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Abstract— Internet Service Providers and infrastructural companies of-  traffic seen at the server (in the case of [1]) or in the total amount
‘e”demp'oyl mzfoés OI Pt%PL!'ar content t‘|’ d‘i‘;rf]ealsi C”e[‘t dg"c‘j’”'oa‘: “Ir_”ed of traffic seen on the network (in the case of [2]) increases lin-
and server load. Due to the immense scale of the Internet and decentralize . . .
administration of the networks, companies have a limited number of sites early with the numb?r of mlrrorg. Thus even if one'ass'umes that
(relative to the size of the Internet) where they can place mirrors. Mirrors  larger number of mirrors provides further reduction in server
of popular content are usually replicated on every site to maximize reacha- |load and client download time, simply increasing the number
bility to clients. In this paper, we study the performance improvements as ¢ jrrors with impunity will result in higher consistency cost.
the number of mirrors increases under different placement algorithms sub- . o . .
ject to the constraint that mirrors can be placed only at certain locations. Certainly, one WOUlq be W_'”'ng to pay t_he cost associated W'th
Although there are extensive theoretical studies on center placement and, larger number of mirrors if it is outweighed by the reduction
more recently, analytical aﬁd empmcal stud|e§ on web cache pIacenjent,_we in overall system cost. We show in this paper, however, that
are not aware of any published literature on mirror placement especially in Int tlik ti . ina th b f mi b
the case of constrained mirror placement. Our results show that increas- on internet- '_ € setungs, mcreasnjg ; _e number oF mirrors be-
ing the number of mirror sites under the constraint is effective in reducing  yond a certain number does not significantly reduce server load
client df]{W”:Oad time ?j?d VEd]EJCring server Iload only f0|f a Szfpfismgly small  nor client download time. Obviously we are not considering the
range of values regardiess of the mirror placement algorithm. case where there is a mirror on every client host or LAN.

Given a finite number of mirrors, we are then interested in

l. INTRODUCTION whether their placement on the Internet effects the overall sys-

There is a growing number of frequently accessed web sit€sn performance. In Section Il we look at various mirror place-
that employ mirror servers to increase the reliability and perfdRent algorithms and heuristics. Ideally, a mirror can be placed
mance of their services. Mirror servers (or simply “mirrors”yvhere there is a large concentration of clients interested in the
replicate the whole or the most popular content of a web ser@ntent of a server [3]. In this paper, however, we only con-
(the “server” henceforth). Clients requesting the server's cofider a model in which there is a fixed number of candidate
tent are redirected to the mirrors. Since each mirror sees oAachines where mirrors can be placed. We call this the Con-
a portion of the total requests, clients can be served faster. Rifained Mirror Placement (CMP) problem. An ISP (Internet
thermore, if clients are redirected to mirrors closer to them th&rvice Provider) or an Internet infrastructure company, for in-
the server, download time can be reduced. In this paper, mirr§t8nce, may have a large number of machines scattered around
refer to locations instead of server machines; in other words, ¥ Internet capable of hosting mirrors. A content provider with
consider co-located servers to be a single mirror. a busy web server can rent resources on these machines to host

At ﬁrst g|ance' Web Caches serve the same purpose as rmﬁ”' mirrOI’S. The question iS thus: on Wh|Ch Subset of the Candi'
rors. We differentiate mirrors from caches in that client accedate machines shall a content provider put mirrors of its content?
to a mirror always finds the requested content. A client is re-Before we look at the effects of increasing the number of mir-
directed to a mirror only when the mirror has the requested cdffs and of the placement algorithms, we first present a more
tent. Mirrors can also serve some forms of dynamic content aiimal definition of the CMP problem in the next section.
content customized for each client.

There is a cost to keeping mirrors’ content consistent when Il. CONSTRAINED MIRROR PLACEMENT

the content of the server changes. Various algorithms to keeRye model the Internet as agragii= (V, E), whereV is the
bl L

web caches consistent have been proposed in the literature gicht nodes an& € V x V the set of links. We defingl C V

are applicable to mirrors. We categorize these algorithms @Spa the set of candidate hosts where mirrors can be placed,
based on time-to-live, e.g. [1], or server invalidation, e.g. [2y ¢ % the set of mirrors of a particular servér andB C V
Without going into the details of the algorithms, we note thafe et ofS’s clients. The objective of the CMP problem is to
the cost of keeping mirrors consistent, in terms of the amountgice the set of mirrors on the set of candidate hosts such that
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In this paper, we study the effect of changig | andP (M)
while holding|#| constant, wittH N B = 0, andH U B C V.
We experiment with uniformly distributeB(#) and by placing
candidate hosts on nodes with the highest outdegrees (outgoing
links) first. We also experiment with both uniformly distributed
and trace-baseB(B).

Algorithm 1 (2-approximate minimum K-center [8])

ConstrucG?,G3,...,G2,

ComputeM; for eachG2

Find smallest such that M;| < K, sayj
M; is the set ofK centers

pwON P

A. Optimization Condition O(M, p) Fig. 1. Two-approximate algorithm for the minimufti-center problem.

We identify two goals commonly associated with placing mir-
rors on the Internet: reducing client download time and allewike client to all mirrors, using Dijkstra’s shortest path first algo-
ating server load. In the previous section we presented the adgistm, for example. When network topology is not known, such
of keeping mirrors consistent as a limiting factor in deployings in the case of the Internet, client re-direction can be done ran-
large number of mirrors. We further stated that even discouiemly. In [6], the authors have shown that closest mirror selec-
ing consistency cost, we will show in this paper that increasitign using a distance m&jgnvariably gives better performance
the number of mirrors beyond a certain number does not sigrttian random selection. In this paper, in comparing various mir-
icantly reduce server load nor client download time. Hence, foor placement algorithms, we assume that network topology is
the remainder of this paper, we will assume zero cost to kelepown and the closest mirror to a client can be deterministically
mirrors consistent. With zero consistency cost, we can treat ttemputed. In Section I1I-C we present a methodology by which
server itself as simply one of the mirrors. Assuming one canvirtual topology can be computed on the Internet where the
add a mirror with no cost, we ask by how much does addimdysical topology is not known.
one more mirror reduce client download time and alleviate load
at existing mirrors (including the server). Client download time
is effected by load at mirrors and network latency (in terms @, Mirror Placement Algorithms and Heuristics
round-trip time)* Hence we can rephrase the two goals of mir-

ror placement as reducing round-trip time between a client andp,e now present two graph-theoretic algorithms and one

the closest mirror and alleviating load at mirrors. heuristics we use in placing mirrors. In the subsequent discus-
One way to alleviate load at mirrors is to run a load balangion, we use the term “center” to mean “mirror”.

ing algorithm by which clients are directed to the mirror with
the least load [4]. In this paper, we take a different approahin K-center: This is a graph theoretic algorithm that finds a
and consider reducing round-trip time as sale optimization set of center nodes to minimize the maximum distance between
condition,O(M, p). A heavily loaded mirror can always be beta node and its closest center. Given this definition, the min
ter provisioned to meet the load requirements, e.g. by formitig-center problem is relevant only in the case of optimization
a server cluster [4], whereas, in the limit, it may not be techntonditionO(M, 1). The minK-center problem is known to be
cally or administratively possible to bring the mirrors any clos@tP-complete [7], however a 2-approximate algorithm exists [8].
to the clients. In this study, we also ignore the time it take#/ith the 2-approximate algorithm, the maximum distance be-
for the client to find its closest mirror; any mechanism to imween a node and its nearest center is no worse than twice the
prove this transaction can be equally applied to other redirectigraximum in the optimal case. For ease of reference, we include
schemes. A major consideration that informs our decision to usere our summary of the 2-approximate algorithm presented in
round-trip time as the sole optimization condition is that TCF]:
(Transmission Control Protocol), the transport protocol that uthe algorithm receives as input a gragh = (V, E) where
derlies the large majority of Web download, has well-knowl is the set of nodesE = V x V, and the cost of an edge
biases against connections with long round-trip times (RTT&)= (v1,v2) € E, c(e), is the cost of the shortest path be-
[5]. TCP uses dropped packets as a signal of network caweenwv; andwvs. All the graph edges are arranged in non-
gestion. Upon detection of network congestion, TCP backs aécreasing order by cost; c(e;) < c(e2) < ... < clem),
its transmission window size and slowly increases the winddet G; = (V, E;), whereE; = {e1,es,...,e;}. A square graph
again based on successfully acknowledged transmissions. Gefn&;, G? is the graph containing’ and edgesu, v) wherever
nections with longer RTTs thus experience longer congestititere is a path betweenandv in G; of at most two hopsy # v.
recovery periods. In this paper we study in turn the use of maXn independent set of a graphG = (V, E) is a subseV’ C V
imum, 95%-tile, and mean clients’ RTTs to their closest mirrogsuch that, for alls,v € V', the edg€(u,v) is not in E. An in-
as the optimization condition, denoted@6M, 1), O(M, .95), dependent set a&? is thus a set of nodes i; that are at least
andO(M, p) respectively. three hops apart itF;. We also define anaximal independent

In order to direct clients to the closest mirrors, we need &&tM as an independent s&t such that all nodes iy — V'
know the distances between each client and all of the mirrorsatie at most one hop away from noded/ih
the network topology is known, the mirror closest to any partic-
ular client can be identified by computing the shortest path from

2By “distance map” we mean a virtual topology of the Internet constructed by
I Network round-trip time captures the path’s bottleneck bandwidth, to the fitsacing paths on the Internet. In [6], the authors propose an architecture to build
degree of approximation. such a distance map.
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nodes in the core of the Internet that act as transit points will
have the highest outdegrees.

Random Placement: Under random placement, each candidate
1. if (M| < 8) host has a uniform probability of hosting a mirror.

Algorithm 2 (£-Greedy [9])

2. Choose among all setst’ with |M'| = | M|

3. the setM'" with minimal O(M"', p) .

4. return setm” C. Performance Analysis

5. end

6. Sﬁth(] to ’b|e ar|1 arBitrary set of size In this section, we present an analysis of the performance of
7. while ((M'] < |M i ; ; )
8 Among all Setsx of £ elements in\A’ unconstramgd mirror placem_ent to llllustrate .what could .be ex

9. and among all sefs of £ + 1 elements pected of mirror placement in the ideal setting. In particular,

10. inV — M’ 4 X, choose the set¥, v’ the analysis shows that, under optimal mirror placement, there
i% M"‘,’”L w”,'rfa)'?g\;‘, —X+Yp) is a diminishing return in client-mirror distarttevith respect

13. end to the number of mirrors. Despite the diminishing return, the

14. return setM’ ratio of expected maximum client-mirror distance between opti-

mal and random placement increases logarithmically. However,
under random placement, most clients are still close enough to

The outline of the minimumk-center algorithm from [8] is their closest mirrors, and only a small portion of the clients are
shown in Fig. 1. The basic observation is that the cost of the gi:tually very “far” from their closest mirrors.

timal solution to thel{ -center problem is the cost ef, wherei To abstract the unconstrained mirror placement problem, we
is the smallest index such th@} has a dominating seof size at can picture the network as a continuous plane on which clients
mostK. This is true since the set of center nodes is a domin&gn be uniformly spread over the infinitely many points (We

ing set, and i{G; has a dominating set of siZé, then choosing wantto place a given number of mirrors such that the maximum
this set to be the centers guarantees that the distance from a rétigkgnce of any client to its closest mirror is minimized. This
to the nearest center is boundeddyy The second observationmeasure of quality translates to finding a placement such that
is that a star topology i;, transfers into a clique (full-mesh)the radius of the largest circle one can draw in the plane that
in G2. Thus, a maximal independent set of sizén G2 implies  does not include any mirror is minimized.

that there exists a set & stars in(G, such that the cost of each Solving this problem analytically is cumbersome, to make
edge in it is bounded b¥e;: the smaller the, the larger theék'. the presentation clearer we study the same problem in one di-
The solution to the minimund -center problem is th&? with mension. We can transform the problem into one dimension
K stars. Note that this approximation does not always yieldog distributing the clients uniformly on the segment (0,1) and
unique solution. placing mirrors on the same segment. Clearly, the optimal al-
We have to make further approximations in applying the miniecation of mirrors given the maximum distance criterion is to
mum K -center algorithm to the CMP problem. In the construcseparate the mirrors by the same distance apart. Thus, if one
tion of the minimumK -center algorithm above, any nodeGh needs to place — 1 mirrors, the optimal location is at locations
may be selected to act as a “center”. In CMP, only nodeX in % 1 < i < n -1, and the maximum distance from any client
can host a mirror. Thus to apply the mii-center algorithm, to its closest mirror is};.5 Itis clear that the gain in reduction of
we first run the algorithm o6 with V. = H U B. Should a node client-mirror distance is diminishing as the number of mirrors
in B be selected as a center, we substitute it with a node inincreases. We can also see that each mirror site will have ap-
that is closest to it. Recall that we assuben B = (). proximately the same number of clients if each client is directed
£-Greedy: This algorithm places mirrors on the network iterto its closest mirror.

atively in a greedy fashion. First it exhaustively checks eachThe optimal placement could be difficult to achieve in real
node in to determine the node that best satisfies the optimizie. Hence, we would like to quantify how good random place-
tion condition (see Section II-A) for giveB. For{ = 0, after ment is compared to the optimal placement in terms of the ex-
assigning the first mirror to this node, the algorithm looks for gsected maximum client-mirror distance. Under random place-
appropriate location for the next mirror, etc. until p\M| mir-  ment,n—1 points (mirrors) are randomly distributed in the inter-
rors are placed. For generalthe algorithm allows fof step(s) val (0,1). Using known results from order statistics [10, Section
backtracking: it checks all the possible combinations of remog-4], we have

ing £ of the already placed mirrors and replacing them wWitht

Fig. 2. Algorithm{-Greedy.

new mirrors. That is{ number of the already placed mirrors can _ i1 (M . \n—1
be moved around to optimize the gain. Figure 2 summarizes thePr{Y(") >y} = Z (=1) i (1—iy) 1)
algorithm. 1—iy>0,i>1

Transit Node: The outdegree of a node is the number of othqr e expected value of the maximum seament between two
nodes it is connected to. Assuming that nodes with the highe& PS o . 9

: neg;hborlng points is thus given by
outdegrees can reach more nodes with smaller latency, we plac
mlrror_s on Candld_ate hosts in _de_scendlng order of OUtd?gree' Vu%lient-mirror distance always means the distance between client and the clos-
call this theTransit Node heuristics under the assumption thaést mirror.

5The actual optimal locations fat mirrors should be atzl—n + % but the
3A dominating set is a set dD nodes such that every€ V is eitherinD or  importance of this boundary condition diminishes withFor ease of analysis,
has a neighbor iD. we consider only the limit case witl going to infinity.
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A mmmmmm distance between mirrors
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1
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o o
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°
=

- 1_/0 [1—Pr{Y,> y}|dy

1
= /Pr{}f(n)> y}dy
0

- 5o ]

1—iy>0,i>1 0

Fig. 3. The expected maximum segment length on the unit interval.

maximum distance between mirrors (details) maximum distance between mirrors (details)

n 11. n\ 1 0.2 0.015
- 20 ()m x

i=1

0.01

whereY, is the random variable of the longest segmgft,
the density function, anfly,,, the cumulative distribution func-
tion.
Figure 3 depicts the computed expected maximum segm*® ] L
length together with numerical simulation results. Each poi ° 2 4 & & 100 %00 820 940 960 980 1000
in the simulation represents the mean of 1000 experiments; in
each,n — 1 points are uniformly placed on the unit interval andFig. 4. The expected maximum segment length on the unit interval (details).
the maximum segment is computed. The confidence interval
is negligible in most cases. It is clear that the simulation ang. ,, grows we can write
the numerical calculation are almost identical. The detailed en-
largement in Figure 4 (also in Figure 5) shows that some outliers lim Pr{distance > t/2n} = hm (1 —t/n)"=et (3)
are observable in different scales. There is a clear knee around ™™
n = 60 after which the return from adding additional mirrord’hus, as the number of mirrors grows, a fixed portion of the
diminishes. clients are away by a certain stretch from optimal. Specifically,
Comparing the segment length to the optimal length showge of the clients are at distance farther than the worst case of
that for a large range; < 150, the difference is substantial.the optimal distance. Figure 6 shows the result of an experiment
Figure 5 shows the ratio of expected maximum segment lengte conducted to test the above analysis. As one can see, the
between the random placement and the optimal for both tpebability converges te~* for n values well below 100 (the
simulated data and the calculated data. Surprisingly, it seelingt values are plotted in Figure 6 as small symbols.at=
that the ratio increases logarithmically with the number of mif00).
rors (we saw before that the absolute difference diminishes). Torhe above analysis shows that, under the optimal place-
check this we fitted the exponent of the ratio with the best (me&rent, the reduction in client-mirror distance has a diminish-
square) linear function of the foraa + An. The resulting fitted ing return with a well-defined “knee” as the number of mir-
curve is2.675 + 1.78n. Plotting the fit for the expected max-rors increases. When clients are uniformly distributed, the opti-
imum length in Figure 3In(2.675 + 1.78n)/n, we could not mal placement can achieve good load balancing while directing
distinguish it from the calculated one in all but the microscopic

0.005

xpecled maximum distance
o
e

expected maximum distance

scale. o ofrandomopimal masimum distance between irors
One might be tempted to discount random placement algo- oo
rithm based on the above result. However, we show next that ° e

random placement is really not all that bad by examining what
portion of the client population is within a “good distance” from
its closest mirror given random placement. Ldte the stretch
we allow in the distance from the optimal placement distance,
which is1/2n, we calculate the portion of clients farther away
from their closest mirror by more than a factordfom optimal,

i.e., by more thart/2n. This is done by looking at the proba-

random/optimal ratio
o > <
®’ o

Iy

bility that for a random point no mirror is placed at a segment 2

of lengtht¢/n around it (a two dimensional ball of raditg2n), o

Whlch |S g|ven by 0 100 200 300 400number5(;:]mmo’5600 700 800 900 1000
Pr{distance > t/2n} = (1 - t/n)" (2) Fig. 5. The ratio of the random placement over the optimal placement.
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0 Location Number of Hosts| Percentage
NW . 1 North America 58 65.2
Western Europe 15 16.8
o2 = | Rest of Europe 6 6.7
Foasl —_ Australia 6 6.7
. Israel 1 1.1
Korea 1 1.1
T ] Mexico 1 11
m?“ S. Africa 1 1.1

B o ' TABLE |

N T TRACEROUTEGATEWAY POPULATION BREAKDOWN

number of mirrors

Fig. 6. The probability a client under random placement is farther than a stretch
t of the distance bound in the optimal placement.

done by both shortest-path first computation and randomly with

clients to the closest mirrors. Furthermore, the optimal placgdiform probability.
ment increasingly outperforms random placement in terms ofWe present results of the simulations in Section IV.
expected maximum client-mirror distance as the number of mir-
rors increases; however, extremely long client-mirror distancgs |nternet Experiments
occur very rarely under random placement
In addition to studying CMP on random topologies, we also
I1l. PERFORMANCEEVALUATION evaluate it with a trace-based experiment on the Internet. In par-

Our goal in conducting performance evaluation is to study ﬂt{gular, we study the effect of optimizing the number and place-

effect of changingM| and’P(M) on the optimization condi- ment of mirrors on client download time when CMP is applied
: . o the Bell Labs web server.

tion O(M, p). For our performance evaluation, we conduct botth

simulations on random topologies and experiments on the Inter- _

net. For each set of experiments, we vary eittlef] or P(M) B.1 Candidate Host Set

while holding all the other variables constant. We now des:cribeWe 46 not have access to 50 machines distributed across the
our simulation setup and scenarios, followed by a description 0 v ! IStribu

. In{ernet which can act as candidate hosts. Given our optimiza-
our Internet experiment setup. tion condition of minimizing the latency observed by the client
A. Simulation Setup set, we observed that for purposes of performance evaluation,
CMP can be emulated on the Internet as long as we can deter-
The random topologies used in our simulations are generataihe the distance betwegH | sites on the Internet and our client
using the Inet topology generator. The Inet topology generatst. We decided to use 89 Traceroute Gateways to serve as our
generates random topologies following the observed charactndidate host sites. Traceroute Gateways are web servers made
istics of the Internet reported in [11]. A more thorough descrigvailable to the public for measurement purposes by volunteers
tion of the Inet topology generator is presented in [6]. For thigound the world. Given a host name or address, a Traceroute
study, we generate several random topologies with 3,037 nodsteway rung r acer out e to that host and reports the result
each® Each generated network is a connected graph on a plapgck to the client. Traceroute Gateways can be accessed from
with nodes representing an Autonomous System (AS); a link bettp://www.tracert.com/. Table | lists the geographical locations
tween two nodes represents AS connectivity, and its Euclidesiithe Traceroute Gateways used in this paper. The table reflects
distance the latency between the two connected nodes. In aweasonable diversity of the geographic locations of the Tracer-
simulations, we place only a single client per network node. oute Gateways.
In each simulation, we first select 50 nodes to act as Candidatqhe Transit heuristics we use in p|acing mirrors p|aces mir-

hosts. We experiment with two candidate host selection metrs on candidate hosts in descending order of outdegrees. Since
ods: (1) uniform selection, where each node has an equal prae- do not know the outdegrees of the Traceroute Gateways, we
ability of being selected, and (2) selection based on outdegrggsociate with each Traceroute Gateway the outdegree of the AS
where the nodes with the Iargest outdegree is selected first. ﬂcfey reside in. We first map the IP address of a Traceroute Gate-
ter the candidate hosts are selected, we randomly, with unifogpy to its AS using a togdr t r acer out e, which is part of the
probability, select 1,000 of the remaining nodes to act as client&uting Arbiter project toolkit (www.irrd.net). Then to deter-
For each mirror placement algorithm, we compu@@M, 1), mine the AS’s outdegree, we use the AS summary information
O(M, .95) andO(M, ). We compute eact(M, p) for IM|  ayailable at NLANR (moat.nlanr.net/AS/), which lists the out-
ranging from 3 to 50. Client redirection to the closest mirror igegree of each AS. If the destination traceroute gateway’s AS
oTh _ _ _ _ has a single connection to the rest of the Internet, we assign it
is was the size of the Internet in November 1997; our results with lar

r .
networks indicate that observations made in this paper also apply to Iargerg%ﬁ outdegree of its closest upstream AS that has outdegree more
works. than 1.
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Location Number of Hosts| Percentage|

.net 585 18.82
.edu 566 18.53
.com 568 17.96
Germany 121 3.82
Canada 113 3.57
.uk 89 2.81
Japan 80 2.53
C: Client Australia 59 1.86
United 38 1.2
T: Traceroute France 38 12
Gateway Sweden 32 1.01
Spain 29 0.91
.org 29 0.91
=== u P —_— Italy 25 0.79
Switzerland 22 0.69
between between Traceroute
Traceroute Gateways Gateways and Clients -gov 22 0.69
Netherlands 19 0.6
. . Malaysia 19 0.6
Fig. 7. Experiment Setup Korea 19 0.6
Hong 18 0.56
. India 17 0.53
B.2 Client Set Denmark 16 05
: : : Russian 15 0.47
For this experiment, we collected one week (in November Finland 15 0.47

1998) worth of the Bell Labs access log. During this week, the Brazil 15 0.47

web server saw on average 26,346.9 hits per day. Of these, there Belgium 15 0.47
were 15,561 unique domain names, which resolved to 10,115 Taiwan 14 0.44

. Singapore 14 0.44
unique IP (Internet Protocol) addresses. Due to the nature of reland 12 0.37
dial-up connections, many of the dial-up clients in the log file Greece 12 0.37
were no longer reachable. To prevent clients that are no longer Austria 12 0.37
reachable from being traced by theacer out e gateways, we s.'/Tflrlica ﬁ 8:2471
use the following procedure to obtain a list of reachable clients. New Zealand 10 0.31
We attempted to open TCP connections to each IP address from Mexico 9 0.28
two different sites (one in Michigan and the other in California), TThL;ri'l‘:Zd g g'ig
and eliminated the ones that were not reachable by at least one Portugal 6 0.18
of them (this is to reduce the number of hosts unreachable by the Poland 6 0.18
Traceroute Gateways below). Of the 10,115 unique IP addresses Israel 6 0.18
we obtained from the Bell Labs web server logs, 4,980 can be Agmﬁ]a g g:ig
reached through TCP. Finally, we had each of the 89 Traceroute Others 31 0.98
Gateway conductr acer out e to all of these IP addresses. Failed lookup 338 10.69

Sincet r acer out e uses ICMP (Internet Control Message Pro- Total 3161 100
tocol) instead of TCP, and some networks or hosts do not accept
ICMP packets for administrative reasons, the Traceroute Gate-
ways were only able to trace 3,130 of these IP addresses. The
client setB in this experiment thus consists of these 3,130 IP

addresses. Table Il lists the domains the clients in our client set

belongs to (and the percentage thereof). we estimate the distance between two clients as the sum of the
distances from each client to the closest Traceroute Gateway,
and the distance between the two Traceroute Gateways. This
The virtual network on which we conduct our CMP experimethod is usually called “triangulation” in the literature [12],
ments thus consists of 89 Traceroute Gateways as our candid&gd In [14], the authors evaluated its efficacy on estimating
hosts and 3,130 IP addresses as our clients. The “edges” of tHéigtance between two points on the Internet.
virtual network consists of round-trip time (RTT) latency mea-
surements from each Traceroute Gateways to all of the other
Traceroute Gateways and to all of the clients. For illustrative Recall from Section IlI-A, in all of our simulations, we use
purposes, Figure 7 shows a sample virtual network consistingsohetwork of 3,037 nodes, of whidhi| = 50 are selected as
four Traceroute Gateways and two clients. The Traceroute Gatandidate hosts. The choice of which host becomes a candi-
ways measure RTTs between each other and RTTs to the thete hostsP(#) is determined either randomly with uniform
clients. The RTT measurements between Traceroute Gatewagabability for all nodes, or by the outdegree of the nodes. The
are bidirectional, while those between Traceroute Gateways atidnt set consists of 1,000 nodes randomly selected, with uni-
clients are unidirectional, as indicated in the figure. form probability, from the remaining ones. Recall also that we
Some of the mirror placement algorithms we study requidefine three optimization condition®(M, 1), O(M, .95), and
knowledge of distances between clients. In our virtual topolog$( M, u). For each optimization condition we run a set of simu-

TABLE I
BELL LABSWEB CLIENT SET BREAKDOWN

C. Distance Estimation

IV. EXPERIMENT RESULTS
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Fig. 9. Internet Experiments.

lations. In each set of simulation, we first pick!|, the number placement. This means we run 1,014 experiments on the virtual
of mirrors. For the given number of mirrors, we run one simuetwork.

lation for each mirror placement algorithri?(M): minimum

K-center, 0-greedy, 1-greedy, 2-greedy, and Transit. Since ran-Optimization Condition O(M, p)

dom placement of mirrors gives different results based on the ! , o . .
sites selected, for random placement we run 10 simulations for'Ve first consider the optlmlzatlo_n condlt_ufn(M_, p). Fig-

a given mirror set size and compute the mean of the obser\He(?S 8a, 8b, and 9a show the maximum client-mirror RTTs for
O(M, p). Then we repeat all simulations for the né|. In O(M,1). Th.e X-axis of each figure lists the r_1umber of mirrors,
our simulations, we experiment witf| ranging from 2 to 50, and the y-axis the maximum RTT between clients and their clos-

stepping by 2 up to 26, and stepping by 5 afterwards. We thest mirr(;]r_ls. 'Ir']he x-faxes for the simqlation results frange from O
repeat each set of simulations on 10 different Inet generated rig20: While those for Internet experiments range from 0 to 90.
works of 3.037 nodes each. We do the above on 50 randorie Y-axis in the various figures have different ranges. In the

selected candidate hosts. Then we repeat everything again oﬁ'gbmat'on results, the “distance” between two nodes is the Eu-

candidate hosts selected based on decreasing number of o&ﬁ%@an dlstan_ce betwefan them on thg.5|mulated plane. In the
grees, except that we do not simulate the 1-greedy and 2-gre rnet experiments, distance is in milliseconds. The numbers
algorithms as they do not show marked improvement over t all placement_ algorl_thms, except for random pla_cement, are
0-greedy case in the former scenarios. Hence in total we 1Affraged over simulations on 10 random topologies to obtain

7,350 simulations on randomly selected candidate hosts, i@ Mean. the maximum, and minimum.  For clarity, we only

6,630 simulations on candidate selection based on outdegreé.hOW the statistics for random placemgnt in the. figures. Recall
that for each of the 10 random topologies, we simulate random

For the Internet-based experiment, we repeat the above gga@cement of, mirrors 10 times. From these 10 placements, we
nario except using the 89 Traceroute Gateways as candidggéa mean worst case client-mirror RTTs. Each error bar shows
hosts. Mirror set sizes range from 3 to 89, stepping by 3 up tlee mean, the maximum and the minimum values of these mean
45, and stepping by 5 afterwards. Since there is only one virtalues over the 10 random topologies. We see that the maximum
network, we do not repeat the set of simulations 10 times; v@@d the minimum values are typically within 20% of the mean.
do, however, still repeat the experiment 10 times for each mirrorFrom these figures, we observe that optimizifigM, 1)
set size when the mirror placement algorithm used is randgmelds very little improvement as the number of mirrors in-
|EEE INFOCOM 2001
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creases, both in simulations and actual Internet experimertke two curves, reflectin@(M, .95) and O(M, u) optimiza-
In constrained mirror placement, the distance between clietiteh conditions, and attribute this to the potentially long, but
and mirrors can not be improved incrementally at finer and fineonetheless not heavy tail of the client-mirror RTT distribution
granularity because mirrors can not continuously be placed phoour setups (which means that the 95%-tile is not that far from
gressively closer to the clients. Both candidate site placem#éme mean). In the remainder of this paper, we (&1, .95) as
and mirror placement can contribute to this problem. First, tloair optimization condition.
optimal mirror placement is very “location-sensitive” in that
it has very specific requirements on where the candidate sisEffect of [M| and P(M) on O(M, p)
should be, i.e., separated by an equal distance. Also, the optiFigures 9b, 11a, and 11b show the observed 95%-tile RTTs
mal solutions for different mirror value have very little over- petween clients and their closest mirrors wheM, .95) is
lap so it is unlikely allO(n?) optimal locations (af1/2}, {1/3, used. Note that in most cases, especially when the O-greedy al-
213}, {1/4, 112, 314, .. .) would be included if» mirror candi- gorithm for mirror placement is used, there is little improvement
date sites are randomly selected. Second, adding more miriarg5%-tile RTT beyond 10 mirrors.
can not improve the minimum distance between a client and itsOne important observation with regard®§.M ) is that place-
closest candidate site (therefore the client’s closest mirror) fufrent is very important when the number of mirrors is small. In
ther, once the candidate site is selected for mirror placemegit.cases, whehM | is small, there is a significant difference in
This problem can be exacerbated when the number of candidstieerved latency between using the greedy placement algorithm
sites is small relative to the client population. and random placement. Wh@N#) is uniform, non-random
Figure 10 shows the mean and 95%-tile of client-mirror dig?(M) outperforms random placement. Even wHe(H) is
tances when candidate sites are selected based on outdegneesrandom, as in the case of outdegree-based candidate selec-
and mirror placement is by the 0-greedy algorithm. Recall thigon, using greedy placement imprové€§.M, .95) by 10% to
solution to the minK-center problem is applicable only in the20% as shown in Figure 11 (note the difference in y-axis ranges).
case of optimization conditio®(M,1). Hence for optimiza- We conclude that increasing the number of mirrors beyond a
tion conditionsO(M, u) and O(M, .95) we consider only the small portion of the candidate sites (10, in our examples) does
[-greedy algorithm, in particular 0-greedy. Both the 95%-tileot necessarily improve client to closest mirror latency. Further-
and mean client-mirror graphs show diminishing return andnaore, careful placement of mirrors on a small candidate sites
well-defined “knee”, which confirms the theoretical analysis arain provide the same performance gain as placing mirrors on all
our intuition. We observe very similar performance betwearandidate sites. These preliminary results seem to suggest that
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candidate site placement can be just as important and possilfiyhe underlying topology must be estimated by placing mea-
more important than mirror placement itself. We note that prasarement boxes on the network. We have shown by simulations
tically candidate host sites are often decided by administrative[6] that when the underlying network topology is not known,

and financial constraints rather than technical ones. nearest mirror redirection using some form distance map out-
. S performs random redirection. We now show that similar results
C. Mirror Load Distribution can also be observed on the Internet. Figure 13 shows the 95%-

We now show that using(M, .95) as the optimization con- tile of client-mirror RTTs unde®(M, .95) when distances are
dition, mirror load distribution is not improved with larger numknown, with random redirection, and with redirection using a
ber of mirrors. Figure 12 plots client distribution among mirrordiStance map. The results were obtained from Internet-based

when the number of mirrors is increased from 2 to 50 (3 to 8§*Periments, when mirrors are placed using the 0-greedy algo-

in the Internet experiment). The x-axis is the popularity rank gthm.
each mirror, and the y-axis is the number of clients redirected to
a particular mirror, with the most popular one getting the most V. RELATED WORK
redirections. Each curve in the graphs represent a specific mir-
ror set size. For the simulations, the candidate sets are chosePhere have been some recent works on mirror performance
based on decreasing outdegrees. In all cases, the optimizatint closest server selection. In [15], the authors measured 9
condition isO(M, .95), and the mirror placement algorithm isclients scattered throughout the United States retrieving docu-
0-greedy. In the simulation, only a small number of clients (lessents from 47 Web servers, which mirrored three different Web
than 1% mirrors) get redistributed with each additional mirrglites. They presented findings that revealed good stability of
once the number of mirrors is above 15 mirrors. Client redistiirror rankings according to download time. In [16], the au-
bution is also very infrequent in our Internet experiments.  thors present a server selection techniques that can be employed
Again, we point to our analysis in Section II-C, wherdy clients on end hosts. The technique itself involves periodic
we showed that the optimal placement produces good loadeasurements from clients to all of the mirrors. The authors of
balancing among mirrors as the number of mirrors increasgs7] proposed a server selection scheme based on shared passive
We have already shown that it is difficult to reproduce the ideahd-to-end performance measurements collected from clients in
setting when mirror placement is constrained so perhaps it is tte¢ same network. There are also related works that focus on
surprising that we also lose the ability to load-balance. Howevefaintaining consistency among cache servers, which can be ap-
we want to point out that one can still achieve load-balancinggficable in keeping mirrors consistent. In [2] and [1], the authors
the requirement that each client be directed to the closest sewstedied different scalable web cache consistency approaches and
is ignored. showed various overhead of keeping caches consistent.

_— There has not been, however, any study we are aware of that
D. Effect of Redirection Methods gives specifics on how to do mirroryplace?/nent on the Internet.
Up to now we have assumed that client-mirror distances cbm[6], two graph theoretic algorithms, k-HST [18] and Min K-
be deterministically computed using Dijkstra’s shortest path firs¢nter [8], are used to determine the number and the placement

algorithm. In this section we consider the case where only d0instrumentation boxes for the purpose of network measure-
of the highest outdegree Traceroute Gateways are able tongent. While the authors of the paper use nearest mirror selec-
tracer out e. Hence distances between the other Tracerouten as a motivating problem, the 3 mirrors they consider are
Gateways and between a Traceroute Gateway, other than threaaually placed on arbitrarily selected locations. In this paper
10, to a client must be estimated by doing triangulation on thee take a closer look at mirror placement on the Internet under
distances measured by these 10 Traceroute Gateways only. &hisalistic setting where the number of mirrors is small, but gen-
simulate the case where the underlying network topology is rerally larger than 3, and the placement is restricted to a given set
known (such as the case with the Internet) and a “distance map’hosts.

0-7803-7016-3/01/$10.00 ©2001 IEEE 39 IEEE INFOCOM 2001



10000

T
3 mirrors

T
2 mirrors,

4 mirrors ------- 6 mirrors -
6 mirrors -------- 9 MIrrors --------
8 mirrors 12 mirrors

10 mirrors —-—-- 15 mirrors —-—-
s 18 mirrors -~~~

21 mirrors ------
24 mirrors -
27 mirrors -
30 mirrors
33 mirrors
36 mirrors --------

1000 P

22 mirrors
24 mirrors --------

26 mirrors 39 mirrors

31 mirrors 42 mirrors —-—-

36 mirrors - 45 mirrors -------
41 mirror: 100 ¢ 50 mirrors -~ 3
46 mirrors - - - 55 mirrors --

60 mirrors -
65 mirrors
70 mirrors -------
75 mirrors --------
80 mirrors

89 mirrors ~-——

Client Population Distribution
Client Population Distribution

10 |

0 5 10 15 20 25 30 35 40 45 0 10 20 D 40 50 60 )

Mirrors Mirrors
a. Simulation results. b. Internet experiment.

Fig. 12. Client population distribution under 95%-tile RTT optimization

850 X T T T T T

1Y Closest-mirror Redirection —+—
@ 800 | | % Random Redirection —--x--- |
£ { \>< Distance-map-based Redirection ------
5 750 | | N 4
= / %
= i % x
= 700 | ! L i
8 / K ex Sy
123 ’l N/ N Meoe X
S 650 [ % g K\x»—»xﬂ*:x i
2
£ 600 [ 4
1=
2 550 4
O X
g 500 | X 4
g KKK KKK KKK =K K K KKK KX
g 450 .
E
£ 400 J

350 L L L 1 1 ! ! |

0 10 20 30 40 50 60 70 80 90
Number of Mirrors

Fig. 13. 95%-tile RTT optimization under different redirection schemes.

VI. CONCLUSION [4] V. Cardellini, M. Colajanni, and P.S. Yu, “Dynamic Load Balancing on
Web Server Systems,|EEE Internet Computing, pp. 28—-39, May-June

In this paper, we take a detailed look at the problem of plac- 1999.

; ; ; ; S. Floyd and V. Jacobson, “Random Early Detection Gateways for Con-
ing mirrors of Internet content on a restricted set of hosts. Usif gestion Avoidance "ACM/IEEE Transactions on Networking, vol. 1. no.

both simulation and real Internet delay data, we examine a num- 2 pp 397-413, Aug. 1993.
ber of placement and redirection algorithms for placing variol Sugih Jamin, Cheng Jin, Yixin Jin, Dan Raz, Yuval Shavitt, and Lixia

; ; ; ; ; Zhang, “On the placement of internet instrumentatioRfoc. of |IEEE
numbers of mirrors and their effects in client response time and INFOCOM. Mar. 2000.

mirror load distribution. We observed that there is a rapid di7] Michael R. Garey and David S. Johnsofipmputers and Intractability,
minishing return to placing more mirrors in terms of both client ~ NY, NY: W.H. Freeman and Co., 1979.

_ : : _ Vijay Vazirani, Approximation Methods, Springer-Verlag, 1999.
latency and server load-balancing. We hypothesize that the pr%% P. Krishnan, Danny Raz, and Yuval Shavitt, “The cache location problem,”

ence of the locality constraint has eliminated some of the neces- ACM/IEEE Transactions on Networking, vol. 8, no. 5, Oct. 2000, to be

sary conditions for obtaining the optimal solution and the sub- E'Unghteg- David Order Satistics. Wil d edition. 1981
g erbert A. David,Order Satistics, Wiley, second edition, .
sequent performance benefits. Even under the more elabo Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos, “On power-

placement schemes, simply increasing the number of mirrors law relationships of the internet topology,Proc. of ACM SIGCOMM,
yields very little performance improvement beyond a relative_ Aug. 1999. o _ o _
. [12] S. Hotz, “Routing information organization to support scalable in-
small number of mirrors. terdomain routing with heterogenous path requirements,” Tech. Rep.
Ph.D. Thesis, Univ. of Southern California, CS Dept., 1994.
[13] James D. Guyton and Michael F. Schwartz, “Locating nearby copies of
replicated internet serversiroc. of ACM SGCOMM, Aug. 1995.
We thank all volunteers who donated their time and resourdéd Francis P. etal., “IDMaps: A Global Intemet Host Distance Estimation
. . . Service,” Submitted for publication, 2000.
to host the r acer out e gateway service and make it availableis) A. Myers, P. Dinda, and Hui Zhang, “Performance characteristics of mir-
to the public ( http://www.tracert.com/cgi-bin/trace.pl). ror servers on the internetProc. of IEEE INFOCOM, Mar. 1999.
[16] Zongming Fei, Samrat Bhattacharjee, Ellen W. Zegura, and Mostafa Am-
mar, “A novel server selection technique for improving the response time
) o ) of a replicated service Proc. of IEEE INFOCOM, 1998.
[1] C. Gray and D. Cheriton, “Lease: An efficient fault-tolerant mechanisifi7] Srinivasan Seshan, Mark Stemm, and Randy H. Katz, “Shared passive

VIlI. ACKNOWLEDGMENTS

REFERENCES

for distributed file cache consistencylwelfth ACM Symposium on Oper- network performance discoveryProc 1st Usenix Symposium of Internet
ating Systems Principles, pp. 202 — 210, 1989. Technologies and Systems (USITS’ 97), Dec. 1997.

[2] H.Yu, L. Breslau, and S. Shenker, “A scalable web cache consisten@g] Yair Bartal, “Probabilistic approximation of metric space and its algorith-
architecture,"Proc. of ACM SSGCOMM, Sept. 1999. mic applications,” in37th Annual IEEE Symposium on Foundations of

[3] B. Krishnamurthy and J. Wang, ““On Network-Aware Clustering of Web Computer Science, Oct. 1996.
Clients”,” Proc. of ACM SSGCOMM 2000, Aug. 2000.

0-7803-7016-3/01/$10.00 ©2001 IEEE 40 IEEE INFOCOM 2001



