Activity and Action packages,
the execution classes proper to these package elements we defined as well as their
implementations are directly reusable for UML2.0 activity diagram executions;

 Extensibility of the UML4SPM Language: if process modelers need to extend the

UML4SPM metamodel by adding for instance, a new kind of action, control node
or object node, this can be done at lower costs. They simply have to define the
execution class of the newly defined metaclass and make it extending the
UML4SPM Execution Model class it tends to specialize. We gave all the details on
UML4SPM executable model extension on section 4.2.

 Strong Coupling of UML4SPM Process Models and their Execution Instances:

in the design of the UML4SPM Executable Model we put as a crucial requirement,
the keeping of a strong coupling between process model elements and their
execution instances. Thus, in the execution classes, we define only the behavior of
UML4SPM elements. At runtime, when the execution class instance is created, it
only keeps a reference to the process model element it defines its execution
behavior. When the execution class instance requires a data, it takes it directly from
the process model element definition. Thus, if the process model element evolves
or has some of its element properties to be modified, the execution class instance
will always has access to the correct (last) version of data. This facility opens some
large perspectives such as the possibility to modify process models at runtime
without restarting the execution of the process. Of course, the process model
modification has to be performed from the API classes generated from the
UML4SPM metamodel and under some conditions that have to be defined. The
definition of these conditions is underway and goes beyond the scope of this
document.

 Connection with External Applications: using the OpaqueActionExecution class

we defined, it is rendered possible to execute a Java code expressed in the body's
property of the Opaque Action without restarting the process. Details on how this is
performed are given in section 3.7. Thanks to this facility, we can now envisage the
possibility that the process model execution can be connected with an external
application without interrupting the execution of the process. This can be for
instance a simple Graphic User Interface that takes into account human
interactions, a company's business applications and Workflows or a web-service
based applications. We are currently exploring the feasibility and limits of these
possibilities;

 Concurrent Software Activities Executions: the UML2.0 Activity and Action

execution semantics supposes that some elements execute concurrently. In the
context of UML4SPM process models, we can have the situation when two or more
software activities or actions have to be launched simultaneously. This is the case
for instance when a fork node is used to parallelize the execution of two or more
workflows. Also, when a software activity calls another one asynchronously, the
called activity has to start its execution while the calling one has to continue its
own execution, both concurrently. In the UML4SPM Execution Model
implementation, we take into account these constraints and we use Java Threads in
order to ensure concurrency while executing UML4SPM process models.

173

 Process Model Executions Through Interpretation: UML4SPM process models

are interpreted. Thanks to the strong coupling between UML4SPM process models
and their execution behaviors, the execution is done in one pass. If the process
model has to be modified during the process execution, there is no need to re-
instantiate execution classes since they only represent the behavior of the process
model element not its data, which is extracted directly from the element.

Another way to use the UML4SPM Executable Model is to define its execution
behavior using the Kermeta executable meta-language instead of Java. Kermeta is
developed at the IRISA laboratory and can be used to define the execution behavior at
the metamodel level [Muller 05]. Kermeta extends EMOF (part of the MOF 2.0
specification) [OMG 06c], and allows that metaclasses be enriched with operations as
well as their implementations. The investigation of the Kermeta initiative and its
application to the UML4SPM Executable Model is underway. Our choice for Java for
implementing the UML4SPM Executable Model was guided by efficiency reasons and
by the possibility to reuse an already existing and powerful tooling support such as
Eclipse/EMF development environment. Now that the Kermeta environment is mature
and provides a large panoply of functionalities and analysis facilities, we envisage to
implement the UML4SPM Execution Model using this executable meta-language.

Another way to use the UML4SPM Executable Model is to define a new package at
the metamodel level called UML4SPM Runtime Behavior. This package will then
merge the UML4SPM metamodel we already presented in chapter 5 of this document.
The executable model will be reported on each of the Runtime Behavior metamodel
metaclasses. The only condition is to have the Java classes representing (generated
from) the metamodel. This can be obtained easily using the Eclipse development
environment coupled with the EMF framework. Once the execution behavior
(operations) implemented within the generated Java classes, developers have to make
sure that these operations will not be overridden in case of a new code generation due
to a modification of the metamodel. However this approach remains very ad-hoc and
requires the manipulation of the Java code, to make sure that operations will not be
replaced, etc. It also dependents too much on the development environment.

When writing this document, the UML4SPM Execution Model implementation still
lacks support for event actions (i.e. AcceptEventAction and SendEventAction) as well
as for the Fork and Join nodes. The definition of their execution classes and
implementations is underway.

6. Conclusion

In this chapter we presented the UML4SPM Execution Model approach for process
model executions. This approach aims at overcoming the limits of the UML4SPM-2-
WS-BPEL that we introduced in the previous chapter.

As we saw, this approach offers some good perspectives. The first one is that
process modelers have to deal with only one language for process modeling and
execution. UML4SPM process models can be executed directly. Neither a model
transformation nor intermediate steps are required. Another important point is that
process models are strongly linked with their execution. Thus, process models can be
modified at runtime without a need to restart or to interrupt the execution of the

174

process. Also, we offer the possibility to UML4SPM process models to be linked with
external applications which opens the way to many interesting possibilities.

In addition to the Executable Model, we proposed a Java implementation of this
model. Then, we used it as a basis of the UML4SPM Process Execution Engine. We
also define a UML4SPM Process Model Editor. Process models edited within this
editor are straightforward executed by our process engine.

To demonstrate the feasibility of the approach, we used a complete software
process example that we edited within the UML4SPM Process Model Editor and then
we executed successfully with the UML4SPM Process Execution Engine. The process
covered some typical software process characteristics such as automatic actions,
decision points, synchronous and asynchronous activity calls, concurrency,
interactions, etc.

Finally, we discussed in details the important aspects of this approach and we
highlighted the remaining executable classes to realize.

A major perspective of this work is the integration of OCL as a language for
expression Guards on activity edges in process models. This would add more
expressiveness and powerfulness to process models. Another important aspect is
resource management facilities which have to be integrated to the UML4SPM Process
Engine. This would allow role affectations, workproducts versioning, etc. Finally, a
more precise work has to be done in order to define upon which conditions process
models can be modified during the execution of the process without interrupting its
execution.

175

176

Chapter 9

Conclusions

In this thesis, we have addressed the problem of satisfying the apparently conflicting
requirements of Abstraction and Executability in software process modeling languages.
At this aim, we proposed UML4SPM, a UML2.0-Based Language for Software
Process Modeling. Main contributions that led to this proposition can be summarized
as follows:

 Reusing the current state of the art. While designing UML4SPM, we put a high
interest in reusing and leveraging the lessons learned from the software process
modeling community. Thus, our first step was to specify major requirements to
satisfy when building a software process modeling language. These requirements
were identified from well-known and approved works done in the literature.
Semantic richness, understandability, precision, modularization and executability
were retained as principal requirements. These requirements have been taken into
account in the comparison we provide of current SPMLs and in defining our
language, UML4SPM.

One lesson we learned from first-generation SPMLs is that it is encouraged to use
wide spread modeling languages with high level constructs as a basis of a SPML
instead of proprietary and low level formalisms. This would ease much more its
adoption. A high level of abstraction would help the very large number of process's
actors with completely diverse backgrounds to reason and discuss the different
aspects of the process. While the popularity of the language would avoid that
people have to learn a new language and allows reusing the set of tools and training
supports already provided. In this thesis we considered this recommendation and
we investigated the reuse of UML, a standard and wide spread modeling language
providing high level constructs, as a basis of our SPML [Bendraou_05a].

 Definition of a framework for classifying and comparing between the different
process technologies domains. In front of the proliferation of process technology
domains such as BPM, SPE, and WfM, we find it interesting to determine the
frontiers between these different communities. Indeed, whether each community is
evolving its process technology individually with its set of concepts and
expectations for process modeling and execution, few works have been done in
order to find commonalities/distinctions between these different research areas. In
this thesis, we defined a framework that classifies and compares the different
process technologies [Bendraou 07b]. This framework gives the process definition,
characteristics, modeling objectives, process model constituents, process context
and scope of each domain. It also clarifies the relationship between each of these
domains.

 Definition of an executable software process modeling language providing high
level abstractions. In this thesis we proposed UML4SPM, a UML2.0-based
language for software process modeling and execution [Bendraou 05a]. UML4SPM
comes in form of a MOF-Compliant metamodel, which extends the UML2.0
Superstructure standard [OMG 07b], a simple yet expressive graphical notation,
and high level constructs with precise execution semantics.

177

For the definition of our SPML, we first identified an exact subset of UML2.0
concepts suitable for software process modeling. These concepts are principally
parts of the Activity and Action packages and provide mechanisms for the
sequencing of activities and actions, for expressing concurrency, conditions,
iterations, events, exception handling, call actions, etc. We extend this subset of
UML2.0 with the UML4SPM metamodel, which comes with a set of metaclasses
with semantics proper to software process modeling (e.g., Responsible Role,
WorkProduct, Guidance, TimeLimit, Team, Tool, Agent, etc.).

We also provide a notation for UML4SPM. That latter is inspired from UML2.0
Activity diagram notations. Some modifications were introduced in order to take
into account some features proper to software process modeling but also to increase
understandability. For UML2.0 Activity elements and Actions for which no notation
is proposed by the standard, we proposed one.

Regarding executability of UML4SPM software process models, we investigated
two approaches.

The UML4SPM-2-WSBPEL approach
For not starting from scratch, the first approach consisted in exploring the
feasibility of using WS-BPEL as a target execution language for UML4SPM
process models [Bendraou 07c]. WS-BPEL is a standard, plenty of tools are
provided and is largely adopted by industrialists. Therefore, we introduced the
language and its main features and we identified detailed mapping rules between
UML4SPM concepts and WS-BPEL constructs. The mapping rules we proposed
are not only UML4PSM-to-WS-BPEL specific since all rules that deal with
UML2.0 concepts can be reused by any UML2.0-Based language or profile for
process modeling. While identifying these mapping rules we have been confronted
to some issues. Main ones are:

- UML4SPM elements with a semantic proper to software process modeling
(i.e., WorkProduct, Responsible Role, Guidance, etc) have no equivalent
in WS-BPEL;

- There is no one-to-one correspondence between elements of the two
languages;

- BPEL's lack in supporting some control flow patterns (e.g., multiple
merge, discriminator, etc.) and arbitrary cycles;

Another important point we addressed in this approach was the limit of WS-BPEL
in supporting human interactions. We presented the different propositions for
dealing with the human dimension such as the Workflow Service proposition. We
also discussed the advantages and limits of each approach and we highlighted the
urgent demand to standardize an interface of such Workflow Service.

For illustrating the approach, we gave a software process example that we modeled
using UML4SPM. We then presented the main steps transforming the UML4SPM
process model into WS-BPEL code.

As a general conclusion of this approach, we can enumerate its advantages and its
limits. The first point is the undeniable advantage of to be able to reuse the myriad
of WS-BPEL process engines and training supports provided by the Business
Process Management community. The field is very mature and very active, which
opens very large perspectives. We don't have to deal with all issues related to

178

resource management, distribution, exceptions, etc. All these aspects are already
incorporated within process engines. However, an important barrier of this
approach is that process modelers have to deal with two languages, UML4SPM and
BPEL. Additionally, for any changes in the process model, a new BPEL code
generation has to be carried out and a configuration phase is required before
deploying the process. Any modification in the BPEL code can't be traced-up to the
UML4SPM process model which may lead to incoherencies between UML4SPM
process models and the generated BPEL code.

In order to face these obstacles, we decided to explore another solution.

The UML4SPM Execution Model approach
The aim of this approach is to allow a straightforward execution of UML4SPM
process models without any transformation or intermediate steps. The only
condition is that process models are well formed. By well formed, we mean that
process models should respect the structure and constraints defined in the
metamodel.

To achieve this goal, in this thesis we proposed the UML4SPM Execution Model.
This model defines execution behavior semantics of UML4SPM elements. Thus,
for each UML4SPM metaclass having execution semantics, we defined its
execution class, which at runtime, reproduces the execution behavior semantics of
that metaclass. This execution semantics is expressed in terms of operations within
the execution classes. We based our work on the Executable UML Foundation, a
work on progress at the OMG [OMG 05c]. In this work we studied this
specification and we drew from it the UML4SPM Execution Model. We also
identified the set of operations and execution classes lacking by the Executable
UML Foundation specification [OMG 06e]. Our Execution Model can be reused for
executing UML2.0 Activity diagrams since UML4SPM extends UML2.0 Activity
and Action concepts.

For the Execution Model we proposed, we provided a Java implementation for each
of class of the model (the Executable UML Foundation does not provide any
implementation). Classes of the model that represent execution semantics of
UML2.0 elements have been implemented according to the semantics defined in the
UML2.0 standard.

This implementation combined with the Executable Model principle offers some
interesting facilities. The first one is that process modelers have to deal with only
one language for process modeling and execution. UML4SPM process models can
be executed directly without any configuration or refinement steps. A second
important point is that process models are strongly linked with their execution.
Thus, process models can be modified at runtime without a need to restart or to
interrupt the execution of the process. Finally, we also offer the possibility to
UML4SPM process models to be linked with external applications, which opens the
way to many interesting possibilities.

One point that may penalize this approach is that we need to deal with all the
aspects of resource management, role affectations, distribution, aspects that are
already integrated with current BPM process engines. These aspects and the
possibility to reuse some resources management facilities of current BPM process
engines were not investigated yet in the context of this thesis.

179

 Validation of the approach. We evaluated UML4SPM with the set of SPMLs
requirements defined by the literature. We saw that UML4SPM succeeded in
fulfilling the majority of them. Semantic richness is provided thanks to a rich set of
process elements we defined in the metamodel, to powerful mechanisms for
activity and action coordination and sequencing borrowed from UML2.0, etc.
Modularization is addressed by using the CallBehaviorAction as means to
compose, to call or to coordinate between activity executions. The Precision
requirement is reached thanks to the set of concepts such as Software Activity,
Action and Software Activity Kind elements which allow the modeling of any
process hierarchy. Regarding Understandability, undeniably, UML4SPM has a
serious advantage since it reuses UML2.0 notation and diagrams. UML2.0 is wide-
spread and many people are already familiar with its use.

Another evaluation regarding the expressiveness of UML4SPM consisted in
representing the well-known ISPW-6 software process example using our language.
The process example comes in form of core problem and optional extensions.
UML4SPM succeeded in modeling all process's activity aspects and issues related
to the core problem. Additionally, we addressed main parts of optional extensions
that relate the process executions. The evaluation of UML4SPM was validated in
[Bendraou 06]

For the execution of UML4SPM process models, in this work we provided a
UML4SPM Process Execution Engine. That latter takes as input a UML4SPM
process model edited with the UML4SPM Process Model Editor and directly
executes it. Our process engine is based on the UML4SPM Execution Model we
defined. For validating this process engine (transitively, the UML4SPM execution
model), we tested it with a complete software process example that we edited
within UML4SPM Process Model Editor.

Perspectives
The perspectives of this thesis can be separated into short-term and long-term

perspectives.

Short-Term Perspectives
 Regarding the UML4SPM-2-WSBPEL approach, an important perspective in

order to deal with human interactions would be the proposition of a standard
interface definition of what we called "Workflow Service". Currently, services
provided by tool vendors to deal with human interactions are proprietary and
vendor's specific. A standard service interface would allow the homogenization of
process executions across the different WSBPEL process engines.

 Regarding the UML4SPM Execution Model approach, in the current
implementation we provide, guards on activity edges are expressed in a proprietary
way (c.f., Chapter 8, Section 3.4) , and expressions can only be applied on
WorkProduct and Responsible Role properties. In the near future, we plan to use
OCL as a language for formulating such expressions. OCL is standard and offers
powerful mechanisms for navigating models and for expressing constraints,
conditions, invariants, etc. We will then integrate an OCL checker to our
UML4SPM process execution engine. This would add more expressiveness and
precision to UML4SPM process models.

180

In the near future, we plan to implement the UML4SPM Execution Model using the
Kermeta executable meta-language which would allow UML4SPM process models
not only to be executed but also to be analyzed thanks to the facilities offered by
Kermeta.

We also envisage investigating the possibility of reusing resource management
facilities offered by some process engines in the field of business process
management. This would allow managing role affectations, workproducts
versioning, alarms, etc.

Long-Term Perspectives
 Process Model modification at runtime. Using the UML4SPM Execution model

approach and the implementation we provide, we saw that technically, it is
rendered possible to modify the UML4SPM process model at runtime without
affecting the process execution. Of course, to this end, some conditions have to be
satisfied (e.g., the activity's constituent we need to modify must not have its owning
activity's state at running or terminated or aborted, etc.). One major perspective
would be to identify these conditions in a precise and formal way. This would allow
an efficient use of process models and a means to make them evolve dynamically
during the execution.

 Interaction of process model executions with external applications. In the
UML4SPM Execution Model, we proposed the OpaqueActionExecution class,
which allows the execution of Java code at runtime without interrupting or
restarting the process execution. The behavior of the OpaqueActionExecution could
be then used /specialized in order to define more specific actions. When writing this
document, we identified three kinds of actions. The first one aims at specifying a
standard GUI to be used in actions requiring human interactions. The second kind
of action is to allow tool modeling service calls while using the ModelBus approach
[Blanc 04], a work done in our team at LIP6 in order to allow interoperability
between modeling tools. Finally, an action execution that allows calling distant
web services from the process execution.

 Fragmentation of process models. Due to software system complexity, it is
difficult to manage the development and maintenance of an entire system with a
single software process. We consider handling this complexity with the notion of
"software process partitioning". This notion consists in decomposing a complex
software process into sub-processes and in allowing those sub-processes to be
realized independently with different development sub-teams. To achieve this
objective, we need to deal with the following difficulties: 1) managing the
interactions between the sub software processes, 2) partitioning the entire software
specification into different parts involved in each sub process, and 3) managing the
concurrent work realized in each sub process. As a solution, we aim to base our
work on top of ModelBus [Sriplakich 07a, 07b]. In fact, ModelBus offers
functionalities for partitioning a large system specification, for supporting
concurrent modifications in those partitions (with approach diff/merge), and for
maintaining links between the partitions. We aim to use ModelBus to manage
model partitions involved in each sub process, and support concurrent work
realized by each sub process on models, and to manage the relationships between
these sub-processes.

181

182

References

[ActiveBPEL] ActiveBPEL at http://www.active-endpoints.com/active-bpel-engine-overview.htm, last time

page visit: February 2007

[Adams 03] M. Adams, D. Edmond and A ter Hofstede, “The Application of Activity Theory to Dynamic
Workflow Adaptation Issues”, 7th Pacific Asia Conference on Information Systems, Adelaide,
South Australia, July 2003

[Ambriola 94] Ambriola V., Conradi R. and Fuggetta A. “Experiences and Issues in Building and Using
Process centered Software Engineering Environments”, Internal draft paper, Politecnico di
Milano, September 1994.

[Ambriola 97] V. Ambriola, R. Conradi, and A. Fuggetta, “Assessing Process-Centered Environments”.
ACM Transactions on Software Engineering and Methodology, 6(1), July 1997

[ANSI/IEEE 87] ANSI/IEEE Std 1012-1986, "IEEE Standard for Software Verification and Validation Plans",
The Institute of Electrical and Electronics Engineers, Inc., February 10, 1987

[ApacheAgila] Apache Agila at http://wiki.apache.org/agila/, last time page visit: February 2007

[Armenise 93] P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti. A survey and assessment of
software process representation formalisms. International Journal of Software Engineering
and Knowllegde Engineering, 3(3):401–426, Sept. 1993

[Arlow 97] Arlow J., Bandinelli S., Emmerich W., and Lavazza L., "Fine Grained Process Modeling: an
Experiment at British Airways, Software Process Improvement and Practice, J. Wiley, 3,2,
1997.

[AS CNRS 04] Action Scientifique CNRS, Rapport de Synthèse sur le MDA (Model-Driven Architecture), by
J. Bézivin, M. Blay, M. Bouzhegoub, J. Estublier, J.M. Favre, S. Gérard and J.M. Jézéquel,
2004

[Atkinson 03] Atkinson C., Kühne T., "Model-Driven Development: A Metamodeling Foundation", IEEE
Software, September 2003

[Bandinelli 93] Bandinelli S., Fuggetta A. and Ghezzi C. "Software process model evolution in the SPADE
environment". IEEE Transaction in Software. Engeneering. 19, 12 Dec. 1993, .1128–1144

[Bandinelli 95] Bandinelli S., Fuggetta A., Lavazza L., Loi M., and Picco G.P., Modeling and Improving an
Industrial Sofiware Process, IEEE Transaction in Software. Engeneering, 21, May 1995.

[Bandinelli 96] Bandinelli S., Di Nitto E., and Fuggetta A., Supporting cooperation in the SPADE-1
environment, IEEE Transaction in Software. Engeneering, 22, 12, 1996.

[Bastida 05] L.Bastida Merino and G. Benguria Elguezabal1, "Business Process Definition Languages
Versus Traditional Methods Towards Interoperability", Book chapter, COTS-Based Software
Systems, Lecture Notes in Computer ScienceVolume 3412/2005, pages 25-35, ISBN:978-3-
540-24548-3, January 2005

[Bastos 02] R. Bastos and D. Ruiz. Extending UML activity diagram for workflow modeling in production
systems. In R. H. Sprague, Jr., editor, Proc. 35th Annual Hawaii Intern. Conference on
System Sciences (HICSS-35). IEEE Computer Society, 2002.

[Becker 02] Becker, J., zur Muehlen, M. and Gille, M. (2002) ‘Workflow application
architectures:classification and characteristics of workflow-based information systems’, in L.
Fischer (Ed.) Workflow Handbook 2002. Future Strategies, Lighthouse Point, FL, pp.39–50

183

[Bendraou 05a] Bendraou R., Gervais M.P. and Blanc X., "UML4SPM: A UML2.0-Based metamodel for
Software Process Modeling", in Proceedings of the ACM/IEEE 8th International Conference
on Model Driven Engineering Languages and Systems (MoDELS'05), Montego Bay,
Jamaica, Oct. 2005, LNCS, Vol. 3713, PP 17-38.

[Bendraou 05b] Bendraou R., Desfray P., and Gervais M.P., "MDA Components: A Flexible Way for
Implementing the MDA Approach", in Proceedings of the European Conference on Model
Driven Architecture –Foundations and Applications (ECMDA-FA'05), Nuremberg, Germany,
Nov. 2005, LNCS Vol. 3748, PP 59-73.

[Bendraou 06] Bendraou R., Gervais M.P. and Blanc X, "UML4SPM: An Executable Software Process
Modelling Language Providing High-Level Abstractions", in Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing Conference (EDOC'06), pp. 297-306,
Hong Kong, China, , 2006

[Bendraou 07a] Bendraou R. , Desfray P., Gervais M.P., and Muller A., "MDA Tool Components: A Proposal
for Packaging Know-how in Model Driven Development", to appear in SoSyM: Journal on
Software & System Modeling. LNCS 2007

[Bendraou 07b] Bendraou R., Gervais M.P. "A Framework for Classifying and Comparing Process
Technology Domains", to appear in Proceedings of International Conference on Software
Engineering Advances (ICSEA'07). IEEE Computer Society Press 2007

[Bendraou 07c] Bendraou R. , Sadovykh A. Gervais M.P. and Blanc X,, " Software Process Modeling and
Execution: The UML4SPM to WS-BPEL Approach ", to appear in Proceedings of the 33rd
EUROMICRO Conference of Software Engineering Advanced Application (SEAA). IEEE
Computer Society Press 2007.

[Bézivin 01] Bézivin, J., Gerbé, O. Towards a precise definition of the OMG/MDA framework. ASE'01,
Automated Software Engineering, San Diego, USA, November 26-29, 2001.

[Bézivin 05] Bézivin, J., On the unification power of models, Software and Systems Modeling, Volume 4,
Issue 2, May 2005, pages 171 – 188

[Blanc 04] Blanc X., Gervais M.P., and Sriplakich P. "Model Bus: Towards the Interoperability of
Modelling Tools", in Proceedings of the Model Driven Architecture: Foundations and
Applications (MDAFA 2004), Linköping University, Sweden, June 2004

[Boehm 76] B. Boehm, "Software Engineering". In IEEE Transactions. Computer, C-25, 12, 1226-1241,
1976.

[Boehm 87] B. Boehm, "A Spiral Model of Software Development and Enhancement". Computer, 20(9),
61-72, 1987

[Bolcer 98] G. A. Bolcer and R. N. Taylor, "Advanced workflow management technologies," Software
process - Improvement and practice, vol. 4, pp.125-171, 1998.

[Bordbar 04] Bordbar B., Staikopoulos A.: "On Behavioural Model Transformation in Web Services",
Proceedings of the ER 2004 Workshops CoMoGIS, COMWIM, ECDM, CoMoA, DGOV, and
ECOMO, Shanghai, China 2004, Springer Press, 2004.

[BPEL4WS 03] BEA, IBM, Microsoft, SAP and Siebel, “Business Process Execution Language for Web
Services Version 1.1”, S. Thatte, et al., May 2003.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

[Brinkkemper 01] Brinkkemper, S., Saeki, M., and Harmsen. F. A Method Engineering Language for the
Description of Systems Development Methods. 13th Conference on Advanced Information
Systems Engineering (CaiSE’2001), Lecture Notes in Computer Science 2068, pp. 473–476,
2001

[Cass 00] Cass, A.G., Staudt Lerner, B., McCall, E.K., Osterweil, L. J.,Sutton, Jr., S.M., and Wise, A.,
"Little-JIL/Juliette: A Process Definition Language and Interpreter" .In Proceedings of the
22nd Internantioanl Conference on Software Engineering, June 2000.

[Cohen 88] Cohen D. "AP5 Manual". Univ. of Southern California, Information Sciences Institute, March
1988.

184

[Combemale 06] Combemale B., Caplain A., Crégut X. , and Coulette B., "Towards a rigorous use of SPEM"
in Proceedings Of ICEIS'06, INSTICC, May, 2006 - Paphos, Cyprus

[Conradi 92a] Conradi, R., Fernström, C., Fuggeta, A., Snowdon,B., "Towards a Reference Framework for
Process Concepts", Proc. Second European Workshop on Software Process Technology,
Trondheim, 9/1992, Lecture Notes in Computer Science, 635, Springer-Verlag Ed.

[Conradi 92b] Conradi R. et al. "Design, use, and implementation of SPELL, a language for software
process modeling and evolution". In Proc. of EWSPT’92, Springer Verlag LNCS vol.

[Conradi 94] R. Conradi, J. Larsen, M. N. Nguyên, B. P. Munch, P. H. Westby, W. Zhu, M. L. Jaccheri, C.
Liu, “EPOS: Object-Oriented and Cooperative Process Modelling”. In A.Finkelstein, J.
Kramer, and B. Nuseibeh, editors. Software Process Modelling and Technology. Research
Studies Press Limited (J. Wiley), 1994

[Conradi 95] R. Conradi and C. Liu, “Process Modelling Languages: One or Many?”, in W. Schafer, ed.,
Proceedings of the 4th European Workshop on Software Process Technology (EWSPT-4),
Noordwijkerhout, The Netherlands. Lecture Notes in Computer Science, Vol. 913, Springer,
April 1995.

[Conradi 99] R. Conradi, M.J. Jaccheri, "Process Modelling Languages". In: Derniame, J.C., Kaba, B.A.,
Wastell, D. (eds.): Software Process: Principles, Methodology and Technology. Lecture
Notes in Computer Science, Vol. 1500. Springer-Verlag,Berlin Heidelberg New York (1999)
27-51

[Chou 00] Chou, S.C. and Chen, J.Y.J., "Process Program Development Based on UML and Action
Cases, Part 1: the Model", in Journal of Object-Oriented Programming, Vol. 13, Num. 2, pp
21--27, 2000.

[Chou 02] S.-C. Chou, A process modeling language consisting of high level UML diagrams and low
level process language, Journal of Object Technology 1, 2002, 4, pp. 137–163

[Clarck 02] Clark T., Evans A., and Kent S. "A metamodel for package extension with renaming". In
Jean-Marc Jézéquel, Heinrich Hussmann,and Stephen Cook, editors, 5th International
conference on the Unified Modelling Language (UML 2002), volume 2460. Lecture notes in
computer science, 2002.

[Cugola 98a] Cugola G. and Ghezzi C. , “Software processes: a retrospective and a path to the future,”
Software process - Improvement and practice, vol. 4, pp.101-123, 1998.

[Cugola 98b] Cugola G., "Inconsistencies and deviations in process support systems". PhD Thesis,
Politecnico di Milano - Dipartimento di Elettronica e Informazione, February 1998

[Cugola 01] CUGOLA, G., DI NITTO, E., AND FUGGETTA, A., "The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS", IEEE Transactions on Software
Engineering. 2001

[Curtis 92] W. Curtis, M. I. Kellner and J. Over. "Process Modelling". Communication of ACM, 35 (9),
1992, pp. 75-90.

[Dami 98] Dami S., Estublier J., and Amiour M., “APEL: a graphical yet executable formalism for
process modeling”, Automated Software Engineering Journal, special issue on Process
Technology, vol. 5, no. 1, January 1998.

[Davenport 93] T. Davenport, Process Innovation: Reengineering work through information technology,
Harvard Business School Press, 1993, Boston

[Desfray 99] Desfray P. and al, "White Paper on the Profile mechanism", OMG document ad/99-04-
07,Avril 1999.

[Desfray 00 Desfray P., "UML profiles versus metamodel extensions: an ongoing debate". Available at
http://www.omg.org/news/meetings/workshops/presentations/uml_presentations/5-
3%20Desfray%20-%20UMLWorkshop.pdf

185

[Di Nitto 02] Di Nitto E. et at. "Deriving executable process descriptions from UML", in Proceedings of the
24th Inter. Conf. on Software Engineering (ICSE'02), Orlando, Florida 2002, ACM Press

[Dobson 06] Dobson G., "Using WS-BPEL to Implement Software Fault Tolerance for Web Services", in
Proceedings of the 32nd EUROMICRO-SEAA'06 conference, IEEE Computer Society, 2006.

[Dowson 91] M. Dowson, B. Nejmeh, W. Riddle, "Fundamental Software Process Concepts", Proc. First
European Workshop on Software Process Modeling, Milan, April 91, AICA Press.

[D’Souza 99] D’Souza D.F and Wills A.C. "Objects, Components, and Frameworks with UML: the
Catalysis Approach". Addison-Wesley, 1999.

[Emerson 04] Emerson M., Sztipanovits J., and Bapty T., “A MOF-Based Meta-modeling Environment,”
Journal of Universal Computer Science, October 2004, pp. 1357--1382.

[EMF] Eclipse EMF (Eclipse Modeling Framework), at http://www.eclipse.org/emf/

[Eclipse] Eclipse Projects at http://www.eclipse.org/

[Endl 98] Endl, R., Knolmayer, G. and Pfahrer, M. (1998), 'Modeling Processes and Workflows by
Business Rules' in 1st European Workshop on Workflow and Process Management
(WPM'98), Swiss Federal Institute of Technology (ETH), Zurich

[EPF] Eclipse Process Framework (EPF), at www.eclipse.org/epf/

[Feiler 93] Feiler P.H., Humphrey Watts. S. “Software process development and enactment”, in Proc. of
2nd Inter. Conf. on the Software Process, Berlin, 1993, IEEE Computer Society Press.

[France 06] France, R.B., Gosh, S. Dinh-Trong, T, and Solberg, A. "Model-driven development using
UML2.0: Promises and Pitfalls, IEEE Computer Magazine February 2006, pp 59-66

[Franch 97] Franch, X.; Botella, P.; Burgués, X.; Ribó, J.M.: "ComProLab: A Component Programming
Laboratory". Proceedings 9th Software Engineering and Knowledge Engineering Conference
(SEKE), Knowledge Systems Institute, Skokie (1997), 397-406

[Franch 98] Franch, X.; Ribó, J.M., "A Structured Approach to Software Process Modelling",
Proceedings 24th EUROMICRO Conference, IEEE Computer Society Press, Los Alamitos
Washington Brussels Tokyo (1998), 753-762

[Fuentes 04] Fuentes L. and Vallecillo A.. "An introduction to UML profiles". UPGRADE, The European
Journal for the Informatics Professional, 5(2):5–13, Apr. 2004

[Fuggetta 00] A. Fuggetta. "Software Process: A Roadmap". 22nd International Conference on Software
Engineering (ICSE’2000), Future of Software Engineering Track, June 4–11, Limerick
(Irlanda), ACM, 2000

[Gamma 94] Gamma E., Helm R., Johnson R., and Vlissides J. Design Patterns: Elements of Reusable
Object- Oriented Software. Addison-Wesley, 1994.

[Georgakopoulos
95]

Georgakopoulos D., Hornick M., Sheth A. "An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure", Distributed and Parallel
Databases, vol.3, pp.119-152, 1995

[GEF] Eclipse GEF (Graphical Editing framework), at http://www.eclipse.org/gef/

[GMT] Eclipse GMT (Generative Modeling technologies), at http://www.eclipse.org/gmt/

[Giaglis 01] Giaglis, G.M. 2001. “A taxonomy of business process modeling and information systems
modeling techniques“. International Journal of Flexible Manufacturing Systems, Vol. 13, No.
2, 209-228.

[Gordijn 00] Gordijn J., Akkermans J. M. & Vliet J. C."Business Modeling is not Process Modeling",
eCOM2000 workshop, 19 th International Conference on Conceptual Modeling 2000

186

[Greenfield 03] Greenfield J., Short K. "Software factories: assembling applications with patterns, models,
frameworks and tools", in Proceedings of the 18th Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA), Anheim, CA, USA, 2003,
ACM press

[Gruhn 92] Gruhn, V. “Software Processes are Social Processes,” Proceedings of the Fifth International
Workshop on Computer-Aided Software Engineering, Montreal, Quebec, Canada, 1992, pp.
196-201.

[Hammer 96] Hammer, M.: Beyond Reengineering – How the process-centered organization is changing
our work and our lives. Harper Collins Publishers, 1996.

[Harel 00] D. Harel, “From play-in scenarios to code: An achievable dream,” Computer, to appear.
Preliminary version in Tom Maibaum (Ed.), Proc. Fundamental Approaches to Software
Engineering (FASE). Lecture Notes in Computer Science, Vol. 1783, Springer-Verlag, 2000,
pp. 22–34, IEE Computer 34:1, Jan. 2001, pp. 53–60.

[Hausmann 05] Hausmann J.H., Störrle H., "Towards a Formal Semantics of UML 2.0 Activities", in Proc. of
the German Software Engineering Conference (SE'05).

[Henderson 94] Henderson, P. “Software Processes are Business Processes Too,” Proceedings of the Third
International Conference on the Software Processes: Applying the Software Process,
Reston, Virginia, 1994, pp. 181-182.

[Henderson 04] B Henderson-Sellers, CA González-Pérez, "A Comparison of Four Process Metamodels and
the Creation of a New Generic Standard", Information and Software Technology, 2004

[Hosier 61] W. A. Hosier, "Pitfalls and Safeguards in Real-Time Digital Systems with Emphasis on
Programming", IRE Trans. Engineering Management, EM-8, June 1961

[Humphrey 89a] W.S. Humphrey. "The Software Engineering Process: Definition and Scope", in Proceedings
of the 4th International Software Process Workshop on Representing and Enacting the
Software Process, Devon, United Kingdom, 1989

[Humphrey 89b] W.S. Humphrey and M.I. Kellner, "Software process modeling: Principles of entity process
models". In Proceedings of the Eleventh International Conference on Software Engineering.
IEEE Computer Society, Washington, DC, 1989, pp. 331-342.

[Humphrey 92] W.S. Humphrey and P.H. Feiler, "Software process development and enactment: Concepts
and definitions". Tech. Rep. SEI-92-TR-4. Pittsburgh: Software Engineering Institute,
Carnegie Mellon University. To be published, 1992.

[Hyungwon 96] Hyungwon L. and Chisu W. "HI-PLAN: A Structured Project Planning Method". In Journal of
Korea Information Science Society, Vol. 23, No. 8, 821-831, Aug. 1996.

[IEEE 90] Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. New York, NY: 1990

[IBM 97] IBM Object Technology Center, "Developing Object-oriented Software: An Experience-based
Approach" , Prentice-Hall, 1997, pp. 192-232.

[IBM 04] Summit Ascendant, at http://www-128.ibm.com/developerworks/rational/library/content
/RationalEdge/may04/TheRationalEdge_May2004.pdf

[Intalio] Intalio BPMS Community Edition, at www.intalio.com

[ISO 06] ISO SEMDM, "Software Engineering — Metamodel for Development Methodologies", ISO
document, ISO/JTC 1/SC 7 ICS 35.080, May 2006

[ISO 98] International Organization for Standardization. ISO/IEC, ISO 9000 Quality Management, 7th
edition, 1998

[Jaccheri 99] Jaccheri M.L., Baldi M., Divitini M., "Evaluating the Requirements for Software Process
Modelling Languages and Systems", in Proceedings of Process support for Distributed
Team-based Software Development (PDTSD'99), Florida, USA, August 1999

187

[Jäger 98] Dirk Jäger, Ansgar Schleicher, and Bernhard Westfechtel. Using UML for Software Process
Modeling. Number 1687 in LNCS, pages 91-108, 1998.

[Jennings 96] N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O'Brien, and M. E. Wiegand.
"Agent-based business process management". International Journal of Cooperative
Information Systems, p 105-130, 1996

[Johansson 93] H.J. Johansson, et.al, Business Process Reengineering: BreakPoint Strategies for Market
Dominance, 1993, John Wiley & Sons

[Juric 07] Juric M., Todd D.H., "BPEL Processes and Human Workflow", SOA Web Services Journal,.
12-04-2006. http://webservices.sys-con.com/read/204417.htm last time page visite June
2007

[Kaiser 90] Kaiser G.E., Barghouti N.S. and Sokolsky M.H. "Preliminary experience with process
modeling in the Marvel software development environment kernel". In Proceedings of the
23d Annual Hawaii Internernational. Conference on System Sciences, Vol.H Software Track.
IEEE Computer Society, Washington, DC, 1990, 131-140

[Kellner 89] M. I. Kellner, "Software process modeling: Value and experience". SEI Tech. Rev. Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa., 1989, pp. 22-54.

[Kellner 91a] Kellner, M.I. and Rombach, H.D. "Session summary: Comparisons of software process
descriptions". In Proceedings of the 6th International. Software Process Workshop. IEEE
Computer Society, Washington, DC, 1991, pp. 7-18

[Kellner 91b] Kellner, M.I., Feiler, P.H., Finklestein, A., Katayama, T., Osterweil, L.J., Penedo, M.H.,
Rombach, H.D. "ISPW-6 software process example". In Proceedings of the first
International. Conference on the Software Process. IEEE Computer Society, Washington,
DC, 1991, pp. 176-186.

[Kloppmann 05] Kloppmann, M. et al. "WS-BPEL Extension for People BPEL4People", Joint white paper,
IBM and SAP, July 2005.

[Korherr 06] Korherr B. and List B. "Extending the UML 2 Activity Diagram with Business Process Goals
and Performance Measures and the Mapping to BPEL". 2nd International Workshop on Best
Practices of UML (BP-UML'06) at the 25th International Conference on Conceptual Modeling
(ER'06), November 2006, Tucson.

[Kruchten 03] Kruchten, P, "The Rational Unified Process: An Introduction" Addison-Wesley Professional,
2003

[Lawrence 97] P. Lawrence (ed.), "WfMC Workflow Handbook", John Wiley & Sons Ltd., 1997.

[Lei 97] Lei, Y. and Singh, M.P.: A Comparison of Workflow Metamodels. Proceedings of the ER-97
Workshop on Behavioral Modeling and Design Transformations: Issues and Opportunities in
Conceptual Modeling, Los Angeles, November 1997

[List 06] List B., Korherr B., "An Evaluation of Conceptual Business Process Modelling Languages",
Proceedings of the 21st ACM Symposium on Applied Computing (SAC'06), April, Dijon,
France, ACM Press, 2006.

[Lonchamp 93] Lonchamp, J. 1993. A structured conceptual and terminological framework for software
process engineering. In Proceedings of the 2nd International Conference on the Software
Process (ICSP 2) (Berlin, Germany). IEEE Computer Society Press, Los Alamitos, Calif.

[Loui 88] Loui, M.C., "The case for assembly language programming", in journal of IEEE Transactions
on Education, Vol 31, 1988

[Madhavji 93] Madhavji N.H. and Penedo M.H editors. IEEE Transaction on Software Engineering: Special
Issue on process evolution. IEEE Computer Society Press, December 1993

[Mantell 05] Mantell, K. "From UML to BPEL". URL:
http://www.ibm.com/developerworks/webservices/library/ws-uml2bpel, September 2005.

188

[Mellor 02] Mellor S.J. and Balcer M., "Executable UML: A Foundation for Model-Driven Architecture",
Addison-Wesley, 2002

[Mellor 03] Mellor S.J. , A.N. Clark, and T. Futagami, “Model-Driven Development,” IEEE Software, no.
5, pp. 14-18, Sept./Oct. 2003.

[Modelware] Modelware, IST European Project contract no 511731, at http://www.modelware-ist.org/

[Modelplex] Modelplex, IST European Project contract IST-3408

[Montangero 99] Montangero C., Derniame J.C., and Kaba B.A., Warboys B. "The software process:
Modelling and technology", LNCS GmbH. Vol. 1500/1999.

[MSProject] Microsoft Project Manager at
http://www.microsoft.com/france/office/2007/solutions/epm/overview.mspx

[Mühlen 99] Mühlen. M. zur, "Evaluation of Workflow Management Systems Using Meta Models". In
R.Sprague, Proceedings of the 32nd Hawaii International Conference on System Sciences
(HICSS’99). 1999.

[Muller 05] Muller P.A,Fleurey F., and Jézéquel J.M. "Weaving executability into object-oriented meta-
languages.", In S. Kent L. Briand, editor, Proceedings of MODELS/UML'2005, volume 3713
of LNCS, pages 264--278, Montego Bay, Jamaica, October 2005. Springer.

[OASIS] http://www.oasis-open.org/

[Objecteering] Objecteering, at http://www.Objecteering.com

[Odell 94] Odell J. "Power Types". Journal of Object-Oriented Programming, 1994. 7(2): 8-12.

[OMG 00a] OMG, "Workflow Management Facility Specification v1.2", OMG document formal/00-05-02,
April 2000, at http://www.omg.org.

[OMG 00b] OMG UML1.3, "Unified Modelling Language", version 1.3., OMG document formal/00-03-01,
March 2000, at http://www.omg.org.

[OMG 01] OMG UML1.4, "Unified Modelling Language", version 1.4., OMG document formal/01-09-67,
September 2001, at http://www.omg.org.

[OMG 02] OMG SPEM1.0, “Software Process Engineering Metamodel”, OMG document formal/02-
11/14, November 2002, at http://www.omg.org.

[OMG 03] OMG MDA Guide Version 1.0.1., Object Management Group, June 2003. Document number
omg/2003-06-01.

[OMG 04] OMG SPEM2.0 RFP, “Software Process Engineering Metamodel”, OMG document ad/2004-
11-04, November 2004, at http://www.omg.org/docs/ad/04-11-04.pdf, page last visit January
2, 2007.

[OMG 05a] OMG SPEM1.1, “Software Process Engineering Metamodel”, OMG document formal/05-01-
06, January 2005, at http://www.omg.org.

[OMG 05b] OMG XMI, "XML Metadata Interchange", version 2.1., OMG document formal/05-09-01 ,
September 2005 at http://www.omg.org

[OMG 05c] OMG, Semantics of a Foundational Subset for Executable UML Models RFP, OMG
document ad/05-04-02, April 2005, at: http://www.omg.org/docs/ad/05-04-02.pdf, page last
visit May 27, 2007

[OMG 06a] OMG BPMN, Business Process Modeling Notation final adopted specification, OMG
document dtc/06-02-01, February 2006 at http://www.omg.org

[OMG 06b] OMG OCL, "Object Constraint Language version 2.0", adopted specification, OMG
document formal/06-05-01, May 2006, at http://www.omg.org

[OMG 06c] OMG MOF, "Meta Object Facility version 2.0", adopted specification, OMG document
formal/06-01-01, January 2006, at http://www.omg.org

189

[OMG 06d] OMG "Diagram Interchange", adopted specification, OMG document formal/06-04-04, April
2006, at http://www.omg.org

[OMG 06e] OMG, Semantics of a Foundational Subset for Executable UML Models, Initial Submission,
OMG document ad/06-05-02 at: http://www.omg.org/docs/ad/05-04-02.pdf, page last visit
July 1, 2007

[OMG 07a] OMG UML, "Unified Modeling Language", Infrastructure Specification, version 2.1.1., OMG
document formal/07-02-06 , February 2007 at http://www.omg.org

[OMG 07b] OMG UML, "Unified Modeling Language", Superstructure Specification, version 2.1.1., OMG
document formal/07-02-04 , February 2007 at http://www.omg.org

[OMG 07c] OMG SPEM2.0, “Software Process Engineering Metamodel”, OMG document, final adopted
specification, ptc/07-03-03, March 2007, at http://www.omg.org.

[OMG UMLpf] OMG UML Profiles at http://www.omg.org/technology/documents/profile_catalog.htm

[Oracle] Oracle BPEL Process manager, at www.oracle.com/technology/bpel

[Osellus] Osellus IRIS Suite, at www.Osellus.com

[Osterweil 87] Osterweil L., "Software Processes Are Software Too" in Proc. of the 9th International
Conference on Software Engineering (ICSE'9), New York, 1987, ACM Press.

[Ould 95] Ould, M.A., Business Processes: Modelling and analysis for re-engineering and
improvement, John Wiley & Sons, Chichester, England, 1995.

[Ouyang 06] Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.H.M.: "Translating Standard Process
Models to BPEL". In Pohl, K., ed.: 18th Conference on Advanced Information Systems
Engineering, Luxembourg, Springer (2006) forthcoming

[Paulk 95] M. Paulk, et al., "The Capability Maturity Model: Guidelines for Improving the Software
Process", Addison-Wesley, Reading, MA, 1995, ISBN 0-201-54664-7

[Peltier 02] Peltier M., "Transformation entre un profile UML et un méta-modèle MOF: Application au
langage MTRANS", LMO (Langages et Modèles à Objets), volume 1-n°1/2002, Hermes,
2002

[Perry 89] Perry D. E., Editor, Proc. of the 5th Inter. Software Process Workshop (ISPW’5),
Kennebunkport, Maine, USA, October 1989, IEEE Computer Society Press

[Porter 85] Porter, M., 1985. Competitive Advantage, Fee Press, New York.

[Raistrick 04] Raistrick, C., Francis, P., Wright, J., Carter, C., Wilkie, I. "Model Driven Architecture with
Executable UML", Cambridge University Press, 2004.

[RMC] IBM Rational Method Composer (RMC), at www.ibm.com/software/awdtools/rmc/

[RPM] Rational Portofolio Manager (RPM), at http://www-
306.ibm.com/software/awdtools/portfolio/index.html

[RPW] Rational Process Workbench (RPW) at http://www-
128.ibm.com/developerworks/rational/library/6001.html#author

[Riddle 89] W.E. Riddle, "Session summary: Opening session". In Proceedings of the 4th International
Software Process Workshop. IEEE Computer Society, Washington, DC, (1989), pp. 5-10.

[Rolland 93] C. Rolland, Modeling the Requirements Engineering Process, 3rd European-Japanese
Seminar on Information Modelling and Knowledge Bases, Budapest, Hungary, June 1993.

[Rolland 98] C. Rolland, A Comprehensive View of Process Engineering. Proceedings of the 10th
International Conference on Aided Software Engineering CAiSE'98, B. Lecture Notes in
Computer Science 1413, Pernici, C. Thanos (Eds), Springer. Pisa, Italy, June 1998

190

[Rothenberg 89] Rothenberg, J. "The Nature of Modeling in Artificial Intelligence, Simulation, and Modeling".
In L.E. William, K.A. Loparo, N.R. Nelson, eds. New York, John Wiley and Sons, Inc., 1989,
pp. 75-92

[Royce 70] W. W. Royce, "Managing the Development of Large Software Systems". In Proc. 9th.
International Conference on Software Engineering, IEEE Computer Society, 1987 ,328-338
Originally published in Proc. WESCON, 1970.

[Ruiz 04] F. Ruiz-Gonzalez and G. Canfora “Software Process: Characteristics, Technology and
Environments” UPGrade, The European Journal for the Informatics Professional, vol 5, no.
5, 2004, pp. 6-10

[Russel 06] Russell N., Van der Aalst W.M.P., Ter Hofstede A.H.M. , and Wohed P."On the Suitability of
UML 2.0 Activity Diagrams for Business Process Modelling", In M. Stumptner, S. Hartmann,
and Y. Kiyoki, editors, Proceedings of the Third Asia-Pacific Conference on Conceptual
Modelling (APCCM2006), volume 53 of CRPIT, pages 95-104, Hobart, Australia, 2006. ACS

[Sarstedt 06] Sarstedt, S. "Semantics Foundation and Tool Support for Model-Driven Development with
UML2 Activity Diagrams", PhD Dissertation, Ulm University, 2006

[Seidewitz 03] Seidewitz, E.: "What models mean". IEEE Software. 20(5), 26–32, (2003)

[Scheer 99] Scheer A.-W.: "ARIS - Business Process Modeling". 2nd ed. Berlin et al. (1999)

[Scacchi 01] W. Scacchi "Process Models in Software Engineering". In, J.J. Marciniak (ed.),
Encyclopedia of Software Engineering, 2nd Edition, John Wiley and Sons, Inc, New York,
Dec. 2001

[Scacchi 94] Scacchi, W. “Business Processes Can Be Software Too: Some Initial Lessons Learned,”
Proceedings of the Third International Conference on the Software Processes: Applying the
Software Process, Reston, VA, 1994, pp. 183-184.

[Schmidt 98] M.-T. Schmidt, “Building Workflow Business Objects,” in Business Object Design and
Implementation II, D. Patel, J.Sutherland, and J. Miller, eds, Springer-Verlag, London,1998,
pp. 64-76.

[Schreyjak 98] Schreyjak, S., "Synergies in a Coupled Work ow and Component-Oriented System". In:
Grundy, John (Hrsg.): Proceedings of CBISE'98 CAiSE*98 Workshop on Component
Based Information Systems Engineering, 1998.

[Sellic 03] Selic, B., "The pragmatics of model-driven development". IEEE Software 2003., 19–25,
Special issue on model-driven development.

[Sommerville 07] I.Sommerville, "Software Engineering 8", 2007, eighth edition, Addison-Wesley, ISBN 10:0-
321-31379-8

[Sol 92] Sol, H.G. and Crosslin, R.L. (Eds.) "Dynamic Modeling of Information Systems, II, North-
Holland, Amsterdam, 1992

[Sriplakich 07a] Sriplakich P., X. Blanc, M.-P. Gervais, Support collaboratif pour la manipulation de modèles
à large échelle, Actes des 3ème Journées sur l'Ingénierie Dirigée par les Modèles (IDM 07),
2007.

[Sriplakich 07b] Sriplakich P. , X. Blanc, M.-P. Gervais, ModelBus: a distributed platform for collaborative
software engineering on large-scale models, Submitted to the 9th International Symposium
on Distributed Objects, Middleware, and Applications (DOA), 2007

[Standish 06] Standish Group: "2006 Research Report" at: http://www.standishgroup.com.

[STL 06] STL: UML2.0 Semantics Project, at http://www.cs.queensu.ca/~stl/internal/uml2/index.html,
page last visit: February 27, 2006

[Störrle 04] Störrle H. "Semantics of UML2.0 Activities with Data-Flow", in Proc. of the Visual Languages
and Formal Methods Workshop (VLFM'04), Rome, Italy, Septembre 2004.

191

[Sutton 95a] Sutton, Jr., S.M., Tarr, P.L., and Osterweil, L.J., " An Analysis of Process Languages"
CMPSCI Technical Report 95-78, University of Massachusetts, (1995)

[Sutton 95b] Sutton , Jr., S.M., Heimbigner D., and Osterweil L. J. "APPL/A: A language for software-
process programming". ACM Transaction on Software Engineering and Methodology,
4(3):221–286, July 1995

[Sutton 97] Sutton, Jr. S. M. and Osterweil L. J. . The design of a next-generation process language.
Technical Report CMPSCI Technical Report 96-30, University of Massachusetts at Amherst,
Computer Science Department, Amherst, Massachusetts 01003, May 1996. Revised
January, 1997.

[Swenson 95] Swenson K D and Irwin K 1995 Workflow technology:tradeoffs for business process re-
engineering Conf. onOrganizational Computing Systems (Milpitas, CA, 1995) (New York:
ACM) pp 22–9

[Sztipanovits 95] Sztipanovits, J., et al. "Multigraph : an architecture for model-integrated computing" .In
ICECCS, pages 361–368, 1995

[Timmers 99] P. Timmers. Electronic Commerce: Strategies and Models for Business-to-Business Trading.
JohnWiley & Sons Ltd., Chichester, England, 1999.

[Thomas 94] Thomas, I. “Software Processes and Business Processes,” Proceedings of the Third
International Conference on the Software Processes: Applying the Software Process,
Reston, VA,1994, p. 185

[Totland 95] T.Totland and R. Conradi, "A survey and comparison of some research area relevant to
software process modelling". In Software Process Technology—Proceedings of the 4th
European Software Process Modeling Workshop, W. Sch¨afer (Ed.), Noordwijkerhout,
Netherlands: Springer, pp. 65–69. Appeared as Lecture Notes in Computer Science 913,
1995.

[Talvanen 02] Talvanen, J. P. "Domain Specific Modelling: Get your Products out 10 Times Faster". Real-
Time & Embedded Computing Conference, 2002.

[UML 06] UML Virtual Machine Project, at http://dssg.cs.umb.edu/projects/umlvm.html, page last visit:
May 27, 2007.

[Van Der Aalst
03a]

Van der Aalst W.M.P, Ter Hofstede A.H.M., Kiepuszewski B., and Barros A.P. " Workflow
Patterns", in journal of Distributed and Parallel Databases, 14(3), pages 5-51, July 2003.

[Van Der Aalst
03b]

Van der Aalst W.M.P, Ter Hofstede A.H.M., and Weske M., editors, International Conference
on Business Process Management (BPM 2003), volume 2678 of Lecture Notes in Computer
Science, pages 1-12. Springer-Verlag, Berlin, 2003.

[Van Gigch 91] van Gigch, J.P, "System Design Modeling and Metamodeling", Plenum Press, New York.
ISBN 0-306-43740-6

[Vitolins 05] Vitolins V., Kalnins A., "Semantics of UML 2.0 Activity Diagram for Business Modeling by
Means of Virtual Machine", in Proceedings of the Ninth IEEE International EDOC Enterprise
Computing Conference, IEEE,2005:181-192

[Websphere] WebSphere Process Serve at http://www-
1.ibm.com/support/docview.wss?uid=swg27007157&aid=1. Last time page visit 13/06/2007

[WFMC 06] WorkFlow Managment Coalition (WFMC), at http://www.wfmc.org/about.html, last time
visited link: 12/26/2006

[WFMC 99] WorkFlow Managment Coalition (WFMC),Terminology & Glossary, Document Number
WFMC-TC-1011, Feb. 1999

[WFMC 95] Reference Model - The Workflow Reference Model, WFMC-TC-1003, Jan 95, 1.1

[wikipidia] Wikipidia, Business Process, at http://en.wikipedia.org/wiki/Business_process

192

[Wise 00] Wise A., Cass A.G., Lerner B.S., McCall E.K., Osterweil L.J., Sutton, S.M., "Using Little-JIL
to Coordinate Agents in Software Engineering", Proceedings of the Automated Software
Engineering Conference (ASE 2000), Grenoble, France, pp. 155-163, September 2000

[WfP] Workflow Patterns at, http://www.workflowpatterns.com
[Wohed 04] Wohed P., van der Aalst W.M.P., Dumas M, ter Hofstede A.H.M., and Russel N., "Pattern-

based Analysis of the Control-Flow Perspective of UML Activity Diagrams", in L. Delcambre
et al., editors, Proceedings of the 24th International Conference on Conceptual Modeling
(ER 2005), volume 3716 of Lecture Notes in Computer Science, pages 63-78. Springer-
Verlag, Berlin, 2005

[WSBEPL 07] Web Services Business Process Execution Language Version 2.0. Working Draft. WS-BPEL
TC OASIS, January 2007. URL: http://www.oasis-
open.org/committees/download.php/12791/

[WSDL 01] W3C Note, “Web Services Definition Language (WSDL) 1.1”, E.Christensen, F. Curbera, G.
Meredith, S. Weerawarana, March 15, 2001. http://www.w3.org/TR/2001/NOTE-wsdl-
20010315

[XML Schema
04a]

“XML Schema Part 1: Structures Second Edition”, W3C Recommendation, H. S. Thompson,
D. Beech, M. Maloney, N. Mendelsohn, October 28, 2004. http://www.w3.org/TR/2004/REC-
xmlschema-1-20041028/

[XML Schema
04b]

“XML Schema Part 2: Datatypes Second Edition”, W3C Recommendation, P. V. Biron, A.
Malhotra, October 28, 2004. http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[Xpath 99] “XML Path Language (XPath) Version 1.0”, W3C Recommendation, J.Clark, S. DeRose,
November 1999. http://www.w3.org/TR/1999/RECxpath-19991116

[XSLT 99] “XSL Transformations (XSLT) Version 1.0”, W3C Recommendation, J. Clark, November 16,
1999. http://www.w3.org/TR/1999/REC-xslt-19991116

[Zamli 01] K.Z. Zamli, , P.A. Lee, "Taxonomy of Process Modeling Languages". In: Proc. Of the
ACS/IEEE International Conference on Computer Systems and Applications. IEEE
Computer Society Press (June 2001) 435-437

[Zito 06a] Zito A., Diskin Z., and Dingel, J. "Package merge in UML 2: Practice vs. Theory" In
Proceedings of the 9th International Conference on Model Driven Engineering Languages
and Systems (MoDELS 2006), volume 4199 of LNCS, pages 185–199. Springer, 2006.

[Zito 06b] Zito A. and Dingel, J."Modeling UML2 package merge with Alloy". In First Alloy Workshop,
Portland, Oregon, USA, November 2006.

[2U 03] 2U Consortium. Unambiguous UML (2U) "3rd revised submission to UML 2 superstructure
RFP". version 0.2. OMG document ad/2002-12-23, 2003

193

194

Appendix A

UML4SPM Notations

The notation of UML4SPM is mainly based on UML2.0 Activity notations. Some
modifications were introduced in order to take into account some features proper to
software process modeling but also to increase understandability. For UML2.0 Activity
elements and Actions for which no notation is proposed by the standard, we proposed one.
In this appendix, we present only the notation of elements we reused within UML4SPM.

Activity Element Notations

Activity components : description Notation
ActivityFinalNode (from BasicActivities,
IntermediateActivities): an Activity may
have more than one ActivityFinalNode. The
first ActivityFinalNode that will be reached
by a control flow will stop all Activity's flows
(stops action executions and ends the
Activity).

ActivityParameterNode (from
BasicActivities): a specialization of Object
Node which represents input and output
parameters of an Activity. It is associated to a
Parameter which has a Type. It is possible
to define the multiplicity of the APN (e.g.
"0") which makes it an optional or
mandatory parameter for the Activity
execution.
We decided to enrich the notation by adding
a star symbol (i.e., "*") to specify that the
APN is optional. We can also specify the
State of the parameter the Activity is
receiving.

ConditionalNode (from Structured
Activities, CompleteStructuredActivities):
is StructuredActivityNode and allows
expressing a choice among many
alternatives. Conditional Nodes (CN) are
similar to Decision Nodes (defined below)
but in a more structured way (equivalent to
conditionals in programming languages). A
CN contains Clauses; each Clause includes a
Test and a Body. Only one clause is to be
executed in case of more than one clause's
test are evaluated at "true". It is also possible
to have an "else" clause that will execute if
all the other clauses are evaluated at "false".

Conditional Node with a sequential
evaluation:

Activity
 *

[State]

<<Conditional Node>>

<<test>> <<test>> <<test>> <<else>>

 Body Body Body Body

195

A CD provides as an output, a Result which
represents a set of Outputpins. Clauses can
be evaluated in parallel or sequentially.

The UML2.0 standard does not define a
notation for this element. We propose a
notation which takes as a basis, the one given
for StructuredActivityNodes. An arrow
symbol is used if the evaluation of the CN
clauses is to be performed sequentially.
Otherwise, "=" symbol is used in case of a
parallel evaluation of CN clauses.
For the expression of the clause's Test part,
the use of an Action Language is encouraged
for more readability (better than to use
Activity elements and Actions to express the
Test graphically). A Lock symbol is added
on the top-left corner if the mustIsolated
="true". This means that variables handled
within the CN are not accessible by actions
which are outside the CN.

Conditional Node with a parallel
evaluation:

Conditional Node with horizontal
portioning of clauses:

ControlFlow (from BasicActivities):
expresses the passing of the control flow
from one Activity Node into another. It is not
possible to transfer objects or data through
control flows. Being an Activity Edge, it is
possible to specify Guards on control flows
(conditions to be evaluated before passing
the control flow).

DataStoreNode (from
CompleteAcitivities): A DataStoreNode
keeps all objects (data) that enter it, copying
them when they are chosen to move
downstream. An incoming object replaces
any occurrence of this object in the
DataStoreNode. It is also possible to emit
conditions upon which objects can go out of
the DataStoreNode (e.g., state of the Object,
the value of a property of the object, etc.).
We modified the notation introduced by the
standard which consisted in a simple
rectangle to a cylinder -shaped form which is
more common for representing storage
entities.

<<CN>>

<<test>> Body

<<test>> Body

<<test>> Body

<<else>> Body

[Guard]

Selection
Behavior

<DataStore>>
Name
[State]

<<Conditional Node>>

<<test>> <<test>> <<test>> <<else>>

 Body Body Body Body

196

DecisionNode (IntermediateActivities): A
DecisionNode has one incoming edge and
multiple outgoing activity edges with
Guards. It is possible to define an "else"
outgoing edge that will be triggered in case
of all outgoing edge guards are evaluated at
"false". It is also possible to define a
Decision Input behavior that will for instance
extract an object's property value in order to
pass it to outgoing activity edge Guards for
evaluation instead of passing the object.

ExceptionHandler
(ExtraStructuredActivities): allows the
specification of a behavior to execute in case
of an exception occurs. The
ExceptionHandler is triggered by a
RaiseExceptionAction which specifies the
exception type. When the exception is raised,
the node protected by the handler is stopped

FlowFinalNode (IntermediateActivities):
stops all incoming flows. Does not affect the
other flows.

ForkNode (IntermediateActivities): A
ForkNode is a control node that splits a flow
into multiple concurrent flows. Combined
with a CallBehaviorAction, this would allow
calling multiple activities simultaneously.

InialNode (BasicActivities): An InitialNode
is a starting point for executing an Activity.
An Activity may have many InitialNodes and
when calling the Activity, all its InitialNodes
will be activated.

JoinNode (IntermediateActivities): A
JoinNode is a control node that synchronizes
multiple flows. It has multiple incoming
edges and one outgoing edge.
A specification giving the conditions under
which the join will be activated can be
express thanks to the JoinSpec property.

MegeNode (IntermediateActivites): A
MergeNode is a control node that brings
together multiple alternate flows. It is not
used to synchronize concurrent flows but to
accept one among several alternate flows.
Usually, it is used after a DecisionNode.

Pin (BasicActivities, CompleteActivities) :
represents input (Input Pins) and outputs
(OutputPons) of actions. Several notations
are proposed.

Protected
Node

Exception
Handler

Exception Type

{JoinSpec=…..}

Exception Type

<<DecisionInput>>

[Else]

197

Or:

Or:

LoopNode (CompleteStructuredActivitie,
StructuredActivities): is a
StructuredActivityNode, which allows
expressing loops as in programming
languages. A loop includes a Setup, a Test
and a Body that might be described using
Activity Nodes. The Setup part is executed
first. The Test part can be executed either
before the Body part or after depending on
the value of the isTestedFirst property.

The UML2.0 does not define a notation for
the LoopNode. We propose a notation which
takes as a basis, the one given for
StructuredActivityNodes. For the expression
the Test part of the clause, the use of an
Action Language is encouraged for more
readability (better than to use Activity
elements and Action to express the Test
graphically). An "F" or "L" character is used
to specify if the Test part is executed before
the Body (i.e. First "F") or after (i.e., Last
"L"). A Lock symbol is added on the top-left
corner if the mustIsolated ="true". This
means that variables handled within the CN
are not accessible by actions which are
outside the CN.

Loop Node:

Or:

ObjectFlow (BasicActivities,
CompleteActivities): An ObjectFlow is an
activity edge that can have objects or data
passing along it. It is possible to apply a
behavior upon the data passing the edge
before passing it to the target node (thanks to

Name
[State]

 Name
[State]

<<Selection>>

<<Loop Node>>

<<Setup>>

<<Test>>

Body

F

<<LN>>

<<Setup>>

<<Test>> L

Body

198

the transformation association). This
behavior must not modify the object. It also
possible to specify a selection (e.g. only
objects with property state="validated", etc.).
This is done using the selection association.

SequenceNode (StructuredActivities):
allows structuring a set of ordered executable
nodes.
The UML2.0 does not define a notation for
the SequenceNode. We propose a notation
which takes as a basis, the one given for
StructuredActivityNodes. A multiple arrow
symbol is used to differentiate with the
notation given for the
StructuredActivityNode. A Lock symbol is
added on the top-left corner if the
mustIsolated ="true". This means that
variables handled within the CN are not
accessible by actions which are outside the
CN.

StructureActivityNode
(CompleteStructuredActivities,
StrcuturedActvities): A
StructuredActivityNode represents a
structured portion of the Activity that is not
shared with any other structured node, except
for nesting. It may have control edges
connected to it, and pins. The execution of
any embedded actions may not begin until
the StructuredActivityNode has received its
entire object and control flows. The
availability of output pins from the
StructuredActivityNode does not occur until
all embedded actions have completed
execution. No data manipulated inside the
StructuredActivityNode is reachable from the
outside if the mustIsolated property is set to
"true".
The standard proposes the following
notation. We decided to add the lock symbol
to state if the mustIsolated is set to "true".
We will extend this notation for representing
specializations of the StructuredActivityNode

<<Selection>>

<<Transformation

<<Sequence>>

Var: x, y;

<<Structured>>

Var: x, y;

199

Action Notations

In this section, we present action notations. The description of actions retained in
UML4SPM was given in the previous chapter (cf. Section 3.2.3. UML2.0 Actions reused
within UML4SPM).

Actions Notations
AcceptEvenAction (Complete
Actions)

- For all types of event except Time Event:

- Only for Time event:

SendSignalAction (Basic Actions)

SendObjectAction (from
IntermediateActions): the standard
does not define a notation for this
action. We propose one.

BroadcastSignalAction (from
IntermediateActions): the standard
does not define a notation for this
action. We propose one.

CallOperationAction (form
BasicActions): We decided to enrich
the notation with the arrow symbol in
order to specify if the call is
synchronous (full arrow) or
asynchronous (half arrow). The
Activity name is optional in case of the
CallOperationAction and the called
Operation are owned by the same
Activity

Synchronous Call

Asynchronous Call

CallBehaviorAction (from
BasicActions): As for the
CallOperationAction, we decided to
enrich the notation with the arrow
symbol in order to specify if the call is

Synchronous Call

Event type

Signal type

Signal type

 [Activity Name::] Operation name ()

 [Activity Name::] Operation name ()

 Activity name

 Object: Type

200

synchronous (full arrow) or
asynchronous (half arrow).

Asynchronous Call

OpaqueAction (from BasicActions):
the standard does not define a specific
notation for this action. We reuse the
same notation for actions and we add
the possibility to document the
language of the opaque action (e.g.
Java). In absence of the language
property, the name of the action is used
to describe the intension of the action
(e.g. IdentifyAssociations). In
UML4SPM Opaque Action is used to
model manual actions and human
interactions.

RaiseExceptionAction (Structured
Actions) : the standard does not define
a notation for this action. We propose
one.

ISPW-6 Process Example modeled using UML4SPM
In this Appendix, we give only the result of modeling the ISPW-6 Process example

using the UML4SPM SPML. The details of what has to be performed within each activity,
their sequencing, their inputs, outputs, roles, and constraints are given in [Kellner 91b].

Action Name

Exception Type

Language: Java

 Activity name

201

Schedule and Assign Tasks

Pre-Condition: CCB authorization received

Post-Condition: All Outputs OK

Project Manager

Req. Change *
[Created]

V.0

Develop Schedule
& Assign

Schedule &
Assignments

[Created]
V.0

Update project
plan Project Plan

[initiated]

Project Plan
[Updated]

<<DataStore>>
Schedule &
Assignments

[Created]

Notify Agents

To: Agent

 Schedule &
Assignments

Schedule &
Assignments
[Assigned]

V.0

<<DataStore>>
File

202

Modify Design

Pre-Condition: if not first iteration, wait for review design to complete

Post-Condition: Modified Design document as Output

Design Engineer

<<Conditional Node >>

<< IF DesignDocument.State=Initialized>>

<< ELSE>>

Modify design

Design
Document
[Modified]

Design
Document

[Reviewed]

 Review Design (in:
Design Document)

Design
Document
[Modified]

Modify
Design Completion

Design
Document
[Created]

<<DataStore>>
Design Document

 Modify Code (in:
Design Document)

 Modify UnitTest Package (in:
Design Document)

Req. Change *
[Created]

V.0

Review
Design

Completion

Review
Design

Completion

Design Review*
FB

Modify design

Design
Document
[Modified]

203

Review Design

Pre-Condition: Design Documents Modified available, Verbal authorization form CCB

Post-Condition: All Outputs OK

Design Review Team: Design engineer, QA engineer, 2 Software engineers

Design
Document
[Modified]

Review Design

[ELSE]

[If Design Approved]

Modify Design (in:
Design Review FB)

Store Design
Document

Design
Document

[Approved]

Edit Design
Review Feedbacks

Design Review
FB

[created]

Edit Review
Report Outcome

Review Report
Outcome

SendMessage (
Review Report

Outcome)

Review
Design Completion

Req. Change

204

ANOTHER POSSIBILITY:

Review Design

Pre-Condition: Design Documents Modified available

Post-Condition: All Outputs OK

Design Review Team: Design engineer, QA engineer, 2 Software engineers

Design
Document
[Modified]

Review Design

[ELSE]

[If Design Approved]

Modify Design (in:
Design Review FB)

Design
Document

[Approved]

Edit Design
Review Feedbacks

Design Review
FB

Review Report
Outcome

Review
Design Completion

<<DataStore>>
Design Document

[Approved]

SendMessage (
Review Report

Outcome)

Store Design
Document

<<DataStore>>
Req. Change

Req. Change

205

Modify Code

Pre-Condition: begins as soon as task has been assigned

Post-Condition: clean compilation of all source codes

Role: Design Engineer

Check If Design
approved

[Design
approved]

ELSE

<<DataStore>>
Software Dev. Files

Design
Document
[Modified]

 Apply Modifications
 (in: Design Document)

Design
Document

[Approved]

 Apply Modifications (in:
Design Document)

Code
Feedbacks

 Apply Modifications (in:
Code Feedbacks)

Modify Code
Completion

206

Apply Modifications

Pre-Condition:

Post-Condition: clean compilation and storage of all source codes

Role: Design Engineer Tools: Code Editor (Ver. X), Compiler (Ver. Y)

Modify Code

<<DataStore>>
Software Dev. Files

Source Code
[initiated]

Req. Change

 CompilerName (Compile (source code))

Source Code
[modified]

Object Code
[initiated]

Log File
[initiated]

Check Compilation
Result

[Compilation
errors]

ELSE

Print Log File

Store new version
of Files

A

B

D
E

{JoinSpec= Priority (D and E) THEN (A and B and C) THEN
(A and B and F)}

Source Code
[modified]

Design
Document
[Modified]

Code
Feedbacks

C

F

207

Modify Test Plans

Pre-Condition: begins as soon as task has been assigned by the Project Manager

Post-Condition: Outputs provided Ok

Role: Design Engineer

Modify Test Plans
Completion

<<DataStore>>
Test Plans file

Req. Change

Test Plans
[initiated]

Modify Test Plans Test Plans
[modified]

208

Modify Unit Test Package

Pre-Condition: begins as soon as Modify Test Plan has completed. Subsequent iterations can begin as
the test unit step has completed

Post-Condition: Outputs provided Ok

Role: QA Engineer

Modify Unit Test Package
Completion

<<DataStore>>
Test Plans file

Test Plans
[modified]

<<DataStore>>
Test Package file

Unit Test Package
[initiated]

Design
Document
[Modified]

<<DataStore>>
Software Dev. Files

Source Code

Modify Test
Plans

Completion

Modify Test
Plans

Completion

Modify Unit Test
Package

Unit Test Package
[modified]

 Test Software Tool ()

Procedures and
Guidelines

209

Test Unit

Pre-Condition: begins as soon as both Object Code and Unit Test Package are available

Post-Condition: Outputs provided Ok

Role: QA Engineer, Design Engineer

<<DataStore>>
Software Dev. Files

Object Code
[initiated]

<<DataStore>>
Test Package file

Unit Test Package
[initiated]

Apply Test

Object Code
Modified

Unit Test
Package
Modified

Test Unit
Completion

Object Code
Modified

Unit Test
Package
Modified

Test Result
[created]

<<DataStore>>
Unit Test History

file

[90 % coverage]

Check Results

[ELSE]

Analyze
Results

Code
Feedbacks
[created]

Test Package
Feedbacks
[created]

[Modify Code]

[Modify TP]

[Both]

 Modify UTP (in: Test
Package Feedbacks)

 Modify UTP (in: Test
Package Feedbacks)

 Modify Code (in:
Code Feedbacks)

 Modify Code (in:
Code Feedbacks)

Test Unit
 Success

Test Unit
 Success

210

Monitor Progress

Pre-Condition: begins as soon as Schedule and Assign tasks begins

Post-Condition: Outputs provided Ok

Role: Project Manager

Task
Completion

<<DataStore>>
File

Project Plans
[initiated]

Monitoring
Work Progress

Monitoring
result

[no derivation]

[reschedule]
[sever derivation]

<<Loop Node>>

<<Setup>>
NbrA=1

<<Test>>
NbrA=CollecActivities.Lenght

F

GetActivityName

Nbr++

 [Activity Name::] Suspend ()

decision

<<Loop Node>>

<<Setup>>
NbrA=1

<<Test>>
NbrA=CollecActivities.Lenght

F

GetActivityNam

Nbr++

 [Activity Name::] Stop ()

<<Loop Node>>

<<Setup>>
NbrA=1

<<Test>>
NbrA=CollecActivities.Lenght

F

GetActivityNam

Nbr++

 [Activity Name::] Resume

[Cancel]

[Resume]

Notify for
Cancellation

Notify for
resumption

 Schedule and
Assign Tasks ()

Notify for
revised task
assignments

Modify Plans

Project Plans
[updated]

CCB
decision

Test
Success

Notify for
success

211

212

Appendix B

Listing 1. WS-BPEL sample of the Inception Phase

<?xml version="1.0" encoding="UTF-8"?>

<!--

BPEL Process Definition

Edited using ActiveBPEL(tm) Designer Version 3.0.0 (http://www.active-
endpoints.com)

-->

<bpel:process xmlns:bpel="http://docs.oasis-
open.org/wsbpel/2.0/process/executable"
xmlns:ns1="http://www.softeam.fr/WorkflowAdministration/"
xmlns:ns2="http://www.example.org/orchestration/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="Inception"
suppressJoinFailure="yes" targetNamespace="http://Inception">

 <bpel:import importType="http://schemas.xmlsoap.org/wsdl/"
location="WorkflowAdministration.wsdl"
namespace="http://www.softeam.fr/WorkflowAdministration/"/>

 <bpel:import importType="http://schemas.xmlsoap.org/wsdl/"
location="../orchestration/orchestration.wsdl"
namespace="http://www.example.org/orchestration/"/>

 <bpel:partnerLinks>

 <bpel:partnerLink myRole="HumanActivityFacade"
name="HumanActivity" partnerLinkType="ns1:HumanActivity"
partnerRole="HumanActivityFacade"/>

 <bpel:partnerLink name="OrchTool" partnerLinkType="ns2:OrchTool"
partnerRole="OrchastrationProvider"/>

 </bpel:partnerLinks>

 <bpel:variables>

 <bpel:variable messageType="ns1:HumanActivityRequest"
name="InceptionRequest"/>

 <bpel:variable messageType="ns1:HumanActivityRequest"
name="ElaborateAnalysisModelRequest"/>

 <bpel:variable messageType="ns1:HumanActivityResponse"
name="ElaborateAnalysisModelResponse"/>

 <bpel:variable messageType="ns1:HumanActivityRequest"
name="ValidateAnalysisModelRequest"/>

 <bpel:variable messageType="ns1:HumanActivityResponse"
name="ValidateAnalysisModelResponse"/>

 <bpel:variable messageType="ns2:sendMailRequest"
name="sendMailRequest"/>

 </bpel:variables>

 <bpel:flow>

 <bpel:links>

 <bpel:link name="L1"/>

213

 <bpel:link name="L2"/>

 <bpel:link name="L3"/>

 <bpel:link name="L4"/>

 <bpel:link name="L5"/>

 </bpel:links>

 <bpel:receive createInstance="yes" name="StartInception"
operation="HumanActivityRequest" partnerLink="HumanActivity"
portType="ns1:WorkflowAdministrationPT" variable="InceptionRequest">

 <bpel:sources>

 <bpel:source linkName="L1"/>

 </bpel:sources>

 </bpel:receive>

 <bpel:invoke inputVariable="ElaborateAnalysisModelRequest"
name="ElaborateAnalysisModelRequest" operation="HumanActivityRequest"
partnerLink="HumanActivity" portType="ns1:WorkflowAdministrationPT">

 <bpel:targets>

 <bpel:target linkName="L1"/>

 </bpel:targets>

 <bpel:sources>

 <bpel:source linkName="L2"/>

 </bpel:sources>

 </bpel:invoke>

 <bpel:receive name="ElaborateAnalysisModelResponse"
operation="HumanActivityResponse" partnerLink="HumanActivity"
portType="ns1:WorkflowAdministrationPT"
variable="ElaborateAnalysisModelResponse">

 <bpel:targets>

 <bpel:target linkName="L2"/>

 </bpel:targets>

 <bpel:sources>

 <bpel:source linkName="L3"/>

 </bpel:sources>

 </bpel:receive>

 <bpel:invoke inputVariable="ValidateAnalysisModelRequest"
name="ValidateAnalysisModelRequest" operation="HumanActivityRequest"
partnerLink="HumanActivity" portType="ns1:WorkflowAdministrationPT">

 <bpel:targets>

 <bpel:target linkName="L3"/>

 </bpel:targets>

 <bpel:sources>

 <bpel:source linkName="L4"/>

 </bpel:sources>

 </bpel:invoke>

 <bpel:receive name="ValidateAnalysisModelResponse"
operation="HumanActivityResponse" partnerLink="HumanActivity"
portType="ns1:WorkflowAdministrationPT"
variable="ValidateAnalysisModelResponse">

 <bpel:targets>

214

 <bpel:target linkName="L4"/>

 </bpel:targets>

 <bpel:sources>

 <bpel:source linkName="L5"/>

 </bpel:sources>

 </bpel:receive>

 <bpel:if>

 <bpel:targets>

 <bpel:target linkName="L5"/>

 </bpel:targets>

 <bpel:condition
expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">$Val
idateAnalysisModelResponse.stringResult='true'</bpel:condition>

 <bpel:invoke inputVariable="sendMailRequest"
name="SendMessageOk" operation="sendMail" partnerLink="OrchTool"
portType="ns2:orchestration"/>

 <bpel:else>

 <bpel:invoke inputVariable="sendMailRequest"
name="SendMessageFailure" operation="sendMail" partnerLink="OrchTool"
portType="ns2:orchestration"/>

 </bpel:else>

 </bpel:if>

 </bpel:flow>

</bpel:process>

215

216

Appendix C
ProcessModelExecution class

package ExecActivity;
import move.lip6.uml4spm.uml4spm.*;
import move.lip6.uml4spm.uml4spm.impl.UML4SPMPackageImpl;
.....
.....

public class ProcessModelExecution {

//a Hash Tab containing software activities and their corresponding execution
//activities
public static Hashtable <SoftwareActivity, ActivityExecution>
SoftwareActivitiesMap=new Hashtable <SoftwareActivity, ActivityExecution>();

//a Hash Tab containing WorkProducts, we use the name as Key
public static Hashtable <String, WorkProduct> workProductList=new
Hashtable<String, WorkProduct>();

//a Hash Tab containing Responsible Role, we use the name as Key
public static Hashtable <String, ResponsibleRole> responsibleRoleList =new
Hashtable <String, ResponsibleRole>();

//Keep a ref to the Initial Activity Execution (i.e., its isInitial property
//equals at true).It will be the first to be executed and represents the context
//of the process
 public static ActivityExecution initialSoftwareActivity=null;

//Software Activities -Exections-
public static List <ActivityExecution> softwareActivitiesExecution=new Vector
<ActivityExecution>();
.....
.....
.....

public static void ActivityExecutionFactory(Collection activities){

 if (activities!=null){

 Iterator it = activities.iterator();
 SoftwareActivity act=null;
 while(it.hasNext()) {
 act=(SoftwareActivity)it.next();

System.out.println("The Software Activity name is :" +
act.getName());

 //For each softwareActivity creates its equivalent executable SA

 ActivityExecution actExec = new ActivityExecution(act);

//Inialize the SA exectuion i.e., creates it nodes (actions,
//control nodes, edges, object nodes)

 actExec.intialize();

//check if the Activity is the initial one or not
 if (act.isInitial())
 initialSoftwareActivity=actExec;

//Keep a link between a SA definition and its execution instance
SoftwareActivitiesMap.put((SoftwareActivity)act,
(ActivityExecution)actExec);

//save the activity executions of the process

 softwareActivitiesExecution.add(actExec);
 }
 }
 else
 {
 System.out.println("Package Empty!!!, no activities!!");

217

 }

 }

//method for adding a new responsible role to the process
public static void setResponsibleRoles(Collection <ResponsibleRole> respRoles){
 if (!(respRoles.isEmpty())){
 Iterator it=respRoles.iterator();
 while (it.hasNext()){
 ResponsibleRole rspR=(ResponsibleRole)it.next();
 addResponsibleRole(rspR);
 }
 }
 else
 System.out.println("Collection of Responsible Roles is
Empty!!!!!");
 }

public static void addResponsibleRole(ResponsibleRole rspR){
 responsibleRoleList.put(rspR.getName(), rspR);

 }

//method for deleting a new responsible role to the process
public static void deleteResponsibleRole(){

 }

//method for adding a new workproduct to the process
public static void setWorkProducts(Collection <WorkProduct> workproducts){
 if (workproducts!=null){
 Iterator it=workproducts.iterator();
 while (it.hasNext()){
 WorkProduct workP=(WorkProduct)it.next();
 addWorkProduct(workP);
 }
 }
 else

System.out.println("Collection of Responsible Roles is
Empty!!!!!");

 }
public static void addWorkProduct(WorkProduct workP){
 workProductList.put(workP.getName(), workP);
 }

//method for deleting a new responsible role to the process
 public static void deleteWorkProduct(){

 }

//the main of the process execution
public static void main(String[] args) {
 // TODO Auto-generated method stub

 System.out.println("Program Start");

 // A step in order to make UML4SPM Metamodel ready to be referenced
 UML4SPMPackageImpl.init();

 // a set of steps in order to load the process model in memory

URI fileURI =
URI.createFileURI("C:\\eclipse\\workspace\\SoftwareProcessExample\\Sof
twareProcessExample.uml4spm");

Resource.Factory.Registry.INSTANCE.getExtensionToFactoryMap().put("uml
4spm", new XMIResourceFactoryImpl(){

 public Resource createResource(URI uri) {
 XMIResource xmiResource = new XMIResourceImpl(uri);
 return xmiResource;
 }
 });

 ResourceSet rs = new ResourceSetImpl();

//Create a Resource in order to manipulate the process model instance

218

 Resource resource = rs.getResource(fileURI, true);

//Get the outermost element of the process model which is the "Process
//Model" element

move.lip6.uml4spm.uml4spm.ProcessModel myModel =
(move.lip6.uml4spm.uml4spm.ProcessModel)
EcoreUtil.getObjectByType(resource.getContents(),move.lip6.uml4spm.uml
4spm.UML4SPMPackage.eINSTANCE.getProcessModel());
 System.out.println(myModel.getName());

 //get all package elements
 Collection ProcessElments = myModel.getProcessElements();

 //get WorkProducts used whithin the process

Collection processWorkProducts=
findElementByType(ProcessElments,"WorkProduct");

 setWorkProducts(processWorkProducts);

//get Responsbile Roles needed within the process
Collection processResponsibleRoles=
findElementByType(ProcessElments,"ResponsibleRole");

 setResponsibleRoles(processResponsibleRoles);

 //get process model activities

Collection processModelActivities=
findElementByType(ProcessElments,"SoftwareActivity");

//Call the ActivityExecutionFactory method, for each activity in the
//set, create its equivalent activityExecution

 ActivityExecutionFactory(processModelActivities);

//launch the execution of the process by called the execute method on
//its initial software Activity

 if (initialSoftwareActivity!=null)
 initialSoftwareActivity.execute();

//in case that no isIntial activity's property in the process model is
//set to true

 else {
System.out.println("Process Model must have one Initial Software
Activity (i.e.) its isInitial property=true");

 if (!(softwareActivitiesExecution.isEmpty())){
//in case of only one actvity than execute it otherwise, process
//model can't be executed

 if (softwareActivitiesExecution.size()==1){
 softwareActivitiesExecution.get(0).execute();
 }
 else

System.out.println("Process Model contains more than one
activity with no one with its attribute 'isInitial' set
at 'true'");

 }
 else

System.out.println("Process Model does not contain anay
activity");

 }

 System.out.println("Execution End ");
 }
}

219

ActivityExecution class

package ExecActivity;

import move.lip6.uml4spm.uml4spm.*;
import org.eclipse.emf.ecore.*;
import org.eclipse.uml2.uml.*;
.....

public class ActivityExecution extends Execution {

 //the Activity execution name (same as the activity in the model)
 public String name;
 // a reference towards the Activity definition in the model
 public SoftwareActivity activityType=null;
 //vectors to store runtime instances of the ActivityExecution
 public List<ActivityEdgeInstance> activityEdgeInstances;
 public List<ActivityNodeExecution> activityNodeExecInstances;

//Hashtables to store the mapping between an Activity element and its
//equivalent in runtime instances

 public Hashtable<ActivityNode, ActivityNodeExecution> ActivityNodesMap;
 public Hashtable<ActivityEdge, ActivityEdgeInstance> ActivityEdgesMap;
 //Parameter of the Sofwtare Activity
 public List<ActivityParameterNodeExecution> inputActivityParamNodeExecution;
 public List<ActivityParameterNodeExecution> outputActivityParamNodeExecution;

 //Constructor
 public ActivityExecution(SoftwareActivity activity){

 //give it the same name as the original activity
 name=activity.getName();

//keep a link to its definition =>trace between activity definition
//and its execution

 activityType=activity;

//Variables initialisation - vectors to store runtime instances of the
//ActivityExecution

 activityEdgeInstances=new Vector <ActivityEdgeInstance>();
 activityNodeExecInstances=new Vector <ActivityNodeExecution>();

//Variables initialisation - Hashtables to store the mapping between
//an Activity element and its equivalent in runtime instances

 ActivityNodesMap=new Hashtable<ActivityNode, ActivityNodeExecution>();
 ActivityEdgesMap=new Hashtable <ActivityEdge, ActivityEdgeInstance>();

//Activity Parameter Nodes nitialization
inputActivityParamNodeExecution=new
Vector<ActivityParameterNodeExecution>();
outputActivityParamNodeExecution=new
Vector<ActivityParameterNodeExecution>();

 }

 //Constructor in case of an UML AD Diagram
 /*public ActivityExecution(Activity activity){

 //give it the same name as the original activity
 name=activity.getName();

//keep a link to its definition =>trace between activity
definition and its execution

 activityType=activity;

//Variables initialisation - vectors to store runtime
instances of the ActivityExecution
activityEdgeInstances=new Vector
<ActivityEdgeInstance>();
activityNodeExecInstances=new Vector
<ActivityNodeExecution>();

//Variables initialisation - Hashtables to store the
//mapping between an Activity element and its equivalent
//in runtime instances
ActivityNodesMap=new Hashtable<ActivityNode,
ActivityNodeExecution>();

220

ActivityEdgesMap=new Hashtable <ActivityEdge,
ActivityEdgeInstance>();

 }*/

 //a method that creates for each ActivityEdge its equivalent in runtime
 public void CreateActivityEdgeInstance(ActivityEdge actEdge){

 // Create the run time equivalent

ActivityEdgeInstance activityEdgeI=new ActivityEdgeInstance(actEdge,
this);

 //add the runtime instance to the ActivityExecution edges table
 activityEdgeInstances.add((ActivityEdgeInstance)activityEdgeI);

//Keep a trace between the activity definion and its equivalent at
//runtime

 ActivityEdgesMap.put(actEdge, activityEdgeI);

 }

//a method that creates for each Action, depending on its type, an
//ActionExecution instance

 public void CreateActionExecutionInstance(Action action){

//get the ActionExecution class type for this Action through the
//HashTable we defined
String runClassName=
Configuration.MetaClassesMapping.get(action.eClass().getName());

 try{

//load the ActionExecution class equivalent to the Action type
//in the AD
Class runclass=Class.forName(Configuration.classExecPath +
runClassName);

//find the class type of the Action given in the AD in order to
//pass it to the apropriate ActionExecution Constructor
Class umlDefClass=
Class.forName(Configuration.classUMLDefPath+action.eClass().getN
ame());

System.out.println(" Action kind to instantiate is :"+
umlDefClass.getName());

//Initialize the params of the getConstructor method and the
//newInstance method

 Class[] tab={umlDefClass, ActivityExecution.class};

 Object[] obj={action, this};

//Create the Exectuable instance equivalent to the Action
//defined in the AD
ActionExecution actionExecInstance=
(ActionExecution)(runclass.getConstructor(tab)).newInstance(obj)
;

//add the runtime instance to the ActivityNodeExecInstance table

activityNodeExecInstances.add((ActivityNodeExecution)actionExecI
nstance);

//Keep a trace between the action definion and its equivalent
//runtime instance
ActivityNodesMap.put((ActivityNode)action,
(ActivityNodeExecution)actionExecInstance);

 }
 catch (Exception e){
 System.out.println("Linkage Failed while loading class!!!!");
 e.printStackTrace();
 }
 }

221

//a method that creates for each control node, its equivalent runtime
//instance

 public void CreateControlNodeExecutionInstance (ControlNode controlNode){

//get the ControlNodeExecution class type for this ControlNode through
//the HashTable we defined
String runClassName=
Configuration.MetaClassesMapping.get(controlNode.eClass().getName());

 try{

//load the ControlNodeExecution class equivalent to the
//ControlNode type in the AD
Class runclass=Class.forName(Configuration.classExecPath +
runClassName);

//find the class type of the ControlNode given in the AD in
//order to pass it to the appropriate ControlNodeExecution
//Constructor
Class umlDefClass=
Class.forName(Configuration.classUMLDefPath+controlNode.eClass()
.getName());

//Initialize the params of the getConstructor method and the
//newInstance method in two steps :

 //1- Define the Class types of parameteres
 Class[] tab={umlDefClass, ActivityExecution.class};

 //2- Define Parameters for creating the new instance.

//They consist in the Control Node from the AD and the
//ActivityExecution instance that will own the
//ControlNodeExecution instance

 Object[] obj={controlNode, this};

//Create the Exectuable instance equivalent to the Control Node
//defined in the AD
ControlNodeExecution controlNodeExecInstance=
(ControlNodeExecution)(runclass.getConstructor(tab)).newInstance
(obj);

 //add the runtime instance to the ActivityNodeExecInstance table

activityNodeExecInstances.add((ActivityNodeExecution)controlNode
ExecInstance);

//Keep a trace between the Control definion and its equivalent
//runtime instance
ActivityNodesMap.put((ActivityNode)controlNode,
(ActivityNodeExecution)controlNodeExecInstance);

 }
 catch (Exception e){
 System.out.println("Linkage Failed while loading class!!!!");
 e.printStackTrace();
 }

 }

//a method that creates for each Object node, its equivalent runtime instance
 public void CreateObjectNodeExecutionInstance (ObjectNode objectNode){

//get the ControlNodeExecution class type for this ControlNode through
//the HashTable we defined
String runClassName=
Configuration.MetaClassesMapping.get(objectNode.eClass().getName());

 if (runClassName.equalsIgnoreCase("ActivityParameterNodeExecution")){
 try{

//load the ObjectNodeExecution class equivalent to the
//ControlNode type in the AD
Class runclass=Class.forName(Configuration.classExecPath
+ runClassName);

//find the class type of the ObjectNode given in the AD
//in order to pass it to the appropriate
//ObjectNodeExecution Constructor

222

Class umlDefClass=
Class.forName(Configuration.classUMLDefPath+objectNode.eC
lass().getName());

//Initialize the params of the getConstructor method and
//the newInstance method in two steps :

 //1- Define the Class types of parameteres
 Class[] tab={umlDefClass, ActivityExecution.class};

 //2- Define Parameters for creating the new instance.

//They consist in the Object Node from the AD and the
//ActivityExecution instance that will own the
//ObjectNodeExecution instance

 Object[] obj={objectNode, this};

//Create the Exectuable instance equivalent to the Object
//Node defined in the AD
ActivityParameterNodeExecution
ActivityParameterNodeInstance=
(ActivityParameterNodeExecution)(runclass.getConstructor(
tab)).newInstance(obj);

//add the runtime instance to the
//ActivityNodeExecInstance table

activityNodeExecInstances.add((ActivityNodeExecution)Acti
vityParameterNodeInstance);

//Keep a trace between the Object Node definion and its
//equivalent runtime instance
ActivityNodesMap.put((ActivityNode)objectNode,
(ActivityNodeExecution)ActivityParameterNodeInstance);

 if (objectNode.getIncomings().isEmpty()){

this.inputActivityParamNodeExecution.add(ActivityPa
rameterNodeInstance);

 }
 if (objectNode.getOutgoings().isEmpty()){

this.outputActivityParamNodeExecution.add(ActivityP
arameterNodeInstance);

 }

 }

 catch (Exception e){

System.out.println("Linkage Failed while loading
class!!!!");

 e.printStackTrace();
 }
 }
 }

//A method that links together AcitvityEdgeInstances and ActivityExecutionNodes
//(actions, control nodes)
public void linkEdgeInstancesToActivityExecNodes(){

System.out.println("la taille de activityEdgeInstances est de :
"+activityEdgeInstances.size());

 Iterator iterator=activityEdgeInstances.iterator();
 while (iterator.hasNext()){
 ActivityEdgeInstance actEdgeI=

(ActivityEdgeInstance) iterator.next();
//1-step: Set the Source and Target (Activity Execution Nodes
//Instances) Propery of the Edge Instance

actEdgeI.source=(ActivityNodeExecution)ActivityNodesMap.get(actE
dgeI.edge.getSource());

actEdgeI.target=(ActivityNodeExecution)ActivityNodesMap.get(actE
dgeI.edge.getTarget());

223

//2-step: Set this Edge Instance as IncomingEdge of the
//ActivityExecNode's Target property and as OutgoingEdge of the
//ActivityExecNode's Source property

((ActivityNodeExecution)actEdgeI.source).addOutgoingEdge(actE

dgeI);

((ActivityNodeExecution)actEdgeI.target).addIncomingEdge(
actEdgeI);

 }

 }
 //Defines which Executable Class to instantiate depending on its type
 public void activityElementSort(Collection activityElements){

 Iterator it = activityElements.iterator();
 while(it.hasNext()) {

 EObject element =(EObject) it.next();

//get the super class of the element, if it is either an ActivityEdge
//or an ActivityNode (Actions or Control Nodes)

 EList superClass=element.eClass().getEAllSuperTypes();

 if (superClass!=null){
 if (hasSuperType(superClass,"Action")){

//Call a method that will create an ActionExecution
//Instance depending on the Action Type
//(CallOperationAction, OpaqueAction,.etc)

 CreateActionExecutionInstance((Action)element);
System.out.println ("element added : " +
element.eClass().getName());

 }
 if (hasSuperType(superClass,"ActivityEdge")){
 //Call a method that will create ActivityEdge Instances
 CreateActivityEdgeInstance((ActivityEdge)element);

System.out.println ("element added : " +
element.eClass().getName());

 }
 if (hasSuperType(superClass,"ControlNode")){

//Call a method that will create a ControlNodeExecution
//Instance depending on the Control node Type (Initial
//Node, Fork Node, Merge Node,.etc)

 CreateControlNodeExecutionInstance((ControlNode)element);
System.out.println ("element added : " +
element.eClass().getName());

 }
 if (hasSuperType(superClass,"ObjectNode")){

//Call a method that will create a ObjectNodeExecution
//Instance depending on the Control node Type (Initial
//Node, Fork Node, Merge Node,.etc)

 CreateObjectNodeExecutionInstance((ObjectNode)element);
System.out.println ("element added : " +
element.eClass().getName());

 }
 }
 else

System.out.println("Unkwon UML super class for this element" +
element.eClass().getName());

 }
 System.out.println("la taille de la collection
ActivityEdgesInstance est de :" + activityEdgeInstances.size());

 }

 public void intialize(){
 //Initialize the mapping between class definitions and their runtime classes.

//If you want to extend the engine, you have just to add new concepts in
//configuration and their mappings

 Configuration.configurationMap();

//Sort Activity elements by Actions, Control Nodes, Object Nodes and Edges
//and then, create them

 activityElementSort(activityType.allOwnedElements());

224

 //Link the Activity Edge Instances with Activity Node Execution
 linkEdgeInstancesToActivityExecNodes();

 }
 //Load process WorkProducts on activity input pins without incoming edges

public void loadWorkProductToActivityObjectNodes(InputPinExecution inPinExec,
String workProductType){

 ObjectToken objToken=new ObjectToken();

objToken.setReferencedWorkProduct(ProcessModelExecution.workProductLis
t.get(workProductType));

 if (objToken.getReferencedWorkProduct()!=null){
 inPinExec.offeredTokens.add(objToken);
 inPinExec.offering=true;
 }
 else{

System.out.println("ERROR: no such workProduct Type :"+
workProductType+ " available to be loaded in ObjectNode :"
+inPinExec.name);

 }

 }
 public boolean execute(){
 System.out.println("Starting the execution of :"+this.name);
 //Find all Inputpins without incoming edges
 Collection <InputPinExecution> inputPinsWithoutIncomingEdges=

new Vector<InputPinExecution>();
Collection <InputPin> inputPins=
findElementByType(ActivityNodesMap.keySet(), "InputPin");

 if (!(inputPins.isEmpty())){
 Iterator it=inputPins.iterator();
 //browse all input pins
 while (it.hasNext()){
 InputPin inputPin=(InputPin)it.next();
 //retain only inputpins without incoming edges
 if (inputPin.getIncomings().size()==0){

InputPinExecution
inPinExec=(InputPinExecution)ActivityNodesMap.get(inputPi
n);

 String workProductType=inputPin.getType().getName();

 inputPinsWithoutIncomingEdges.add(inPinExec);

loadWorkProductToActivityObjectNodes(inPinExec,workProduc
tType);

 }

 }

 }
 //Find all Intial Nodes and Fire them

Collection <InitialNode> intialNodes=
findElementByType(ActivityNodesMap.keySet(), "InitialNode");

 if (!(intialNodes.isEmpty())){
 Iterator iter=intialNodes.iterator();
 //browse all initial nodes
 while (iter.hasNext()){

InitialNodeExecution
iniNodeExec=(InitialNodeExecution)ActivityNodesMap.get((InitialN
ode)iter.next());

 //fire them
 iniNodeExec.fire();
 }

 }
 return true;
 }

}

225

ActivityEdgeInstance class

package ExecActivity;

import java.util.Vector;

import move.lip6.uml4spm.uml4spm.UML4SPMPackage;
import move.lip6.uml4spm.uml4spm.WorkProduct;

import org.eclipse.uml2.uml.ActivityEdge;
.......
.......

public class ActivityEdgeInstance {
 //name
 String name;
 //the ActivityExecution owning this edge
 public ActivityExecution context=null;
 //the edge for which this instance is its runtime instance
 public ActivityEdge edge=null;
 //The source Acitivity Node Execution of this edge
 ActivityNodeExecution source=null;

//The target Acitivity Node Execution of this edge
 ActivityNodeExecution target=null;

 //Constructor
 public ActivityEdgeInstance(ActivityEdge actEdge, ActivityExecution context){
 edge=actEdge;
 name=actEdge.getName();
 this.context=context;
 }

 public String getName(){
 return this.name;
 }
 public ActivityEdge getActivityEdge(){
 return this.edge;
 }
 public void setActivityEdge(ActivityEdge edge){
 this.edge=edge;
 }
 public ActivityNodeExecution getSource(){
 return this.source;
 }
 public ActivityNodeExecution getTarget(){
 return this.target;
 }

 //Send (forward from the source node) an offer
 public void sendOffer(){
 //Before sending an offer, check whether the Edge has a Guard
 if (hasGuard())
 //if the Edge has a guard, then evaluate it
 if (evaluateGuard())
 //if guard evaluation returns true, then forward the offer
 this.getTarget().receiveOffer();
 else

System.out.println("Guard Expression Evaluation of
Activty Edge :"+this.name+ " failed!!. Can't send offer
to the Activity Node :" + this.target.name);

 else
 this.getTarget().receiveOffer();
 };

//returns offered tokens from the source(called from the target activity node)
 public Vector <Token> takeTokens(){

 return (this.getSource().takeOfferedTokens());
 };
 public int countOfferedTokens(){

 int nbTokens=0;
 //...
 return nbTokens;

226

 };
 public boolean sourceHasOffer(){

 return source.hasOffer();
 };

 public String getGuardString(){
 return this.getActivityEdge().getGuard().stringValue();

 }
 //check if the edge has a guard
 public boolean hasGuard(){
 return (this.getActivityEdge().getGuard()!=null);
 }
 //evaluate the Activity Edge Guard Expression
 public boolean evaluateGuard(){
 boolean resultGuardEvaluation=false;
 if (this.hasGuard()){
 //get the Guard value (String) to be evaluated
 String toevaluate=this.getGuardString().trim();
 //extract the name of the concerned WorkProduct to evaluate
 String workproduct=toevaluate.substring(0, toevaluate.indexOf("."));
 //extract the name of the workproduct attribute to evaluate

 String property=
 toevaluate.substring(toevaluate.indexOf(".")+1,
toevaluate.indexOf("="));

 //extract the value of the attribute from the guard expression
 String valueProperty=
toevaluate.substring(toevaluate.indexOf("=")+1, toevaluate.length());

 //get the a workproduct from the Process Model list of workproducts
 WorkProduct wproduct=

ProcessModelExecution.workProductList.get(workproduct);
 //extract the structural feature (attribute) to evaluate
 EStructuralFeature sFeature=

UML4SPMPackage.eINSTANCE.getWorkProduct().getEStructuralFeature(proper
ty);
//check that the value given in the guard expression equals the
//workproduct's attribute value

 if (wproduct.eGet(sFeature).toString().equals(valueProperty)){
System.out.println("Guard expression :"+ toevaluate+ ", of the
Object Flow :"+ this.name +" evaluated at TRUE ");

 resultGuardEvaluation=true;
 }
 else

System.out.println("Guard expression :"+ toevaluate+ ", of the
Object Flow :"+ this.name +" evaluated at FALSE ");

 }
 else
 System.out.println("the Activity Edge does not have a Guard");
 return resultGuardEvaluation;
 }

}

227

ActivityNodeExecution class

package ExecActivity;

import org.eclipse.uml2.uml.ActivityNode;
.......

public abstract class ActivityNodeExecution {

 public String name;
 public ActivityExecution activityExecContext=null;
 public org.eclipse.uml2.uml.ActivityNode activityNode=null;
 public boolean offering=false;
 public boolean terminated=false;

 public List<Token> offeredTokens = new Vector<Token>();
 public List<ActivityEdgeInstance> outgoingEdges = null;
 public List<ActivityEdgeInstance> incomingEdges = null;

 public ActivityNodeExecution(ActivityNode actNode, ActivityExecution
context){
 this.incomingEdges=new Vector<ActivityEdgeInstance>();
 this.outgoingEdges=new Vector<ActivityEdgeInstance>();
 //the name of the activity Node
 this.name=actNode.getName();
 //the context (activity) of the activity node
 this.activityExecContext=context;

 }

 //added Method to check wether the node has incoming edges or not
 public boolean hasIncomingEdges(){
 return (!(incomingEdges.isEmpty()));
 }
 public void receiveOffer(){
 //Call the isReady method to check is the node is ready to execute
 if (this.isReady()){
 this.fire();
 }
 };

 public boolean isReady(){
 boolean isReady=false;
 //For Acivity Nodes having incoming edges
 if (hasIncomingEdges()){
 Iterator it = incomingEdges.iterator();
 while(it.hasNext()) {
 ActivityEdgeInstance aEI=(ActivityEdgeInstance)it.next();
 //check if the source Activity Node has an offer
 isReady=aEI.sourceHasOffer();
 }
 }
 else {
 //noeud whithout incoming edges or initial node
 isReady=true;
 }
 if (!isReady)

System.out.println("Activity Node :"+this.name+ ", not
ready!!!!!");

 else
System.out.println("Activity Node :"+this.name+ ", is
ready!!!!!");

 return isReady;
 };

 public Vector <Token> takeOfferedTokens(){
 //creattion of a new vector of Tokens that will be returned
 //by the method before clearing the original offeredTokens Vector
 Vector<Token> offeredTokensToTarget=new Vector<Token>();
 if (!(this.offeredTokens.isEmpty())){
 offeredTokensToTarget.addAll(this.offeredTokens);
 // The node is no longer offering Tokens
 this.offering=false;

228

 //Clearing the tokens offered by this node to the target node
 this.offeredTokens.clear();
 //retun the offeredTokens to the target node
 }
 else
 System.out.println("The Node has no Tokens to offers!!!!");

 return offeredTokensToTarget;
 };
 public abstract void fire();

 public ActivityExecution getActivityExecution(){

 return activityExecContext;
 };

 public int countOfferedTokens(){
 int nbOfferedtokens=0;
 //...
 return nbOfferedtokens;

 };

 public void sendOffer (){
 if (!(this.outgoingEdges.isEmpty())) {
 Iterator<ActivityEdgeInstance> it=this.outgoingEdges.iterator();
 while (it.hasNext()){
 ActivityEdgeInstance aeInstance=it.next();
 aeInstance.sendOffer();
 }
 }
 };

 public void addIncomingEdge (ActivityEdgeInstance edge){
 incomingEdges.add(edge);
 };
 public void addOutgoingEdge (ActivityEdgeInstance edge){
 outgoingEdges.add(edge);

 };
 public boolean hasOffer(){
 return offering;
 };

 public void terminate(){};

 //Not implemented in the context of Software Process execution
 public Object getExecutionContext (){
 Object context=null;
 //.....
 return context;

 };

 //Not implemented in the context of Software Process execution
 public Location getExecutionLocation(){

 Location location=null;
 //....
 return location;
 };

}

229

MergeNodeExecution class

public class MergeNodeExecution extends ControlNodeExecution {

 public MergeNodeExecution(MergeNode mergeNode, ActivityExecution context){
 super(mergeNode,context);
 this.mergeNodeLink=mergeNode;
 }

//an offer is made to an ActivityNodeExecution by
//calling its receiveOffer()

 //we redefined this operation in the context of the MergeNode
 //when the Merge Node receives an offer it simply forward it
 //to the target ActivityNodeExecution

 public void receiveOffer() {

 //when the MergeNodeExecution receives an offer
 //it does not need to call isReady()-> always true
 //fire the behavior of the MergeNode

 this.fire();
 }

 //simply forward the offer to the outgoing edge
 //(transitively), to the following ActivityNodeExecution

//the ActivityNodeExecution will then check that all its
//input pins/control flows are ready and then will fire them

 public void fire(){

 //Check that the MergeNode has outgoing edges
 if (!(this.outgoingEdges.isEmpty())){

 //Check that the MergeNode does not have more than one outgoing edge
 if (this.outgoingEdges.size()<2){

 //send an offer on its outgoing edges.
 //In the case of MergeNode, there is only one outgoing edge
 this.outgoingEdges.get(0).sendOffer();

 }
 else
 System.out.println("ERROR: Merge Node " + this.name+
 ", must not have more than one outgoing edge");
 }
 else
 System.out.println("Merge Node :" + this.name +

", has no outgoing edge");

 }

 //an operation that takes the ActivityNodeExecution offered tokens
 //we redefined this operation for the MergeNodeExecution
 //now, it simply forward the request to the target ActivityNodeExecution

 public Vector<Token> takeOfferedTokens() {
 //forward the request to the source ActivityNodeExecution.
 //tokens will be directly taken form source ActivityNodeExecution
 //to the target ActivityNodeExecution

 return (this.incomingEdges.get(0).takeTokens());

 }
 //an operation that checks if the ActivityNodeExecution is making an offer
 //redefined in the context of the MergeNode
 //now it simply forward the offer to the source ActivityNodeExecution

 public boolean hasOffer() {

 //forward the request to the source ActivityNodeExecution
 return this.incomingEdges.get(0).sourceHasOffer();
 }

}

230

DecisionNodeExecution's fire() operation

public void fire(){

 //check that the Decision node has one and only one incoming edge
 if (!(this.incomingEdges.isEmpty())){
 if (this.incomingEdges.size()<2){
 Iterator it=outgoingEdges.iterator();
 boolean targetHasGuard=false;

 //check if Decision Node outgoing edges have guards
 while (it.hasNext()){

targetHasGuard=((ActivityEdgeInstance)it.next()).hasGuard();

 }

 //if they have guards, send an offer to the outgoing edges

//the evaluation of the guards is carried out by the
//ActivityEdgeInstance

 if (targetHasGuard){
 this.sendOffer();
 }

 //if no guards are specficied on outgoing edges
 //ask the agent to choose between the possible outgoing edges
 else{

System.out.println("Traget Activity Edges do not have
Guards,"+ "please choose one between activity edge
targets");

int i=1;

Iterator iter=outgoingEdges.iterator();

while (iter.hasNext()){

System.out.println("enter :"+i+ "for selecting:" +
((ActivityEdgeInstance)iter.next()).name);

i++;

 }

 //read the agent choice
 Scanner KeyBoard=new Scanner(System.in);

 int choice=KeyBoard.nextInt();

 //send an offer on the outgoing edge chosen by the agent
 this.outgoingEdges.get(choice-1).sendOffer();

 }

 }
 else

System.out.println("ERROR!: a Decision Node must not have more
thant one incoming edge!!!");

 }
 else

System.out.println("This Decision Node :" + this.name+" has no
incoming edge!!!");

 }

231

InputPinExecution's fire() operation.

//InputPinexecution is fired by

 //the Action Execution owning it

public void fire(){

//check that node has incoming edges

if (!(this.incomingEdges.isEmpty())) {

 Iterator<ActivityEdgeInstance> it=incomingEdges.iterator();

 while (it.hasNext()){

ActivityEdgeInstance aeInstance=it.next();

 //take tokens offerd by source ActivityNodeExecution
 //by passing by the intermadiate ActivityEdgeInstance

this.offeredTokens.addAll(aeInstance.takeTokens());

 }
 }

}

232

ActivityParameterNodeExecution Class

package ExecActivity;

import java.util.Iterator;

import org.eclipse.uml2.uml.ActivityParameterNode;

public class ActivityParameterNodeExecution extends ObjectNodeExecution{

 //keep a link with the pin definition
 public ActivityParameterNode activityParameterDefinitionLink;

public ActivityParameterNodeExecution(ActivityParameterNode
aParamNode, ActivityExecution activityContex){

 super(aParamNode,activityContex);
 this.name=aParamNode.getName();

 //activity context of the action containing that pin
 this.activityExecContext=activityContex;
 //link with the original pin
 this.activityParameterDefinitionLink=aParamNode;

 }

 public void fire(){
 //Now, the Activity Parameter is ready
 this.offering=true;
 //In case of APN in
 if (this.incomingEdges.isEmpty()) {
 if (!(this.outgoingEdges.isEmpty())){

Iterator<ActivityEdgeInstance> it=
outgoingEdges.iterator();

 while (it.hasNext()){
 ActivityEdgeInstance aeInstance=it.next();
 aeInstance.sendOffer();
 }
 }
 else

System.out.println("ERROR in Model : Activity
Parameter Node :"+ this.name+", is isolated (i.e.,)
neither incoming nor outgoing edges");

 }
System.out.println("La Taille de liste de APN de :" +
this.activityExecContext.name+ " est de :"
+this.activityExecContext.inputActivityParamNodeExecution.size()
);

//In case of APN out

 if (this.outgoingEdges.isEmpty()) {
 if (!(this.incomingEdges.isEmpty())){

Iterator<ActivityEdgeInstance> it=
incomingEdges.iterator();

 while (it.hasNext()){
 ActivityEdgeInstance aeInstance=it.next();
 this.offeredTokens.addAll(aeInstance.takeTokens());
 }
 }
 else

System.out.println("ERROR in Model : Activity
Parameter Node :"+ this.name+", is isolated (i.e.,)
neither incoming nor outgoing edges");

 }
 //....
 }
}

233

CallBehaviorActionExecution's doAction() operation

//The CallBehaviorActionExecution's main behavior

public void doAction(){

//Check IN / OUT parameters (types + nbr of arguments) of the //call
action with those of the called behavior

boolean conforms=checkCallParametersConformity();

 if (conforms){

//initialize the Activity Parameter node of the called
//behavior and fire them.
initializeCalledBehaviorActPNodes();

//check if the call is asynchronous

 if (isSynchronousCall(this)){

//get the results of the call and put them in //outputpin
execution instances accordingly

 getCallResult();

//Fire the execution of all output pins
 fireOutputPins();

 }

// consume the input pins of the action
 consumeActionInputPins();

//prepare to offer a control flow token on //outcoming
edges

 putControlToken();

//send offer on outgoing edges
 sendOffer();

 }
 else

System.out.println("Call Parameters do not match Acitivity
Parameter Nodes of the called behavior (in nbr or in
types)!!!");

 }

234

OpaqueActionExecution Class

package ExecActivity;

import org.eclipse.uml2.uml.*;

public class OpaqueActionExecution extends ActionExecution{

 //keep trace of the OpaqueAction definition in the input model
 public org.eclipse.uml2.uml.OpaqueAction oAction=null;

 //Constructor
public OpaqueActionExecution(OpaqueAction opAction, ActivityExecution context) {
 super(opAction,context);

 //keep trace of the OpaqueAction definition in the input model
 this.oAction=(OpaqueAction)opAction;
 }

public void putObjectTokensToOuputPins(OutputPinExecution outPinExec, String
workProductType){
 ObjectToken objToken=new ObjectToken();

objToken.setReferencedWorkProduct(ProcessModelExecution.workProductLis
t.get(workProductType));

if (objToken.getReferencedWorkProduct()!=null){

 outPinExec.offeredTokens.add(objToken);
 outPinExec.offering=true;
 }
 else{

System.out.println("ERROR: no such workProduct Type :"+
workProductType+ " available to be loaded in ObjectNode :"
+outPinExec.name);

 }
 }
 public void doAction() {

 try {
 //the run class is given further in this appendix
 RunClass.createClass(oAction);

//executeBody must basically returns the set of Object Token
//referencing existing or newly created workproducts

 boolean resultExec=RunClass.executeBody(oAction);
 if (resultExec){
 if (!(this.actionOutPutPinExecInstances.isEmpty())){

Iterator it=
actionOutPutPinExecInstances.iterator();

 while (it.hasNext()){
OutputPinExecution ouputPinExec=
(OutputPinExecution)it.next();

 //Get the type of the output pin
String outputType=
ouputPinExec.pinDefinitionLink.getType().getName();

 //create and put object tokens on action outputs
//Once the GUI of the opaque action realized,
//Object Tokens will be automatically generated
from user interactions with the GUI : create a new
//Worproduct, modify an existing one, etc.
//for prototyping purposes, we create the object
//token automatically according to their types
putObjectTokensToOuputPins(ouputPinExec,
outputType);

 //fire output pins
 fireOutputPins();
 }
 }
 putControlToken();
 this.sendOffer();
 }
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }
}

235

RunClass Class (used by OpaqueActionExecution)

package ExecActivity;

import java.util.*;
.........

.........
public class RunClass {

 public static void createClass(OpaqueAction oAct){
 List list=oAct.getBodies();
 if (list.size()!=0){

 String body=(String)list.get(0);
 try {
 // Prepare the signature of the class.
 //Its name will the same as the opaque Action name
 String [] classDef={"package ExecActivity;", "public class "
 +oAct.getName()+"{", "public void ExecuteBody(){", body, "}}"} ;
 //Create the file

PrintWriter out = new PrintWriter(new BufferedWriter(new
FileWriter("src/ExecActivity/"+oAct.getName()+".java")));

 // fill the content of the class with the Opaque Action body
 for (int i=0; i<classDef.length; i=i+1){
 out.println(classDef[i]);
 }
 out.close();
 //compile the classe definition
 compileClass("src/ExecActivity/".concat(oAct.getName().concat(".java")));
 }
 catch (IOException e){

 e.printStackTrace();
 }
 }
 }
 public static void compileClass(String className){
 String argument[]={"javac", "-d", "bin",className};

 try {
 Runtime rt=Runtime.getRuntime();
 Process process=rt.exec(argument);
 process.waitFor();
 System.out.println("Compilation succeeded!!!");
 }
 catch (IOException ioe) {

System.out.println("Problem encountred while compiling
"+className);

 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 public static boolean executeBody(OpaqueAction oAct){
 boolean execute=true;
 try {

java.lang.Class cl =
java.lang.Class.forName("ExecActivity."+oAct.getName());

 java.lang.reflect.Method m;

 m = cl.getMethod("ExecuteBody", (java.lang.Class [])null);

 m.invoke(cl.newInstance(), (Object[])null);

 } catch(Exception e) {
 e.printStackTrace();
 execute=false;
 }
 return execute;
 }

}

236

Execution Traces of the Software Process Example using the UML4SPM
Execution Model Appraoch

The process engine starts by loading the process model and by instantiating, for each
element in the process model, its equivalent execution class. We can see traces of the
creation of these execution classes. Then it looks for the initial software activity
(Inception in this case) and starts its execution.

While the process is executing we can see traces related to the fact that some activity node
executions are ready to execute, that some CallBehaviorAction call parameters are
checked with the ActivityParamaterNodes of the called software activity, etc. We can also
notice the guard evaluation results of the Decision_To_SendFailMessage and
Decision_To_SendSuccMessage object flows.

For the execution of OpaqueActions, we can see traces like "compilation succeeded!!!"
followed by the text "I am in OpaqueActionName". This text is part of a Java instruction
we inserted in the Opaque Action's body property at modeling time. This trace proves that
the Java instruction we specified within the body property has been executed at runtime
and without interrupting the process execution.

Finally, the Construction phase is called asynchronously before terminating the Inception
Phase execution. In case of a process model with interaction points, the process engine
asks the agent for entries before continuing its execution.

The execution time of the entire process model takes less than three seconds.

Program Start
SoftwareProcessExample
The Software Activity name is :Inception
element added : InitialNode
Action kind to instantiate is :org.eclipse.uml2.uml.CallBehaviorAction
Checking if the Action :ElaborateAnalysisModel has Input Pins, if so, create them
The action has an input named :requirementDocument
Checking if the Action :ElaborateAnalysisModel has Output Pins, if so, create them
The action has an Output named :umlAnalysisModel
element added : CallBehaviorAction
 Action kind to instantiate is :org.eclipse.uml2.uml.CallBehaviorAction
Checking if the Action :ValidateAnalysisModel has Input Pins, if so, create them
The action has an input named :umlAnalysisModel
Checking if the Action :ValidateAnalysisModel has Output Pins, if so, create them
The action has an Output named :validationReport
element added : CallBehaviorAction
element added : DecisionNode
 Action kind to instantiate is :org.eclipse.uml2.uml.OpaqueAction
Checking if the Action :SendFailMessage has Input Pins, if so, create them
The action has an input named :validationReport_Fail
Checking if the Action :SendFailMessage has Output Pins, if so, create them
element added : OpaqueAction
 Action kind to instantiate is :org.eclipse.uml2.uml.OpaqueAction
Checking if the Action :SendSuccMessage has Input Pins, if so, create them
The action has an input named :validationReport_Succ
Checking if the Action :SendSuccMessage has Output Pins, if so, create them
element added : OpaqueAction
 Action kind to instantiate is :org.eclipse.uml2.uml.CallBehaviorAction
Checking if the Action :ConstructionPhase has Input Pins, if so, create them
Checking if the Action :ConstructionPhase has Output Pins, if so, create them
element added : CallBehaviorAction
element added : MergeNode
element added : ActivityFinalNode
element added : ControlFlow
element added : ObjectFlow
element added : ObjectFlow
element added : ObjectFlow
element added : ObjectFlow

237

element added : ControlFlow
element added : ControlFlow
element added : ControlFlow
element added : ControlFlow
element added : OutputPin
element added : InputPin
element added : OutputPin
element added : InputPin
element added : InputPin
element added : InputPin
la taille de la collection ActivityEdgesInstance est de :9
la taille de activityEdgeInstances est de : 9
The Software Activity name is :ElaborateAnalysisModel
element added : ActivityParameterNode
 Action kind to instantiate is :org.eclipse.uml2.uml.OpaqueAction
Checking if the Action :ElaborateUMLAnalysisModel has Input Pins, if so, create
them
The action has an input named :requirementDocument_ElaborateAN
Checking if the Action :ElaborateUMLAnalysisModel has Output Pins, if so, create
them
The action has an Output named :umlAnalysisModel_ElaborateAN
element added : OpaqueAction
element added : ActivityParameterNode
element added : ObjectFlow
element added : ObjectFlow
element added : OutputPin
element added : InputPin
la taille de la collection ActivityEdgesInstance est de :2
la taille de activityEdgeInstances est de : 2
The Software Activity name is :Construction
la taille de la collection ActivityEdgesInstance est de :0
la taille de activityEdgeInstances est de : 0
The Software Activity name is :ValidateAnalysisModel
 Action kind to instantiate is :org.eclipse.uml2.uml.OpaqueAction
Checking if the Action :Check_and_EditValidationReport has Input Pins, if so,
create them
The action has an input named :UML_AnalysisModel_AN
Checking if the Action :Check_and_EditValidationReport has Output Pins, if so,
create them
The action has an Output named :validationReport_AN
element added : OpaqueAction
element added : ActivityParameterNode
element added : ActivityParameterNode
element added : ObjectFlow
element added : ObjectFlow
element added : OutputPin
element added : InputPin
la taille de la collection ActivityEdgesInstance est de :2
la taille de activityEdgeInstances est de : 2
Starting the execution of :Inception
Initial Node, Start of Software Activity :Inception fired
------------> Activity Node :ElaborateAnalysisModel, is ready!!!!!
------------> Activity Node :requirementDocument, is ready!!!!!
called actvitity is ElaborateAnalysisModel
Checking that nbr of the call action's inputs = the called activity parameters (in)
:true
the type of the action Pin is :RequirementDocument
the type of the activity parameter node is :RequirementDocument
Cheking that types of call action's inputs = types of the called activity's
parameter :true
Checking that nbr of the call action's outputs = the called activity parameters
(out):true
the type of the action Pin is :UMLAnalysisModel
the type of the activity parameter node is :UMLAnalysisModel
Cheking that types of call action's inputs = types of the called activity's
parameter :true
The Overall result of Checking if action call parameters (in/out) = the called
activity parameters (in/out) :true
------------> Activity Node :ElaborateUMLAnalysisModel, is ready!!!!!
------------> Activity Node :requirementDocument_ElaborateAN, is ready!!!!!
this Activity Node has no incoming edge -->:ElaborateUMLAnalysisModel
le nom de la classe est :ElaborateUMLAnalysisModel.java
Compilation succeeded!!!
I am in ElaborateUMLAnalysisModel Action
------------> Activity Node :umlAnalysisModel_APN, is ready!!!!!
La Taille de liste de APN de :ElaborateAnalysisModel est de :1
La Taille de liste de APN de :ElaborateAnalysisModel est de :1

238

------------> Activity Node :ValidateAnalysisModel, is ready!!!!!
------------> Activity Node :umlAnalysisModel, is ready!!!!!
this Activity Node has no incoming edge -->:ValidateAnalysisModel
called actvitity is ValidateAnalysisModel
Checking that nbr of the call action's inputs = the called activity parameters (in)
:true
the type of the action Pin is :UMLAnalysisModel
the type of the activity parameter node is :UMLAnalysisModel
Cheking that types of call action's inputs = types of the called activity's
parameter :true
Checking that nbr of the call action's outputs = the called activity parameters
(out):true
the type of the action Pin is :ValidationReport
the type of the activity parameter node is :ValidationReport
Cheking that types of call action's inputs = types of the called activity's
parameter :true
The Overall result of Checking if action call parameters (in/out) = the called
activity parameters (in/out) :true
------------> Activity Node :Check_and_EditValidationReport, is ready!!!!!
------------> Activity Node :UML_AnalysisModel_AN, is ready!!!!!
this Activity Node has no incoming edge -->:Check_and_EditValidationReport
le nom de la classe est :Check_and_EditValidationReport.java
Compilation succeeded!!!
I am in Check_and_EditValidationReport Action
------------> Activity Node :validationReport_APN, is ready!!!!!
La Taille de liste de APN de :ValidateAnalysisModel est de :1
La Taille de liste de APN de :ValidateAnalysisModel est de :1
------------> Activity Node :validationDecision, is ready!!!!!
Guard expression :ValidationReport.state=failed, of the Object Flow
:From_Decision_To_SendFailMessage evaluated at FALSE
Guard Expression Evaluation of Activty Edge :From_Decision_To_SendFailMessage
failed!!. Can't send offer to the Activity Node :validationReport_Fail
Guard expression :ValidationReport.state=validated, of the Object Flow
:From_Decision_To_SendSuccMessage evaluated at TRUE
------------> Activity Node :SendSuccMessage, is ready!!!!!
------------> Activity Node :validationReport_Succ, is ready!!!!!
this Activity Node has no incoming edge -->:SendSuccMessage
le nom de la classe est :SendSuccMessage.java
Compilation succeeded!!!
I am in SendSuccMessage Action
------------> Activity Node :ConstructionPhase, is ready!!!!!
called actvitity is ConstructionPhase
Checking that nbr of the call action's inputs = the called activity parameters (in)
:true
Cheking that types of call action's inputs = types of the called activity's
parameter :true
The Overall result of Checking if action call parameters (in/out) = the called
activity parameters (in/out) :true
Asynchronous Call to : ConstructionPhase
------------> Activity Node :Final, is ready!!!!!
Activity Final Node : Activity -> Inception terminated
Execution End

239

240

