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eb caching is a significant part of today’s
Web infrastructure. It is important because it
reduces user-perceived retrieval latencies, the
number of requests reaching Web servers,

and overall network activity. Because of this, Web cache
servers (aka proxy servers) are widely deployed in many
places throughout the Web. In general, it is typically located
at the boundary of a network intercepting all Web requests.
The basic operation of a proxy is shown in Fig. 1.

When Luotonen and Altis [1] first proposed the proxy serv-
er in 1994, Web cache replacement policy was already a hot
research topic. Such a policy is used to manage cache content.
In the beginning, traditional replacement policies such as least
recently used (LRU) and least frequently used (LFU) were
employed. Later, various kinds of new replacement policies
were proposed. At the time of writing, at least 50 policies
have been reported in the literature (Table 1b). Considering
that there is a multitude of replacement policies, research on
more policies is less important. As a matter of fact, recently
proposed solutions provide only slight improvements. We
believe we already have sufficient good policies for usage.

Indeed, most of the policies in various proposals provide
evidence that they perform better than others. This leads to a
state of confusion as to which policy should be used. Actually,
there is no single policy that performs best in all environments.
This is because different policies have different design ratio-
nales and are designed to optimize different resources. The
goal of this article is to suggest suitable policies for use in dif-
ferent environments based on their characteristics, rather than
propose another new policy to challenge the existing ones.

Our proposal takes a different approach, providing instead
useful information for policy selection. Although Web cache
replacement policies have been summarized in previous work,
from small overviews [2, 3] to more comprehensive surveys [4,
5], many of them focus on discussing the operations of com-
mon policies and comparing their performance by running
trace-driven simulations. Instead, we aim to provide practical
information for usage purposes. For example, we point out

which kinds of systems should be concerned with which per-
formance metric (Table 2). We also point out the design
rationale and characteristics of different categories of policy
(Table 1). More important, we provide usage suggestions
about which policy is appropriate for which particular envi-
ronment (Table 3). This information is useful to cache design-
ers, developers, administrators, and end users, and can be
summed up as a “fitness for purpose” approach.

Replacement Policy Review
Replacement Policy Basics
A cache server stores Web objects (e.g., HTML pages, images,
and files) locally for the use of future requests to those
objects. As cache size is finite, a cache replacement policy is
needed to manage cache content. If a cache is full when an
object needs to be stored, the policy will determine which
object is evicted to make room for the new object. However,
in practical implementation a replacement policy usually takes
place before the cache is really full. The cache uses two water-
marks, high and low, to guide the replacement process. If the
size of total cached objects exceeds the high watermark, the
policy will evict objects until the low watermark is reached.
The advantage of doing this is reducing the overhead of
invoking the policy on demand.

The goal of the replacement policy is to make the best use
of available resources, including disk space, processing power,
server load, and network bandwidth. Some policies favor one
resource at the expense of another. Later in this section we
show which kind of policy makes good use of which resource
and should be used in which environment.

Note that in this article we only consider the cache replace-
ment policy for cache servers located between clients and ori-
gin servers, acting as a proxy. There are caches placed directly
in front of a particular origin Web server (called Web server
caches or httpd accelerators). Since a Web server cache serves
its own Web server only, it knows the information (e.g., object
popularity, average object size, and number of total objects)
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on the objects it is going to cache. This makes the design of a
replacement policy for a Web server cache different from one
for a proxy cache.

Performance metrics are used to evaluate a policy. It is not
surprising that a policy performs very well in terms of one
performance metric but poorly in terms of another. This is
because some metrics are not achieved at the same time.
Which metric we should be concerned with depends mostly on
the environment in which the policy is being used. We discuss
the following common metrics. Table 2 shows the environ-
ments to which the metrics are of particular interests.

Hit Rate — As shown in Fig. 1, if the proxy finds the request-
ed object in its local cache, it returns the object to the user
directly without contacting the origin servers. Hit rate (HR) is
defined as the percentage of requests that can be satisfied by
the cache. For example, an HR of 60 percent indicates that six
of every 10 requested objects can be found locally in the
cache. Note that HR only indicates how many requests are
hits and does not indicate how much bandwidth or latency has
been saved. Nevertheless, it is a very good performance indi-
cator and, in most cases, is the first metric to be considered. It
is of interest to systems with small cache size because most
policies provide similar HRs when the cache is very large.

Byte Hit Rate — Instead of counting only requests, byte HR
(BHR) is concerned with how many bytes are saved. This is
the number of bytes satisfied from the cache as a fraction of
the total bytes requested by clients. A BHR of 60 percent
indicates that 6 bytes will be returned from the cache if a total
of 10 bytes is requested.

Note that HR and BHR trade off against each other. In
general, keeping more small popular objects in the cache opti-
mizes HR, whereas keeping larger popular objects optimizes
BHR. BHR is of particular interest to systems with limited
external network bandwidth.

CPU Utilization — Sophisticated replacement policies usually
require higher computation overhead. Therefore, besides HR
and BHR, CPU utilization is also important to measure the
efficiency of a policy. Although it is driven by the cache serv-
er’s implementation, the big O notation (a mathematical nota-
tion used to analyze the complexity of algorithms) can be used
to evaluate the complexity of a replacement policy. The com-
plexities of popular policies using the notation are summa-
rized in [5, 6].

This metric is less of a concern in the literature because the
CPU is assumed not to be the performance bottleneck. How-
ever, in practice, a busy server should not use a policy requir-
ing high computational overhead. If the proxy is overloaded, it
will drop incoming requests and cause many connection time-
outs, leading to very low effective throughput. Therefore,
CPU utilization is of particular interest to busy cache servers
or servers with limited processing power.

Latency Reduction — This is the percentage of object download
latency that can be reduced. To increase the reduction, a poli-
cy should try to cache the object with the highest latency first.

In general, high HR implies high latency reduction because of
fewer remote communications. However, it is not always guaran-
teed. For example, many hits to objects with low latency would
result in lower latency reduction than a few hits to those with
high latency. Since it is difficult for the cache to measure the
download latency, which is affected by many factors outside the
cache such as network congestion and server stability, this perfor-
mance metric is not widely used. It is of particular interest to sys-
tems that require low retrieval time experienced by end users.

Many Web cache replacement policies have been proposed
and almost all of them were demonstrated to be superior to
others in their proposal. However, contradictory results have
been reported in the literature. For example, the results in [3]
show that the size policy achieves a higher HR than the LRU
policy in most situations, whereas the results in [7] show that
LRU outperforms size in terms of HR for some cache sizes.
Besides, [2] shows that LRU outperforms LFU in terms of
HR in most situations under their study, whereas [8] shows
that LFU outperforms LRU in most cases.

The above contradictory results show that a policy that per-
forms best in all environments is by no means possible. This is
because the performance of a policy has a high dependence
on workload characteristics. One workload may make a policy
perform well, and another make it perform less well. On the
other hand, the above arguments mostly consider HR or BHR
only. When choosing a policy to use, we also need to consider
other factors such as implementation issue, cache size, pro-
cessing power requirement, memory consumption, and where
the cache server is installed.

Categorization of Policies
The goal of this article is to suggest suitable replacement poli-
cies for different environments. However, as there are a multi-
tude of policies, it is unwise to comment on them one by one.
In general, a particular category of policies can be suitable in
a particular type of environment. We classify replacement
policies as:
• Recency-based polices
• Frequency-based polices
• Size-based polices
• Function-based polices
• Randomized polices

Our classification is based on that given in [4] with the
modification of adding the size category and removing the
recenctness/frequency category. Unlike many of the previous
studies that mainly comment on the advantages or disadvan-
tages of different categories, we focus on the design rationale
behind the categories and discussing which category works
particularly well in which situation (Table 1a).

We find that many policies in the same category provide
similar performance. To reduce the complexity when selecting
a policy to use, we discuss one representative policy in each
category. Through discussion of them, readers should have a
basic understanding of the operations and implementation
issues of the policies in each category.

Recency-Based Policies — Recency-based polices use recency
as the primary decision making factor; most of the policies in
this category are LRU variants. The rationale behind this cat-
egory is that recently accessed objects are likely to be accessed
again in the near future.

These policies perform particularly well when Web request
streams exhibit high temporal locality. This happens when many
clients have a common set of Web objects in which they are inter-

n Figure 1. Web proxy servers temporarily store retrieved Web
objects in their caches, so it is not necessary to contact the origin
servers the next time objects are requested by their clients.
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ested. A proxy serving many clients (a large company or an Inter-
net service provider, ISP) usually exhibits higher temporal locality.

In this category, LRU is the most popular policy. It evicts the
least recently referenced object first. This is particularly popular
because of its simplicity and fairly good performance in many
situations. It is designed on the assumption that a recently ref-
erenced document will be referenced again in the near future.

Frequency-Based Policies — Frequency-based polices use
object popularity (or frequency count) as the primary factor.
The rationale behind is that different Web objects have differ-

ent popularity values, and only a small set of popular objects
account for most of the total requests. Therefore, by trying to
keep those objects with high frequency counts in the cache,
most requests can be satisfied.

This category of polices is suitable for systems in which the
popularity distribution of objects is highly skewed, or in which
there are many requests to Web sites having objects with very
steady popularity (rarely changing abruptly). Such Web sites
include online libraries, distant learning, and online art galleries.

LFU is a simple policy that evicts the least frequently refer-
enced object first. However, it is not recommended because it

n Table 1. Categories of replacement policy and their a) design rationales and preferable environments; b) available policies; and c)
overall performances.

Category Design rationale Good for

Recency-based A recently referenced object will be referenced again in
the near future.

When many users are interested in the same Web
objects at about the same time.

Frequency-based Only a small set of objects is popular, and those objects
should be cached.

When users tend to access Web sites having objects
with quite steady popularities.

Size-based Removing a larger object can make room for multiple
smaller ones.

When users tend to access information-based Web
sites.

Function-based Considering more parameters could achieve a higher hit
ratio.

When the system has sufficient processing and mem-
ory resources.

Randomized Complex data structure and high computation overhead
are not necessary.

When the system has limited processing and memory
resources.

(a)

Category Available replacement policies Representative policy

Recency-based
LRU, LRU-threshold, LRU*, LRU-hot, LRU-LSC, SB-LRU,
SLRU, HLRU, Pitkow/Recker, EXP1, value-aging, genera-
tional replacement

LRU

Size-based SIZE, LRU min, partitioned caching, PSS, CSS, LRU-SP LFU-DA

Frequency-based
LFU, LFU-Aging, LFU-DA, Window-LFU, swLFU, Aged-
swLFU, α-Aging, HYPER-G Size

Function-based
GD-Size, GDSF, GD*, PGDS, server-assisted cache replace-
ment, TSP, Bolot/Hoschka, MIX, M-Metric, HYBRID, LNC-
R-W3, LRV, LUV, LR, N-gram

GD-Size

Randomized RAND, HARMONIC, LRU-C, LRU-S, randomized policies
using utility functions Harmonic

(b)

Category Hit ratio Byte hit ratio Complexity

Recency-based Fair Fair Fair

Size-based Fair Fair Fair

Frequency-based Fair Fair Fair

Function-based Best Best Highest

Randomized Worst Worst Lowest

(c)
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suffers from the cache pollution problem (i.e., when an object,
having accumulated a very high reference count, becomes
unpopular, it remains in the cache a long time without being a
candidate for removal).

LFU with dynamic aging (LFU-DA) [4], a variant of LFU,
avoids the cache pollution problem by using the dynamic aging
technique, which adds a constant value to the frequency count
of an object when it is accessed, making recently popular
objects have larger frequency counts. Since LFU-DA evicts the
object with the smallest frequency count, this prevents previous-
ly popular objects from polluting the cache. Another advantage
of LFU-DA is that it is parameterless. Parameterless policies
are preferable as they are usually less complex and easier to
manage. Therefore, LFU-DA is a good choice in this category.

Size-Based Policies — Size-based policies use object size as the
primary factor, and these usually remove larger objects first.
The rationale behind is that most objects in the Web are small
in size, and removing a larger object can make room for mul-
tiple smaller ones. Therefore, it works well when large objects
are less popular. This happens when users tend to access
information-based Web sites (e.g., news, weather, and article
stores) that contain more text-based than multimedia files.

Size is the representative policy in this category. It evicts
the largest object first. Size should be implemented by main-
taining a priority queue based on object sizes. As the size of
an object is fixed, it requires a constant time for cache hit.

Function-Based Policies — Function-based polices generally
associate each object in the cache with a utility value. The
value is calculated based on a specific function incorporating
different factors such as time, frequency, size, cost, and laten-
cy, and different weighting parameters. The object with the
smallest value is evicted first. The rationale is that the bottle-
neck resource in a proxy is network and disk I/O (not the
CPU), so it is worthwhile to invest extra CPU cycles to use a
more sophisticated replacement policy to achieve a higher HR.

Nevertheless, it is difficult to implement function-based
polices because the heavily parameterized function requires a
complicated data structure. Besides, the polices require high
operational overhead because the data structure has to be
updated frequently in some designs. Therefore, this kind of
category should be used when the CPU is not limited and the
implementation issue is less of a concern.

Greedy dual size) (GD-Size [2] is a function-based policy but
its operation is simple. It is reported to perform well in the lit-
erature. The policy maintains for each object a characteristic
value Hi. The calculation of Hi involves the cost of object i. The
cost can be in terms of time or money. The object with smallest
Hi should be evicted first. The motivation behind is that the
objects with larger fetch costs should stay in the cache longer.

Randomized Polices — Policies with complex data structures
motivate the consideration of randomized policies that require
no data structures to support eviction decisions. A particularly
simple one is RAND [4] that evicts an object drawn randomly
from the cache. As this kind of policy requires no state infor-
mation, both memory and processing power can be saved.

However, policies that use only simple random functions do
not provide very good performance. To improve it, some ran-
domized policies apply utility functions to rank the objects in
cache, and then randomly pick a victim from a set of samples
with the highest utility values. Although, this kind of randomized
policy requires more resources, it does not need to maintain and
update a data structure (e.g., a priority queue) every time an
object is accessed, which function-based policies usually require.

RAND, the simplest randomized policy, evicts an object ran-

domly drawn from the cache. Although this simple policy
requires almost no data structure to perform object insertion or
eviction, it does not perform well. HARMONIC [4] improves
the performance by using a nonuniform probability distribution.
First, each object has a cost value (e.g., based on the cache
size); then the probability of an object is inversely proportional
to its specific cost. In this way the objects with lower costs have
higher chances to be evicted. A simple data structure is needed
to keep the cost value of objects in the cache.

Table 1b lists the replacement polices reported in the liter-
ature according to their categories. The list is certainly not
exhaustive, and some replacement policies could be classified
into one or more of the categories. When we assign a policy
to a category, the assignment is based on the factor on which
the policy mainly relies; it can use further factors to assist its
decision making. For example, Log2(SIZE) evicts the largest
object first; if two objects have the same size ranking, the least
recently accessed will be evicted. It is classified in the size cat-
egory because it gives first preference to size, then to recency.
It is beyond the scope of this article to discuss the operations
of the policies listed in the table. Readers interested in policy
operations can refer to the original proposals or to [4, 5],
which summarize the operations of over 20 policies.

Table 1c shows the overall performance of different cate-
gories of policy in terms of different metrics. Among them,
the function-based policies provide the best HR and BHR
because these policies consider many parameters when mak-
ing replacement decisions. However, maintaining these
parameters in the system causes the highest implementation
complexity among all the categories. On the other hand, ran-
domized policies provide the worst HR and BHR because the
replacement decisions are made randomly. Nonetheless, this
does make them easier to implement.

Note that Table 1c only serves as a general guideline. The
HR and BHR performances of the policies are sensitive to
workload characteristics, proxy types, system parameters, and
available system resources. That is why contradictory results
have been reported in the literature, as mentioned earlier. On
the other hand, this table only shows the general implementa-
tion complexity for each category of policy. For complexity
using the big O notation of popular policies, readers should
refer to [5, 6]. Besides these metrics, when selecting a policy
to use, one should understand a category’s design rationale
and its targeted environment.

Policy Suggestion
In this section we suggest the appropriate polices to be used
in different cases. We classify the cases based on proxy
resources and proxy types. We also discuss the selection of
policy for commercial and hardware-based proxy products,
which are rarely reported in the literature. Table 3 summa-
rizes our suggestions.

n Table 2. Performance metrics and their targeted environments.

Performance
metric To be particularly concerned with

HR Small cache systems.

BHR Limited external network link systems.

CPU utilization Busy cache servers or servers with limited
processor power.

Latency reduc-
tion

Systems requiring low retrieval time experi-
enced by end users.
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Resource-Based Classification

CPU-Bounded — When a proxy is very busy, sophisticated poli-
cies that require high computational overhead are not suitable.
Those policies would make the busy proxy busier, and even
overloaded. When a proxy is overloaded, the performance
degrades quickly, and a lot of connection timeouts occur and
are reported as errors. Therefore, it is preferable in this case
to use simple and efficient replacement policies that do not
need to frequently update the data structure or maintain the
meta data of cached objects. Recency-based policies are more
suitable in this case because they usually can be implemented
with a linked list that requires less computation overhead.

Another kind of CPU bounded cache server is a machine
with a very low-end processor, such as those used in PDAs or
smartphones. These portable devices are becoming popular
for accessing the Web. Caching provided by the devices (i.e.,
client side caching) is useful to reduce traffic sent to the wire-
less link. In fact, a few years ago, Wireless Application Proto-
col (WAP) phones already provided a few hundreds of
kilobytes cache to store recently accessed WAP pages. In this
case a linked list data structure is still complex (or luxury)
considering the limited processor power. To solve the prob-
lem, randomized-based polices such as HARMONIC or
RAND can be used.

With a Small Cache — A cache size is said to be small when it
is much smaller than the total size of requested objects seen in
the workload. A smaller cache size results in lower hit perfor-
mance. In the extreme case, zero cache size does not provide
any caching function. In order to maximize the advantage of
caching (or HR), recency-based replacement policies are pre-
ferred to frequency-based in this case because requests to the
same object usually exhibit short-term temporal correlations.

With a Large Cache — As the cost of storage is steadily falling,
the cache sizes of many caching systems (particularly small and
medium ones) are large enough to hold most of the requested
objects. As many studies have shown, when the cache size is
very large, different replacement policies provide very similar
performance. This should be expected because quite often
there is a room in the cache for the new objects, and hence a
policy does not have to be invoked. In this case some objects in
the cache even timeout before they have to be evicted due to
cache fullness. In this way the selection of a policy is not signifi-
cant. Therefore, simple LRU is sufficient in this case.

Podlipnig and Boszormenyi [4] support the above argument
by giving the following example. Assuming that arrival rate is
1000 requests/s, average object size is 10 kbytes, 40 percent of
data is uncacheable, and BHR is 40 percent, the cache will get
2.05 Mbytes/s. If the cache size is 200Gbytes, at 2.05 Mbytes/s
it would take about 28 h to fill the cache; when it is full, the
cache contains about 21 million objects. According to the
statistics reported in [9], the same object will be requested
again after at most 16 million requests. This is 5 million fewer
than 21 million. These numbers indicate that even the simple
LRU policy would be sufficient for this cache.

Note that in this article we only consider the caching of
general Web objects. In some environments such as a video
library or software dissemination, the requested objects are
very large in size, and a single cache would never be large
enough to store most of them. In these cases, special caching
techniques such as prefix cache and content delivery network
have to be applied.

With Limited Bandwidth — When the external network band-
width is limited or expensive, it is desired to minimize net-
work traffic. BHR is of particular interest because it concerns
how many bytes are saved. In this case size-based polices (e.g.,

n Table 3. Suggested policies for a) proxies with different resources; b) different types of proxy; and c) commercial proxies.

Proxy characteristic Factors concerned Suggested policy

CPU-bounded Simple and low operational overhead Recency-based policies, randomized policies

With small cache Higher HR Recency-based policies

With large cache No particular concern LRU, etc.

With limited bandwidth Higher BHR GD-Size(packet), etc.

(a)

Proxy type Characteristic Suggested policy

Proxies in small organizations Have ampler cache space LRU, etc.

ISP-level proxy Higher temporary locality Recency-based policies

Root-level proxy Complex traffic characteristic and low
temporary locality Function-based policies using functions with size concerns

(b)

Proxy type Characteristic Suggested policy

Commercial-based proxy Require easier implementation LRU, site-based LRU, etc.

Hardware-based proxy Both hardware and software are exclu-
sively designed for Web caching Sophisticated function-based policies or simple policies

(c)
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Size) are not suitable because they discriminate against larger
popular objects, resulting in low BHR. Some function-based
polices that use function to optimize HR at the expense of
BHR are not suitable either. For example, GD-Size(1) [2] is
designed to maximize HR by setting the transmission cost for
all objects to the same constant value, 1. As shown in [2], both
Size and GD-Size(1) provide very low BHR compared to
other popular polices.

In the literature many function-based policies are reported
to provide very good BHR (also HR) because they are usually
heavily parameterized. To minimize network traffic resulting
from misses, Cao and Irani proposed the GD-Size(packets)
policy in [2]. The policy uses a special cost function to assign
the cost of an object to 2 + size/536 (i.e., the estimated num-
ber of network packets required for a cache miss). Their sim-
ulation results show that in most cases GD-Size(packets)
achieves better BHR than other policies, including LRV [7],
which is sophisticated.

Function-Based Classification
As mentioned before, Web proxy servers are widely deployed
in many places throughout the Web. Some are found in small
organizations, others in ISPs or the Internet backbone itself.
Different types of proxies have different characteristics, and
hence require different types of replacement policies. In this
section we discuss each type of proxy regarding its system char-
acteristics, workload features, and suitable replacement policy.

Proxies in Small Organizations — Proxies for departments or
small organizations serve a smaller set of users than do other
types of proxy. In these small environments the typical disk of
200 Gbytes already provides ample cache space to hold most
of the requested objects. This implies that proxies of this type
essentially have a large cache space.

As observed in previous work, there is no obvious perfor-
mance difference between replacement polices in a large
cache environment. For example, the simulation results
reported in [10] show that when the cache size is 20 percent
of the total requested size, the policies provided almost the
same HR. Besides, [11] shows that when the cache size is 64
Gbytes there is no performance difference among the policies
considered in their simulation using a proxy log of requests in
a university. For this reason, it is believed that a simple policy
such as LRU is sufficient for the proxy in small systems.

On the other hand, previous studies [12] reported that the
traffic of local (e.g., department and school) proxies exhibits a
higher skew of Zipf distribution than other kinds of proxies.
That is, requests are highly concentrated on a smaller set of
objects. This implies that a smaller cache space is needed for
proxies in small organizations. This also supports the idea that
a disk of typical size could cache most of the requested objects.

ISP-Level Proxy — An ISP-level proxy serves a large user popula-
tion and hence has higher temporal locality because there are
objects shared among users. Mahanti [13] studied the workload
characteristics of different types of proxies. They observed con-
siderable short-term temporal locality at the ISP-level proxy,
showing that approximately 30 percent of the total re-refer-
ences to objects occur within an interreference time of 1 min.

The presence of short-term locality makes recency-based
policies such as LRU more preferable in this case. This claim
is supported by [8], which shows that the LRU provides better
HR for various cache sizes in an ISP-level proxy.

Root-Level Proxy — Today, many proxies work together to form
a cache hierarchy. That is, when a cache miss occurs, a proxy
will contact its parent proxy to see if it has the requested

object cached. The process continues until the root proxy in
the hierarchy has been queried.

In a cache hierarchy root-level proxies receive requests
from lower-level proxies located in different areas. As report-
ed in [11], this makes the traffic exhibit lower temporary local-
ity than that of the lower-level proxies. For this reason,
replacement policies depending highly on the factor of recen-
cy are not appropriate. To increase hit performance, we pro-
pose to use function-based polices (e.g., GD-Size) that
consider multiple factors.

Our claim is supported by the study of Busari and
Williamson [14]. They evaluated the performance of using dif-
ferent replacement policies at different levels in the caching
hierarchy. They showed that the effectiveness (HR) of a root-
level cache can be much improved by using a policy that takes
object size into account (i.e., size-based policies, or function-
based policies using functions with size concern). For the sce-
narios and workloads they studied, GD-Size (function-based)
at the root-level cache provides significantly better HR than
LRU (recent-based) and LFU-aging (frequency-based).

Commercial and Hardware-Based Proxies
Commercial — Cache vendors launch different kinds of com-
mercial products to cater for different markets. However, it is
observed that those products usually differentiate themselves
based on user-friendly features, such as plug-and-play installa-
tion, multiple protocol support, and easy administration, more
than on an advanced replacement policy.

On the other hand, considering the complexity of project
development, anything more complicated is undesirable.
Therefore, in practice, simple replacement policies should be
considered (unless there is a special requirement), and LRU
is regarded as the best candidate in this case.

In addition to LRU, site-based LRU [15] is also preferable in
this case because it is friendly in performing administrative
tasks. Its operation is very similar to that of LRU, and it
requires just link lists to implement. It maintains a link list called
a site list, and each node in the list has a dedicated list called an
object list. By looking up the lists, it is easy for the proxy soft-
ware to perform administrative actions such as deleting all cache
objects for a given Web site, and queries such as asking which
objects are being cached for a given Web site. Commercial
products favor the support of these kinds of administrative tasks.

Hardware-Based Proxy — Some vendors design hardware- or
appliance-based proxy servers such as Cache Engine by Cisco
[16] and Cobalt Qube by Sun Microsystems [17]. Some vendors
even have their own proprietary operation systems for proxy
servers. Since these kinds of servers are exclusively designed for
caching purposes, they are well prepared for the use of sophisti-
cated function-based policies so as to produce a high-perfor-
mance server. However, as mentioned before, the use of
sophisticated policies may complicate the design of a commer-
cial product. Therefore, it all depends on the design goals.

The Future of Web Caching and
Replacement Policy
Web caching is playing an important role in the development
of the Internet. From its inception, the Internet has not been
well prepared for both the rising demand for Web content
and the exponential increase in Web traffic. This situation
made caching an obvious solution in filling the gap between
network capacity and user demand. In 1999 Internet caching
grew into a full-fledged market (according to the report by
Internet Research Group, a market research firm focusing on
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Internet infrastructure technologies). A few years later, IDC’s
June 2003 Worldwide CDN/Caching Competitive Analysis
reported that the caching appliance market would hold steady
at 2002 figures ($249 million), the reason being that many cor-
porations (particularly ISPs) have already deployed cache
devices in their systems. This indicates that Web caching
deployment is not as urgent as before.

Today, the Web caching market is active predominantly in
those countries (e.g., Asia-Pacific region) where bandwidth is rel-
atively expensive. According to IDC’s market analysis of world-
wide secure content and application delivery (including Web
caching products) from 2005 to 2009, the Asia-Pacific region will
have a compound annual growth rate of 14.3 percent, compared
to the projection for North America of only 5.1 percent.

Web caching provides many benefits, but it is only applica-
ble to cacheable objects. An object is said to be cacheable if it
can be stored and used to answer a future request. Dynami-
cally generated objects by server-side programs that execute
each time a request is made are typically considered
uncacheable. Therefore, if the Web were full of uncacheable
objects, the utility of Web caching would be very minimal.

Nevertheless, caching is an essential part of the Internet’s
infrastructure. We believe this will still be true in the future.
As pointed out in [18], even as bandwidth costs continue to
drop, caching will continue to reap benefits for a number of
reasons. First, bandwidth will always have some cost. Second,
bandwidth demands continue to increase and, if the price is
low enough, demand will always outstrip supply. Furthermore,
there will always be variations in bandwidth and latencies in
the world, and caching can help iron out these effects.

Web caching has been extensively studied in the last
decade. Many issues have been brought up and discussed. The
issues include replacement policy, content prefetching, cache
consistency, cooperative proxies, caching protocol, and cache
deployment. Please refer to [19] for the general discussions of
them. There are even dozens of caching products available on
the market. Although Web caching in its general form seems
to be a solved topic, there is still a gap in the literature
regarding special systems, such as multimedia (with many
large objects), wireless (with higher latency and error rate),
and mobile (with mobility and smaller cache) systems.

Similarly, the research of Web caching replacement has been
active in the last decade. We believe there are enough sufficient
good replacement policies for general Web proxy, and new pro-
posals only provide tiny incremental improvements. However,
there are particular environments requiring proposals of new
specialized replacement policies to improve performance. One
of the environments is an energy-critical system (i.e., energy
consumption is a concern). For example, Zhu et al. [20] pro-
posed a new power-aware cache replacement policy to reduce
energy consumption. By trying to keep the disk block with larger
energy penalties in the cache, the policy saves 16 percent more
disk energy than the conventional LRU in their trace-driven
simulations. Another environment where replacement policies
can help to improve performance is wireless. For example, Kat-
saros and Manolopoulos [21] proposed a new self-tunable cache
replacement policy to reduce latency and conserve network
resources in broadcast mobile wireless environments. The policy
slices the cache space and employs intelligent methods for
selecting the replacement victim. It provides much better perfor-
mance than conventional LRU in terms of average stretch (the
ratio of an object’s access latency to its service time). On the
other hand, with the recent rapid growth in mobile Internet, the
use of transcoding proxy servers [22] will become more and
more popular. Transcoding is the process of converting an
object from one form to another (e.g., from a true color to a
grayscale image). Yeung et al. [22] proposed a new replacement

policy that takes the transcoding time into account when evict-
ing an object. Simulation results show that it outperforms con-
ventional LRU by reducing the average transcoding time by
about 40 percent. In the future, efforts should be given to pro-
pose new policies for environments with special needs.

Conclusion
In this article we have made a number of insightful observa-
tions and contributions to the literature on Web cache
replacement. First, we establish a position on the diminishing
need to devise new replacement policies for traditional Web
caching environments. Second, we summarize common obser-
vations spread over much previous work. Most important, we
offer a comprehensive collection of suggestions about which
policy could be most effective in which environment. The sug-
gestions are based on the resource (e.g., cache size, band-
width, and processing power) and functional characteristics
(e.g., ISP- and root-level) of Web proxy caches.
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