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Abstract—Internet Service Providers and infrastructural companies of-
ten employ mirrors of popular content to decrease client download time
and server load. Due to the immense scale of the Internet and decentralized
administration of the networks, companies have a limited number of sites
(relative to the size of the Internet) where they can place mirrors. Mirrors
of popular content are usually replicated on every site to maximize reacha-
bility to clients. In this paper, we study the performance improvements as
the number of mirrors increases under different placement algorithms sub-
ject to the constraint that mirrors can be placed only at certain locations.
Although there are extensive theoretical studies on center placement and,
more recently, analytical and empirical studies on web cache placement, we
are not aware of any published literature on mirror placement especially in
the case of constrained mirror placement. Our results show that increas-
ing the number of mirror sites under the constraint is effective in reducing
client download time and reducing server load only for a surprisingly small
range of values regardless of the mirror placement algorithm.

I. I NTRODUCTION

There is a growing number of frequently accessed web sites
that employ mirror servers to increase the reliability and perfor-
mance of their services. Mirror servers (or simply “mirrors”)
replicate the whole or the most popular content of a web server
(the “server” henceforth). Clients requesting the server’s con-
tent are redirected to the mirrors. Since each mirror sees only
a portion of the total requests, clients can be served faster. Fur-
thermore, if clients are redirected to mirrors closer to them than
the server, download time can be reduced. In this paper, mirrors
refer to locations instead of server machines; in other words, we
consider co-located servers to be a single mirror.

At first glance, web caches serve the same purpose as mir-
rors. We differentiate mirrors from caches in that client access
to a mirror always finds the requested content. A client is re-
directed to a mirror only when the mirror has the requested con-
tent. Mirrors can also serve some forms of dynamic content and
content customized for each client.

There is a cost to keeping mirrors’ content consistent when
the content of the server changes. Various algorithms to keep
web caches consistent have been proposed in the literature and
are applicable to mirrors. We categorize these algorithms as
based on time-to-live, e.g. [1], or server invalidation, e.g. [2].
Without going into the details of the algorithms, we note that
the cost of keeping mirrors consistent, in terms of the amount of
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traffic seen at the server (in the case of [1]) or in the total amount
of traffic seen on the network (in the case of [2]) increases lin-
early with the number of mirrors. Thus even if one assumes that
larger number of mirrors provides further reduction in server
load and client download time, simply increasing the number
of mirrors with impunity will result in higher consistency cost.
Certainly, one would be willing to pay the cost associated with
larger number of mirrors if it is outweighed by the reduction
in overall system cost. We show in this paper, however, that
on Internet-like settings, increasing the number of mirrors be-
yond a certain number does not significantly reduce server load
nor client download time. Obviously we are not considering the
case where there is a mirror on every client host or LAN.

Given a finite number of mirrors, we are then interested in
whether their placement on the Internet effects the overall sys-
tem performance. In Section II we look at various mirror place-
ment algorithms and heuristics. Ideally, a mirror can be placed
where there is a large concentration of clients interested in the
content of a server [3]. In this paper, however, we only con-
sider a model in which there is a fixed number of candidate
machines where mirrors can be placed. We call this the Con-
strained Mirror Placement (CMP) problem. An ISP (Internet
Service Provider) or an Internet infrastructure company, for in-
stance, may have a large number of machines scattered around
the Internet capable of hosting mirrors. A content provider with
a busy web server can rent resources on these machines to host
their mirrors. The question is thus: on which subset of the candi-
date machines shall a content provider put mirrors of its content?

Before we look at the effects of increasing the number of mir-
rors and of the placement algorithms, we first present a more
formal definition of the CMP problem in the next section.

II. CONSTRAINED MIRROR PLACEMENT

We model the Internet as a graph,
���������
	��

, where
�

is the
set of nodes and

	�
������
the set of links. We define� 
��

to be the set of candidate hosts where mirrors can be placed,� 
 � the set of mirrors of a particular server� , and � 
��
the set of� ’s clients. The objective of the CMP problem is to
place the set of mirrors on the set of candidate hosts such that
some optimization condition� ���������

(defined below) is satis-
fied for the client set. How well the optimization condition is
satisfied depends on the sizes and topological placements of the
candidate host and clients. We denote the sizes of the candidate
host, mirror, and client sets as� ��� � � � � , and � ��� , and their topo-
logical placements as � � �!�  ���"�

, and � � � respectively. We
use the notation� �
� , and� to denote a specific size and place-
ment of the sets. We only consider the case where� � �$#%� �&� .
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In this paper, we study the effect of changing' ()' and *�+�(-,
while holding ' .�' constant, with.�/1032�4 , and .�510%687 .
We experiment with uniformly distributed*�+9.1, and by placing
candidate hosts on nodes with the highest outdegrees (outgoing
links) first. We also experiment with both uniformly distributed
and trace-based*�+:0;, .
A. Optimization Condition <�+�(>=�?�,

We identify two goals commonly associated with placing mir-
rors on the Internet: reducing client download time and allevi-
ating server load. In the previous section we presented the cost
of keeping mirrors consistent as a limiting factor in deploying
large number of mirrors. We further stated that even discount-
ing consistency cost, we will show in this paper that increasing
the number of mirrors beyond a certain number does not signif-
icantly reduce server load nor client download time. Hence, for
the remainder of this paper, we will assume zero cost to keep
mirrors consistent. With zero consistency cost, we can treat the
server itself as simply one of the mirrors. Assuming one can
add a mirror with no cost, we ask by how much does adding
one more mirror reduce client download time and alleviate load
at existing mirrors (including the server). Client download time
is effected by load at mirrors and network latency (in terms of
round-trip time).1 Hence we can rephrase the two goals of mir-
ror placement as reducing round-trip time between a client and
the closest mirror and alleviating load at mirrors.

One way to alleviate load at mirrors is to run a load balanc-
ing algorithm by which clients are directed to the mirror with
the least load [4]. In this paper, we take a different approach
and consider reducing round-trip time as oursole optimization
condition, <�+�(�=�?�, . A heavily loaded mirror can always be bet-
ter provisioned to meet the load requirements, e.g. by forming
a server cluster [4], whereas, in the limit, it may not be techni-
cally or administratively possible to bring the mirrors any closer
to the clients. In this study, we also ignore the time it takes
for the client to find its closest mirror; any mechanism to im-
prove this transaction can be equally applied to other redirection
schemes. A major consideration that informs our decision to use
round-trip time as the sole optimization condition is that TCP
(Transmission Control Protocol), the transport protocol that un-
derlies the large majority of Web download, has well-known
biases against connections with long round-trip times (RTTs)
[5]. TCP uses dropped packets as a signal of network con-
gestion. Upon detection of network congestion, TCP backs off
its transmission window size and slowly increases the window
again based on successfully acknowledged transmissions. Con-
nections with longer RTTs thus experience longer congestion
recovery periods. In this paper we study in turn the use of max-
imum, 95%-tile, and mean clients’ RTTs to their closest mirrors
as the optimization condition, denoted as<�+�(>=A@B, , <�+�(�=AC DFEG, ,
and <�+�(�=
HI, respectively.

In order to direct clients to the closest mirrors, we need to
know the distances between each client and all of the mirrors. If
the network topology is known, the mirror closest to any partic-
ular client can be identified by computing the shortest path fromJ

Network round-trip time captures the path’s bottleneck bandwidth, to the first
degree of approximation.

Algorithm 1 (2-approximate minimum K -center [8])

1. ConstructLNM J!O LNMM OQPQPRPRO LNMS
2. ComputeTVU for eachLNMU
3. Find smallestW such thatX TVUQXAYZK , say[
4. T]\ is the set ofK centers

Fig. 1. Two-approximate algorithm for the minimumK -center problem.

the client to all mirrors, using Dijkstra’s shortest path first algo-
rithm, for example. When network topology is not known, such
as in the case of the Internet, client re-direction can be done ran-
domly. In [6], the authors have shown that closest mirror selec-
tion using a distance map2 invariably gives better performance
than random selection. In this paper, in comparing various mir-
ror placement algorithms, we assume that network topology is
known and the closest mirror to a client can be deterministically
computed. In Section III-C we present a methodology by which
a virtual topology can be computed on the Internet where the
physical topology is not known.

B. Mirror Placement Algorithms and Heuristics

We now present two graph-theoretic algorithms and one
heuristics we use in placing mirrors. In the subsequent discus-
sion, we use the term “center” to mean “mirror”.

Min ^ -center: This is a graph theoretic algorithm that finds a
set of center nodes to minimize the maximum distance between
a node and its closest center. Given this definition, the min^ -center problem is relevant only in the case of optimization
condition <�+�(>=A@B, . The min ^ -center problem is known to be
NP-complete [7], however a 2-approximate algorithm exists [8].
With the 2-approximate algorithm, the maximum distance be-
tween a node and its nearest center is no worse than twice the
maximum in the optimal case. For ease of reference, we include
here our summary of the 2-approximate algorithm presented in
[6]:
The algorithm receives as input a graph_`2a+�7�=
bV, where7 is the set of nodes,bc2)7"de7 , and the cost of an edgef 2g+:hjik=RhklB,nmob , pk+ f , , is the cost of the shortest path be-
tween hji and hkl . All the graph edges are arranged in non-
decreasing order by cost,p : pk+ f iq,srtpG+ f lA,sr)CACuCvrtpk+ fBw , ,
let _�xy2�+�7�=
bzx{, , wherebzxy2�| f i = f l =ACuCuCu= f x{} . A square graph
of _�x , _ lx is the graph containing7 and edges+�~�=
h�, wherever
there is a path between~ and h in _ x of at most two hops,~��2�h .
An independent set of a graph_�2�+�7�=�b�, is a subset7���687
such that, for all~�=
h�mn7�� , the edge+�~�=
h�, is not in b . An in-
dependent set of_ lx is thus a set of nodes in_�x that are at least
three hops apart in_ x . We also define amaximal independent
set � as an independent set7�� such that all nodes in7���7��
are at most one hop away from nodes in7�� .
M By “distance map” we mean a virtual topology of the Internet constructed by

tracing paths on the Internet. In [6], the authors propose an architecture to build
such a distance map.
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Algorithm 2 ( � -Greedy [9])

1. if ( � ���A�V� )
2. Choose among all sets��� with � ��������� ���
3. the set��� � with minimal ������� �����G�
4. return set ��� �
5. end
6. Set� � to be an arbitrary set of size�
7. while ( � � � �A��� ��� )
8. Among all sets� of � elements in� �
9. and among all sets  of ��¡Z¢ elements
10. in £¥¤�� � ¡¦� , choose the sets�]�§ 
11. with minimal ����� � ¤��n¡¦ ����G�
12. � � �Z� � ¤��¨¡© 
13. end
14. return set � �

Fig. 2. Algorithm � -Greedy.

The outline of the minimumª -center algorithm from [8] is
shown in Fig. 1. The basic observation is that the cost of the op-
timal solution to theª -center problem is the cost of«B¬ , where­
is the smallest index such that®�¬ has a dominating set3 of size at
most ª . This is true since the set of center nodes is a dominat-
ing set, and if® ¬ has a dominating set of sizeª , then choosing
this set to be the centers guarantees that the distance from a node
to the nearest center is bounded by«¯¬ . The second observation
is that a star topology in®�¬ , transfers into a clique (full-mesh)
in ®�°¬ . Thus, a maximal independent set of sizeª in ®�°¬ implies
that there exists a set ofª stars in® , such that the cost of each
edge in it is bounded by±k«¯¬ : the smaller the­ , the larger theª .
The solution to the minimumª -center problem is the®�°¬ withª stars. Note that this approximation does not always yield a
unique solution.
We have to make further approximations in applying the mini-
mum ª -center algorithm to the CMP problem. In the construc-
tion of the minimumª -center algorithm above, any node in®
may be selected to act as a “center”. In CMP, only nodes in²
can host a mirror. Thus to apply the minª -center algorithm,
we first run the algorithm on® with ³�´µ²�¶�· . Should a node
in · be selected as a center, we substitute it with a node in²
that is closest to it. Recall that we assume²�¸�·e´�¹ .º
-Greedy: This algorithm places mirrors on the network iter-

atively in a greedy fashion. First it exhaustively checks each
node in² to determine the node that best satisfies the optimiza-
tion condition (see Section II-A) for given· . For

º ´¼» , after
assigning the first mirror to this node, the algorithm looks for an
appropriate location for the next mirror, etc. until all½ ¾)½ mir-
rors are placed. For general

º
, the algorithm allows for

º
step(s)

backtracking: it checks all the possible combinations of remov-
ing
º

of the already placed mirrors and replacing them with
ºÀ¿�Á

new mirrors. That is,
º

number of the already placed mirrors can
be moved around to optimize the gain. Figure 2 summarizes the
algorithm.
Transit Node: The outdegree of a node is the number of other
nodes it is connected to. Assuming that nodes with the highest
outdegrees can reach more nodes with smaller latency, we place
mirrors on candidate hosts in descending order of outdegree. We
call this theTransit Node heuristics under the assumption thatÂ

A dominating set is a set ofÃ nodes such that everyÄzÅv£ is either in Ã or
has a neighbor inÃ .

nodes in the core of the Internet that act as transit points will
have the highest outdegrees.
Random Placement: Under random placement, each candidate
host has a uniform probability of hosting a mirror.

C. Performance Analysis

In this section, we present an analysis of the performance of
unconstrained mirror placement to illustrate what could be ex-
pected of mirror placement in the ideal setting. In particular,
the analysis shows that, under optimal mirror placement, there
is a diminishing return in client-mirror distance4 with respect
to the number of mirrors. Despite the diminishing return, the
ratio of expected maximum client-mirror distance between opti-
mal and random placement increases logarithmically. However,
under random placement, most clients are still close enough to
their closest mirrors, and only a small portion of the clients are
actually very “far” from their closest mirrors.

To abstract the unconstrained mirror placement problem, we
can picture the network as a continuous plane on which clients
can be uniformly spread over the infinitely many points (Æ ). We
want to place a given number of mirrors such that the maximum
distance of any client to its closest mirror is minimized. This
measure of quality translates to finding a placement such that
the radius of the largest circle one can draw in the plane that
does not include any mirror is minimized.

Solving this problem analytically is cumbersome, to make
the presentation clearer we study the same problem in one di-
mension. We can transform the problem into one dimension
by distributing the clients uniformly on the segment (0,1) and
placing mirrors on the same segment. Clearly, the optimal al-
location of mirrors given the maximum distance criterion is to
separate the mirrors by the same distance apart. Thus, if one
needs to placeÇÉÈ Á mirrors, the optimal location is at locations¬Ê ,
ÁZË ­ Ë Ç�È Á , and the maximum distance from any client

to its closest mirror isÌÊ .5 It is clear that the gain in reduction of
client-mirror distance is diminishing as the number of mirrors
increases. We can also see that each mirror site will have ap-
proximately the same number of clients if each client is directed
to its closest mirror.

The optimal placement could be difficult to achieve in real
life. Hence, we would like to quantify how good random place-
ment is compared to the optimal placement in terms of the ex-
pected maximum client-mirror distance. Under random place-
ment,Ç�È Á points (mirrors) are randomly distributed in the inter-
val (0,1). Using known results from order statistics [10, Section
5.4], we haveÍvÎjÏ¯ÐÒÑ ÊkÓ�ÔµÕ�Ö ´ ×Ì!Ø ¬ÚÙ¯ÛÝÜAÞ ¬�ß Ì à È ÁBá ¬ ØÒÌãâ Ç ­Bä à Á È&­ Õ á Ê ØãÌ (1)

The expected value of the maximum segment between two
neighboring points is thus given byå

client-mirror distance always means the distance between client and the clos-
est mirror.æ

The actual optimal locations forç mirrors should be at èéëê ¡�ìê , but the
importance of this boundary condition diminishes withç . For ease of analysis,
we consider only the limit case withç going to infinity.
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where

ïÒðÚñkò
is the random variable of the longest segment,úkûýüÿþ��

the density function, and
 ûýüÿþ�� the cumulative distribution func-
tion.

Figure 3 depicts the computed expected maximum segment
length together with numerical simulation results. Each point
in the simulation represents the mean of 1000 experiments; in
each,9 � ' points are uniformly placed on the unit interval and
the maximum segment is computed. The confidence interval
is negligible in most cases. It is clear that the simulation and
the numerical calculation are almost identical. The detailed en-
largement in Figure 4 (also in Figure 5) shows that some outliers
are observable in different scales. There is a clear knee around9 ö@?�A after which the return from adding additional mirrors
diminishes.

Comparing the segment length to the optimal length shows
that for a large range,9CB '&DEA , the difference is substantial.
Figure 5 shows the ratio of expected maximum segment length
between the random placement and the optimal for both the
simulated data and the calculated data. Surprisingly, it seems
that the ratio increases logarithmically with the number of mir-
rors (we saw before that the absolute difference diminishes). To
check this we fitted the exponent of the ratio with the best (mean
square) linear function of the formFHGJI 9 . The resulting fitted
curve is K�L ?!MED G ' L MEN 9 . Plotting the fit for the expected max-
imum length in Figure 3,O4P � K�L ?!MED G ' L MQN 9 �SR 9 , we could not
distinguish it from the calculated one in all but the microscopic
scale.

One might be tempted to discount random placement algo-
rithm based on the above result. However, we show next that
random placement is really not all that bad by examining what
portion of the client population is within a “good distance” from
its closest mirror given random placement. LetT be the stretch
we allow in the distance from the optimal placement distance,
which is ' R K 9 , we calculate the portion of clients farther away
from their closest mirror by more than a factor ofT from optimal,
i.e., by more thanT R K 9 . This is done by looking at the proba-
bility that for a random point no mirror is placed at a segment
of length T R 9 around it (a two dimensional ball of radiusT R K 9 ),
which is given by���! � :�U T�V 9�WYX * T R K 9 $ ö � ' � T R 9 � ñ (2)
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Fig. 3. The expected maximum segment length on the unit interval.
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Fig. 4. The expected maximum segment length on the unit interval (details).

As 9 grows we can writeO=Z4[ñ�\^] ���! � :�U T�V 9�WYX * T R K 9 $ ö O4Z4[ñ�\^] � ' � T R 9 � ñ ö X /%_ (3)

Thus, as the number of mirrors grows, a fixed portion of the
clients are away by a certain stretch from optimal. Specifically,' R X of the clients are at distance farther than the worst case of
the optimal distance. Figure 6 shows the result of an experiment
we conducted to test the above analysis. As one can see, the
probability converges toX /2_ for 9 values well below 100 (the
limit values are plotted in Figure 6 as small symbols at9 ö` A
A ).

The above analysis shows that, under the optimal place-
ment, the reduction in client-mirror distance has a diminish-
ing return with a well-defined “knee” as the number of mir-
rors increases. When clients are uniformly distributed, the opti-
mal placement can achieve good load balancing while directing
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Fig. 5. The ratio of the random placement over the optimal placement.
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Fig. 6. The probability a client under random placement is farther than a stretcha
of the distance bound in the optimal placement.

clients to the closest mirrors. Furthermore, the optimal place-
ment increasingly outperforms random placement in terms of
expected maximum client-mirror distance as the number of mir-
rors increases; however, extremely long client-mirror distances
occur very rarely under random placement

III. PERFORMANCEEVALUATION

Our goal in conducting performance evaluation is to study the
effect of changingb cdb and egfhcji on the optimization condi-
tion kgf�cmlhn2i . For our performance evaluation, we conduct both
simulations on random topologies and experiments on the Inter-
net. For each set of experiments, we vary eitherb cdb or egf�c@i
while holding all the other variables constant. We now describe
our simulation setup and scenarios, followed by a description of
our Internet experiment setup.

A. Simulation Setup

The random topologies used in our simulations are generated
using the Inet topology generator. The Inet topology generator
generates random topologies following the observed character-
istics of the Internet reported in [11]. A more thorough descrip-
tion of the Inet topology generator is presented in [6]. For this
study, we generate several random topologies with 3,037 nodes
each.6 Each generated network is a connected graph on a plane,
with nodes representing an Autonomous System (AS); a link be-
tween two nodes represents AS connectivity, and its Euclidean
distance the latency between the two connected nodes. In our
simulations, we place only a single client per network node.

In each simulation, we first select 50 nodes to act as candidate
hosts. We experiment with two candidate host selection meth-
ods: (1) uniform selection, where each node has an equal prob-
ability of being selected, and (2) selection based on outdegree,
where the nodes with the largest outdegree is selected first. Af-
ter the candidate hosts are selected, we randomly, with uniform
probability, select 1,000 of the remaining nodes to act as clients.
For each mirror placement algorithm, we computedkgf�cml�o�i ,kgf�cml�p q!r�i and ksfhcml�tui . We compute eachkgf�cvlhn2i for b cdb
ranging from 3 to 50. Client redirection to the closest mirror isw

This was the size of the Internet in November 1997; our results with larger
networks indicate that observations made in this paper also apply to larger net-
works.

Location Number of Hosts Percentage
North America 58 65.2
Western Europe 15 16.8
Rest of Europe 6 6.7

Australia 6 6.7
Israel 1 1.1
Korea 1 1.1

Mexico 1 1.1
S. Africa 1 1.1

TABLE I

TRACEROUTEGATEWAY POPULATION BREAKDOWN

done by both shortest-path first computation and randomly with
uniform probability.

We present results of the simulations in Section IV.

B. Internet Experiments

In addition to studying CMP on random topologies, we also
evaluate it with a trace-based experiment on the Internet. In par-
ticular, we study the effect of optimizing the number and place-
ment of mirrors on client download time when CMP is applied
to the Bell Labs web server.

B.1 Candidate Host Set

We do not have access to 50 machines distributed across the
Internet which can act as candidate hosts. Given our optimiza-
tion condition of minimizing the latency observed by the client
set, we observed that for purposes of performance evaluation,
CMP can be emulated on the Internet as long as we can deter-
mine the distance betweenb x�b sites on the Internet and our client
set. We decided to use 89 Traceroute Gateways to serve as our
candidate host sites. Traceroute Gateways are web servers made
available to the public for measurement purposes by volunteers
around the world. Given a host name or address, a Traceroute
Gateway runstraceroute to that host and reports the result
back to the client. Traceroute Gateways can be accessed from
http://www.tracert.com/. Table I lists the geographical locations
of the Traceroute Gateways used in this paper. The table reflects
a reasonable diversity of the geographic locations of the Tracer-
oute Gateways.

The Transit heuristics we use in placing mirrors places mir-
rors on candidate hosts in descending order of outdegrees. Since
we do not know the outdegrees of the Traceroute Gateways, we
associate with each Traceroute Gateway the outdegree of the AS
they reside in. We first map the IP address of a Traceroute Gate-
way to its AS using a toolprtraceroute, which is part of the
Routing Arbiter project toolkit (www.irrd.net). Then to deter-
mine the AS’s outdegree, we use the AS summary information
available at NLANR (moat.nlanr.net/AS/), which lists the out-
degree of each AS. If the destination traceroute gateway’s AS
has a single connection to the rest of the Internet, we assign it
the outdegree of its closest upstream AS that has outdegree more
than 1.

35 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

T1

T2

T3

C1

C2

          between
Traceroute Gateways

     between Traceroute
    Gateways and Clients

C: Client

T: Traceroute
     Gateway

C3

C4

Fig. 7. Experiment Setup

B.2 Client Set

For this experiment, we collected one week (in November
1998) worth of the Bell Labs access log. During this week, the
web server saw on average 26,346.9 hits per day. Of these, there
were 15,561 unique domain names, which resolved to 10,115
unique IP (Internet Protocol) addresses. Due to the nature of
dial-up connections, many of the dial-up clients in the log file
were no longer reachable. To prevent clients that are no longer
reachable from being traced by thetraceroute gateways, we
use the following procedure to obtain a list of reachable clients.
We attempted to open TCP connections to each IP address from
two different sites (one in Michigan and the other in California),
and eliminated the ones that were not reachable by at least one
of them (this is to reduce the number of hosts unreachable by the
Traceroute Gateways below). Of the 10,115 unique IP addresses
we obtained from the Bell Labs web server logs, 4,980 can be
reached through TCP. Finally, we had each of the 89 Traceroute
Gateway conducttraceroute to all of these IP addresses.
Sincetraceroute uses ICMP (Internet Control Message Pro-
tocol) instead of TCP, and some networks or hosts do not accept
ICMP packets for administrative reasons, the Traceroute Gate-
ways were only able to trace 3,130 of these IP addresses. The
client set y in this experiment thus consists of these 3,130 IP
addresses. Table II lists the domains the clients in our client set
belongs to (and the percentage thereof).

C. Distance Estimation

The virtual network on which we conduct our CMP experi-
ments thus consists of 89 Traceroute Gateways as our candidate
hosts and 3,130 IP addresses as our clients. The “edges” of these
virtual network consists of round-trip time (RTT) latency mea-
surements from each Traceroute Gateways to all of the other
Traceroute Gateways and to all of the clients. For illustrative
purposes, Figure 7 shows a sample virtual network consisting of
four Traceroute Gateways and two clients. The Traceroute Gate-
ways measure RTTs between each other and RTTs to the two
clients. The RTT measurements between Traceroute Gateways
are bidirectional, while those between Traceroute Gateways and
clients are unidirectional, as indicated in the figure.

Some of the mirror placement algorithms we study require
knowledge of distances between clients. In our virtual topology,

Location Number of Hosts Percentage
.net 585 18.82
.edu 566 18.53
.com 568 17.96

Germany 121 3.82
Canada 113 3.57

.uk 89 2.81
Japan 80 2.53

Australia 59 1.86
United 38 1.2
France 38 1.2
Sweden 32 1.01
Spain 29 0.91
.org 29 0.91
Italy 25 0.79

Switzerland 22 0.69
.gov 22 0.69

Netherlands 19 0.6
Malaysia 19 0.6

Korea 19 0.6
Hong 18 0.56
India 17 0.53

Denmark 16 0.5
Russian 15 0.47
Finland 15 0.47
Brazil 15 0.47

Belgium 15 0.47
Taiwan 14 0.44

Singapore 14 0.44
Ireland 12 0.37
Greece 12 0.37
Austria 12 0.37

.mil 12 0.37
S. Africa 11 0.34

New Zealand 10 0.31
Mexico 9 0.28
Turkey 6 0.18

Thailand 6 0.18
Portugal 6 0.18
Poland 6 0.18
Israel 6 0.18
China 6 0.18

Argentina 6 0.18
Others 31 0.98

Failed lookup 338 10.69
Total 3161 100

TABLE II

BELL LABS WEB CLIENT SET BREAKDOWN

we estimate the distance between two clients as the sum of the
distances from each client to the closest Traceroute Gateway,
and the distance between the two Traceroute Gateways. This
method is usually called “triangulation” in the literature [12],
[13]. In [14], the authors evaluated its efficacy on estimating
distance between two points on the Internet.

IV. EXPERIMENT RESULTS

Recall from Section III-A, in all of our simulations, we use
a network of 3,037 nodes, of whichz {�z}|@~�� are selected as
candidate hosts. The choice of which host becomes a candi-
date hosts�g��{H� is determined either randomly with uniform
probability for all nodes, or by the outdegree of the nodes. The
client set consists of 1,000 nodes randomly selected, with uni-
form probability, from the remaining ones. Recall also that we
define three optimization conditions:�g���m����� , �s�h�m��� �
~
� , and�g���v���u� . For each optimization condition we run a set of simu-
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Fig. 8. Minimizing Maximum RTTs between Clients and Closest Mirrors.
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Fig. 9. Internet Experiments.

lations. In each set of simulation, we first pick� �d� , the number
of mirrors. For the given number of mirrors, we run one simu-
lation for each mirror placement algorithm,�g���@� : minimum�

-center, 0-greedy, 1-greedy, 2-greedy, and Transit. Since ran-
dom placement of mirrors gives different results based on the
sites selected, for random placement we run 10 simulations for
a given mirror set size and compute the mean of the observed� ���m�h�2� . Then we repeat all simulations for the next� �d� . In
our simulations, we experiment with� �d� ranging from 2 to 50,
stepping by 2 up to 26, and stepping by 5 afterwards. We then
repeat each set of simulations on 10 different Inet generated net-
works of 3,037 nodes each. We do the above on 50 randomly
selected candidate hosts. Then we repeat everything again on 50
candidate hosts selected based on decreasing number of outde-
grees, except that we do not simulate the 1-greedy and 2-greedy
algorithms as they do not show marked improvement over the
0-greedy case in the former scenarios. Hence in total we ran
7,350 simulations on randomly selected candidate hosts, and
6,630 simulations on candidate selection based on outdegree.

For the Internet-based experiment, we repeat the above sce-
nario except using the 89 Traceroute Gateways as candidate
hosts. Mirror set sizes range from 3 to 89, stepping by 3 up to
45, and stepping by 5 afterwards. Since there is only one virtual
network, we do not repeat the set of simulations 10 times; we
do, however, still repeat the experiment 10 times for each mirror
set size when the mirror placement algorithm used is random

placement. This means we run 1,014 experiments on the virtual
network.

A. Optimization Condition
� ���m�h�2�

We first consider the optimization condition
� �h�m���,� . Fig-

ures 8a, 8b, and 9a show the maximum client-mirror RTTs for� ���v���&� . The x-axis of each figure lists the number of mirrors,
and the y-axis the maximum RTT between clients and their clos-
est mirrors. The x-axes for the simulation results range from 0
to 50, while those for Internet experiments range from 0 to 90.
The y-axis in the various figures have different ranges. In the
simulation results, the “distance” between two nodes is the Eu-
clidean distance between them on the simulated plane. In the
Internet experiments, distance is in milliseconds. The numbers
for all placement algorithms, except for random placement, are
averaged over simulations on 10 random topologies to obtain
the mean, the maximum, and minimum. For clarity, we only
show the statistics for random placement in the figures. Recall
that for each of the 10 random topologies, we simulate random
placement of� mirrors 10 times. From these 10 placements, we
get a mean worst case client-mirror RTTs. Each error bar shows
the mean, the maximum and the minimum values of these mean
values over the 10 random topologies. We see that the maximum
and the minimum values are typically within 20% of the mean.

From these figures, we observe that optimizing
� ���v�����

yields very little improvement as the number of mirrors in-
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Fig. 10. Mean and 95%-tile RTTs.

creases, both in simulations and actual Internet experiments.
In constrained mirror placement, the distance between clients
and mirrors can not be improved incrementally at finer and finer
granularity because mirrors can not continuously be placed pro-
gressively closer to the clients. Both candidate site placement
and mirror placement can contribute to this problem. First, the
optimal mirror placement is very “location-sensitive” in that
it has very specific requirements on where the candidate sites
should be, i.e., separated by an equal distance. Also, the opti-
mal solutions for different mirror value� have very little over-
lap so it is unlikely all�������&� optimal locations (at  1/2¡ ,   1/3,
2/3¡ ,   1/4, 1/2, 3/4¡ , ¢�¢�¢ ) would be included if� mirror candi-
date sites are randomly selected. Second, adding more mirrors
can not improve the minimum distance between a client and its
closest candidate site (therefore the client’s closest mirror) fur-
ther, once the candidate site is selected for mirror placement.
This problem can be exacerbated when the number of candidate
sites is small relative to the client population.

Figure 10 shows the mean and 95%-tile of client-mirror dis-
tances when candidate sites are selected based on outdegrees,
and mirror placement is by the 0-greedy algorithm. Recall that
solution to the min£ -center problem is applicable only in the
case of optimization condition¤g��¥v¦�§&� . Hence for optimiza-
tion conditions¤s�h¥m¦�¨u� and ¤s�h¥v¦�¢ ©
ª�� we consider only the«
-greedy algorithm, in particular 0-greedy. Both the 95%-tile

and mean client-mirror graphs show diminishing return and a
well-defined “knee”, which confirms the theoretical analysis and
our intuition. We observe very similar performance between

the two curves, reflecting¤s�h¥v¦�¢ ©
ª�� and ¤g��¥m¦S¨u� optimiza-
tion conditions, and attribute this to the potentially long, but
nonetheless not heavy tail of the client-mirror RTT distribution
in our setups (which means that the 95%-tile is not that far from
the mean). In the remainder of this paper, we use¤g��¥d¦�¢ ©
ª�� as
our optimization condition.

B. Effect of ¬ ¥d¬ and ­g��¥@� on ¤g��¥v¦h®2�
Figures 9b, 11a, and 11b show the observed 95%-tile RTTs

between clients and their closest mirrors when¤s�h¥v¦�¢ ©
ª
� is
used. Note that in most cases, especially when the 0-greedy al-
gorithm for mirror placement is used, there is little improvement
in 95%-tile RTT beyond 10 mirrors.

One important observation with regard to­g�h¥@� is that place-
ment is very important when the number of mirrors is small. In
all cases, when¬ ¥d¬ is small, there is a significant difference in
observed latency between using the greedy placement algorithm
and random placement. When­g�°¯H� is uniform, non-random­g��¥@� outperforms random placement. Even when­g�°¯±� is
non-random, as in the case of outdegree-based candidate selec-
tion, using greedy placement improves¤g��¥v¦�¢ ©!ª�� by 10% to
20% as shown in Figure 11 (note the difference in y-axis ranges).

We conclude that increasing the number of mirrors beyond a
small portion of the candidate sites (10, in our examples) does
not necessarily improve client to closest mirror latency. Further-
more, careful placement of mirrors on a small candidate sites
can provide the same performance gain as placing mirrors on all
candidate sites. These preliminary results seem to suggest that
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Fig. 11. Minimizing the 95%-tile RTTs between Clients and Mirrors.

candidate site placement can be just as important and possibly
more important than mirror placement itself. We note that prac-
tically candidate host sites are often decided by administrative
and financial constraints rather than technical ones.

C. Mirror Load Distribution

We now show that using²g³�´mµ�¶ ·!¸�¹ as the optimization con-
dition, mirror load distribution is not improved with larger num-
ber of mirrors. Figure 12 plots client distribution among mirrors
when the number of mirrors is increased from 2 to 50 (3 to 89,
in the Internet experiment). The x-axis is the popularity rank of
each mirror, and the y-axis is the number of clients redirected to
a particular mirror, with the most popular one getting the most
redirections. Each curve in the graphs represent a specific mir-
ror set size. For the simulations, the candidate sets are chosen
based on decreasing outdegrees. In all cases, the optimization
condition is ²s³h´vµ�¶ ·
¸�¹ , and the mirror placement algorithm is
0-greedy. In the simulation, only a small number of clients (less
than 1% mirrors) get redistributed with each additional mirror
once the number of mirrors is above 15 mirrors. Client redistri-
bution is also very infrequent in our Internet experiments.

Again, we point to our analysis in Section II-C, where
we showed that the optimal placement produces good load-
balancing among mirrors as the number of mirrors increases.
We have already shown that it is difficult to reproduce the ideal
setting when mirror placement is constrained so perhaps it is not
surprising that we also lose the ability to load-balance. However,
we want to point out that one can still achieve load-balancing if
the requirement that each client be directed to the closest server
is ignored.

D. Effect of Redirection Methods

Up to now we have assumed that client-mirror distances can
be deterministically computed using Dijkstra’s shortest path first
algorithm. In this section we consider the case where only 10
of the highest outdegree Traceroute Gateways are able to do
traceroute. Hence distances between the other Traceroute
Gateways and between a Traceroute Gateway, other than these
10, to a client must be estimated by doing triangulation on the
distances measured by these 10 Traceroute Gateways only. This
simulate the case where the underlying network topology is not
known (such as the case with the Internet) and a “distance map”

of the underlying topology must be estimated by placing mea-
surement boxes on the network. We have shown by simulations
in [6] that when the underlying network topology is not known,
nearest mirror redirection using some form distance map out-
performs random redirection. We now show that similar results
can also be observed on the Internet. Figure 13 shows the 95%-
tile of client-mirror RTTs under²g³�´vµ�¶ ·
¸
¹ when distances are
known, with random redirection, and with redirection using a
distance map. The results were obtained from Internet-based
experiments, when mirrors are placed using the 0-greedy algo-
rithm.

V. RELATED WORK

There have been some recent works on mirror performance
and closest server selection. In [15], the authors measured 9
clients scattered throughout the United States retrieving docu-
ments from 47 Web servers, which mirrored three different Web
sites. They presented findings that revealed good stability of
mirror rankings according to download time. In [16], the au-
thors present a server selection techniques that can be employed
by clients on end hosts. The technique itself involves periodic
measurements from clients to all of the mirrors. The authors of
[17] proposed a server selection scheme based on shared passive
end-to-end performance measurements collected from clients in
the same network. There are also related works that focus on
maintaining consistency among cache servers, which can be ap-
plicable in keeping mirrors consistent. In [2] and [1], the authors
studied different scalable web cache consistency approaches and
showed various overhead of keeping caches consistent.

There has not been, however, any study we are aware of that
gives specifics on how to do mirror placement on the Internet.
In [6], two graph theoretic algorithms, k-HST [18] and Min K-
center [8], are used to determine the number and the placement
of instrumentation boxes for the purpose of network measure-
ment. While the authors of the paper use nearest mirror selec-
tion as a motivating problem, the 3 mirrors they consider are
manually placed on arbitrarily selected locations. In this paper
we take a closer look at mirror placement on the Internet under
a realistic setting where the number of mirrors is small, but gen-
erally larger than 3, and the placement is restricted to a given set
of hosts.
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Fig. 12. Client population distribution under 95%-tile RTT optimization
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VI. CONCLUSION

In this paper, we take a detailed look at the problem of plac-
ing mirrors of Internet content on a restricted set of hosts. Using
both simulation and real Internet delay data, we examine a num-
ber of placement and redirection algorithms for placing various
numbers of mirrors and their effects in client response time and
mirror load distribution. We observed that there is a rapid di-
minishing return to placing more mirrors in terms of both client
latency and server load-balancing. We hypothesize that the pres-
ence of the locality constraint has eliminated some of the neces-
sary conditions for obtaining the optimal solution and the sub-
sequent performance benefits. Even under the more elaborate
placement schemes, simply increasing the number of mirrors
yields very little performance improvement beyond a relative
small number of mirrors.
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