A JML compiler based on AspectJ

Henrigue Rebélo, Ricardo Lima, Marcio Cornélio, Sér§oares
Pernambuco State University
Computing Systems Department
Rua Benfica, 455, Madalena, Recife - PE, Brazil
{hemr,ricardo,marcio,sergi@dsc.upe.br

Abstract oriented programming with Aspect] to implement JML
contracts.

The Java Modeling Language (JML) is a behavioral in- The main contributions of this paper are: (1) a novel JML
terface specification language (BISL) designed for Java. It compiler compliant with Java ME and Java SE applications;
was developed with the aim of improving the functional (2) the usage of aspect-oriented programming to implement
software correctness of Java applications. The JML com- JML contracts; (3) a comparative study between our and
piler (jmlc) generates bytecodes that use the Java reflectio original JIML compiler proposed by Chedn [2].
mechanism and data structures not supported by Java ME This paper is structured as follows. Section 2 presents
applications. In order to overcome this limitation, we pro- the Java Modeling Language (JML). Section 3 presents a
pose the use of AspectJ to implement a new JML compilernovel JML compiler based on AspectJ. A comparative study
which generates an instrumented bytecode compliant withpetween our and the original JML compiler that are dis-
both Java SE and Java ME applications. The paper also cussed in Section 4. Finally, Section 5 presents related

includes a comparative study to demonstrate the quality ofwork, and Section 6 contains the conclusions and future
the final code generated by our compiler. Results indicate work.

that the overhead in code size produced by our compiler is
very small, which is essential for Java ME applications.

2 JavaModeling Language

1 Introduction The Java Modeling Language (JML) [7] is a behavioral
interface specification language designed for Java that fol
The Java Modeling Language (JML) is a behavioral in- lows the Design by Contract (DBC)[8] technique. JML
terface specification language for Java. It combines the de-Specifications are composed of pre-, postconditions, and
sign by contract approach of Eiffel and the model-based invariant assertions annotated in Java code in the form of
specification approach of the Larch family [4] of interface comments.
specification languages, with some elements of the refine- In the JML environment, Java comments are interpreted
ment calculus. The generated bytecodes of the JML com-as JML annotations when they begin with arsign, that
piler (jmlc) [2] uses the Java reflection mechanism and datais, comments of the formme <JML specification- or @
structures, such adashSenot supported by Java ME ap- <JML specification- @+/. In a JML specification, we use
plications. Observing such a scenario, the main motivationthe keywordsrequires, ensures andsignals that are
of this work was to create a new JML compiler compliant respectively used to specify preconditions, normal pastco
with both Java SE and Java ME applications. ditions, and exceptional postconditions of a method. More-
Our approach consists in implementing a new JML com- over, the keywordnvariant denotes a predicate that will
piler with support for Java ME applications. The strategy always hold after constructor execution, and before and af-
adopted in this work employs Aspectd [5] to implement ter every method call. JML supports both instance and static
JML contracts (assertions) that, when compiled, produceinvariants.
instrumented bytecodes to check the correctness of the Java The JML compiler jmic) [2] converts JML annotations
programs during runtime. into automatic runtime checks. It reuses the front-end of
To the best of our knowledge, this is the first JML existing JML tools[[1] to verify the syntax and semantics of
compiler with support for Java ME, which adopts aspect- the JML annotations and produces a typechecked abstract

syntax tree (AST). The compiler introduces two new com- for the precondition mapping, we have to know the current
pilation passes: the “runtime assertion checker (RAC) codeprecondition and take into account all the inherited precon
generation”; and the “runtime assertion checker (RAC) ditions (if any). In JML, subclasses inherit specifications
code printing”. The former modifies the AST to add nodes as well Epecification inheritance modelThus, specifica-
for the generated checking code. The latter writes the newtions can be added to an overridden method. According to
abstract syntax tree to a Temporary Java Source File (TJSF)Leavens([6, Definition 1], the result of precondition inher-
For each Java method thressertion methodare gener- itance is a disjunction of the formare’ || pre), Wherepre’ is
ated into a TJSF: one for precondition checking, and two the method precondition defined by the subclasspanis

for postcondition checking (for normal and exceptional ter the method precondition defined by the superclass.
mination). Finally, instrumented bytecode is produced by In orderto achieve the effect of precondition inheritance,
compiling the TJSF through the Java compiler. The instru- a static crosscuttingnechanism of AspectJ also known as
mented bytecode produced contaassertion methodsode inter tge declaratioris used to insert a new method into

to check JML contracts during runtime. class @@ as follows:
1. public boolean C. checkPre$m){
3 A novel IML compiler based on AspectJ 2 return a || super.checkPre$n();
3 %

In this section we describe a new approach for the im- This code inserts a method into clasgthe C. prefix tells
plementation of a JML compiler based on AspectJ. Cheon’sAspect] where to insert the method definition) that checks
techniquel[2] to implement IML compiler has the following its precondition in conjunction with the proper inherited
limitations to be employed for small devices: (1) it adopts precondition §uper.checkPre$m()). It is also used by the
Java reflection specially to support specification inhedéa following AspectJ’s advice to give a full-fledged JML pre-
(not supported by Java ME); (2) it employs data structures, conditions semantics.

such aHashSetndMap, both from the java.util package 1. pef ore(C current)

(not supported by Java ME). 2: execution(void m())) & within(C) &&
In order to overcome these limitations, we reuse the 3: this(current){

front-end of the JML tools [1] and generafspect Asser- 4: if(!current.checkPre$n()){

tion Methodg(AAM) for each Java method from the type- 5: t hr ow new JM_Precondi ti onError();

checked AST. Then, the AAM are compiled through the As- 6: X

pectJ compiler (ajc), which weaves the AAM with the Java 7 1}

code. The result is an instrumented bytecode, compliant toThijs before advice (line1) is responsible for inserting
both Java SE and Java ME applications. This implementa-an extra behavior (lines, 5 and6) before some specified
tion technique (the reuse of the JML tools) is also provided points in the Java program. Moreover, the advice parameter

by Cheon[2]. current indicates that we want to expose some informa-
tion about the execution context. The designatais (line
3.1 Mapping contracts to Aspects 3) exposes the currently executing object, which is the ob-

ject executing the methad The affected points are defined
In this section, we present a mapping of JML irets- through the AspectJ designatassecution andwithin
pects[5]. We concentrate on precondition, normal post- (line 2). The former specifies which methods’ executions
condition and invariant. For the mapping rules, suppose awill be affected, in this case, executions of@d method
method with signatureoid m() in a classC that inherits m without parameters in a class The latter constrains the
from a classB with an overridden method that has the execution points to methods of a specified clgs which
preconditiona, postconditiony, invariantd and possible avoids executions in subclasses of it. The behavior added
inherited specifications (from claBs. by this advice is to check the precondition (liag¢ and
It is important that readers are familiar with the basic throws JMLPreconditionError (line 5) if it is violated.
concepts of Aspect-Oriented Programming (AOP) with As- Assertion violations in the JML semantics are instances of
pectJ[5] and the following terminology: aspect, join peint java.lang.Error[2].
named and anonymous pointcut, and advice.
3.1.2 Normal Postcondition Mapping

31.1 Precondition Mapping Postconditions are properties in JML that must hold af-

In JML, preconditions must be satisfied (held) before any ter method calls. There are two kinds of postconditions
code of a methOd IS exec;uteq, otherwise an expgptlon MUSL 1jf the method has formal parameters, their declarationeéguliso dis-
be thrown to signal the violation of the precondition. Thus, tinguish from overloaded methods.

in JML: normal and exceptional postcondition. Here, we 1: public bool ean C. checkl nv$i nstance(){
cover only normal postcondition. Exceptional postcon- 2: return 6 && super.checkl nv$i nstance();
dition will be treated in a future work. About postcon- 3: }

dition inheritance, Leavensl[6, Definition 1] states post- The returned expression (limis the conjunction of invari-
conditions as a conjunction of implications in the form ants (from the subtype and their supertypes).

(\old(pre’)==>post) && (\old(pre)==>post). EXpressing that In the JML semantics, the invariant test is performed at
yvhen one of _the preconditions holds, the_n the correspond+he peginning and at the end of every method (with nor-
ing postcondition must hold. The expressi@faere) COr- mal or abnormal termination). Suppose that a method vi-

responds in JML, the evaluation of the precondition before g|ates an invariant assertion during method call and termi-
method call. Its implementation will be treated in a future pgtes by throwing dMLPostconditionError In this case,
work as well. The method inserted intto verify the nor- the assertion violation error thrown must be kept. Only if
mal postcondition is the following: the method terminates normally (when it holds the postcon-
dition), theJMLInvariantError should be thrown. Note that

if the exception thrown is not an assertion violation error,
the invariant test must be performed. In order to instrument
this semantics, we usdaskfore and the two kinds of af-

The returned expression by postcondition checking methogter advice:after returning andafter throwing ad-
(line 2) is the Java code equivalent to the JML notation Vice. Theafter returning advice is applied when the
(\old(a) —>). The AspectJ’s advice that implements nor- Method returns normally, with no exception thrown. On

1: public bool ean C. checkPost nC(){
2: returnla ||
3}

mal postcondition is the following: the other hand, when the executing method terminates by
throwing an exception, thefter throwing advice is ap-

1: void around(C current) : plied to add behavior after it. These advices use the method

2: execution(void C.n()) & this(current){ super.checkInv3instance defined above and with a im-

3: ...11 saving all old val ues plementation similar to preconditions, provide the invari

4: proceed(); ant test properly. However, the only difference is the

5 I (!current. checkPost $nBC()) { . use of the AspectJ designatetecution with the clause

gj } throw new JM.Post condi tionError(); execution(!static * *(..)). This clause provides the

8 } invariant test of every non-static method.

The invariants instrumentation that we described here,

Note that this advice contains the postcondition testing only checks instance invariants. In JML, static invariants
method with the class name (lif%, because normal post- aré also allowed and the mechanism used to instrument it
conditions methods in subclasses preserve the postcondiWill be discussed in a future work.

tion of corresponding methods of their superclasses.Fhis i

expressed by the absencewdfthin(C) that makes the ad- 4 Compar ative Study

vice affect executions afi in subtypes ofc. It uses con-

junction of normal postconditions by checking all the in- To evaluate our compiler, we have used the same appli-
herited postconditions. We use theound advice in order cation, a Java ME floating point calculd@viDlet appli-

to manipulate data before and after executingptheceed cation [9]), in three different ways: (1) using our compiler
method (necessary to treat JMI1d expressions not dis- based on AspectJ langua@s(cAspSat (2) using the orig-
cussed here). Theroceed method (line4) represents the inal compiler[2] CalcImISa); (3) a pure one, with no byte-
call to the original method from within the advice. code instrumentatiorQalcPureSdl. We compared the use

of the three compilers by analyzing: MiDlet class size; byte
code size; library API size.

The Java ME floating point calculator application
Invariants are properties that have to hold in all visibigess ~ presents a calculator screen where the operands and oper-
of objects[[7]. Moreover, like postconditions, invariaate ations are requested and the result shown. We annotated it
conjoined in the specification inheritance model. LeavensWith JML constructs presented here—which are fully sup-
[6, Definition 2] states that the resulting invariantxit the ~ ported by our compiler—to ensure two properties: it yields

3.1.3 Invariant Mapping

conjunction of the local invariant af and the local invari- only positive results and it prevents division by zero.

ants of all proper superclasses®f Moreover, this leads When we compile th€alcJmiSolversion by using the
to an instrumentation similar to preconditions. Thus, for a JML compiler (jmic) setting the class path to the Java ME
classC whose invariant assertion és the following method 2An open source Java ME application available at

is inserted intaC: https://meapplicationdevelopers.dev.java.net/ddror. html

6 Conclusion and Future Work
Table 1. Java ME calculator application met-
rics sizes results This paper presents the implementation of a new JML
Vil el dass IAR b JAR compiler basgd on AspectJ. Thg paper egplamed.how to use
size (KB) size (KB) | size (KB) the aspect-oriented programming technique to implement
JML assertions. For the best of our knowledge, this is the

CalcAspSol 21.1 118 4.6 first work to use AspectJ with this purpose.

CalcImiSol 39.5 278.0 261.0 ; S .)

CalcPureSol 79 57 The main contribution of this paper is the use of aspect-
acrure-o - - — oriented programming (AspectJ) for implementing con-

tracts written in JML. The result was a bytecode compliant

API [9], the bytecodes we obtain do not pass the analysiswIth both Java SE and Java ME applications. Thus, provid-

of the Java MBpreverifiertool that checks bytecode com- Ing a way to extend t_he use of JML Ianguage_ to specify and
patibility to run in the Java ME environment. The reason verify Java ME applications. The comparative study con-

o : ducted indicated that the overhead in size code is very small
for this ff_;ulure Is that Java_ME do_es not suppqrt all features if compared with the code produced by the jmilt [2]. It is
Egedseeirr']t tlr?eJc?(\)/rip?aEréﬁve:g;Le d;he incompatibility, we use the?mportant to notice that code s@ze is a very important metric

- ; . in the context of Java ME applications.

Considering the three versions of the calculator appli- Currently, we are working to implement the remaining
cation, we analyze the mentioned metrics with the same 5y, constrL;ctors such as exceptional postcondition
annotated input source file. Talile 1 presents the result of ' '
the analysis. Concerning bytecode size, we observe that
CalcAspSois 77.2% bigger thaiCalcPureSal but 95.8% References
smaller tharCalcImiSal In relation library API sizeCal-))
cAspSokhowed to be 98.3% smaller th@alcJmISaol This (1] L. Burdy et al. An overview of JML tools and applica-
happens becaugalcAspSotequires far less code than the tions. International Jourr'wal on Software Tools for Technol-
original IML runtime to execute instrumented bytecode. In 2] 393&:]—;%15_? SS;HZ (gs),ézelrtzigﬁsczﬁejclf(g? fzoorot?{e Java Mod-
the case of the MiDlet class siz8alcAspSols 76.8% big- eling Language Technical report 03-09, lowa State Uni-
ger thanCalcPureSolnd 46.6% smaller tha@alcIJmISol versity, Department of Computer Science, Ames, IA, April
Such results provide indication that our approach requires 2003. The author’s Ph.D. dissertation.
less memory space than the original JML compiler. As a [3] Y. A. Feldman et al. Jose: Aspects for design by conti&ct8
proof of concept, we executed the calculator in a real mo- 89. sefm 0:80-89, 2006.
bile phone. We performed method calls with arguments that [4] J. V. Guttag and J. J. Homing, editorsLarch: Lan-

lead to precondition violation as specified by contracts Th g:’:gﬁ: i"’r‘]”g;-;c;)lztf:rr gc(’;g“n?:'esf;:r'f;:rd\fztlz gn%\ggno\;vnh
application answered properly to these calls. Stephen J. Garland, Kevin D. Jones, Andrés Modet, and
Jeannette M. Wing.
5 Rdated Work [5] G. Kiczales et al. Getting started with aspecGommun.
ACM, 44(10):59-65, 2001.
[6] G. T. Leavens. JML's rich, inherited specifications fa-b

Feldman [[3] presents a DBC tool for Java, callede havioral subtypes. In Z. Liu and H. Jifeng, editoFsymal
This tool adopts a DBC language for expressing contracts. Methods and Software Engineering: 8th International Con-
Similar to our approach, Jose adopts AspectJ to implement ~ ference on Formal Engineering Methods (ICFEMplume
contracts. The semantics of postconditions and invariants 4260, pages 2—34, Nov. 2006.

] G. T. Leavens et al. Jml reference manual. Department of

Jose are distinct from JML. Jose defines that postconditions 7
P Computer Science, lowa State University. Available froin ur

are simply conjoined without taking into account the cor- http://www jmlspecs.org, Apr. 2005

responding precondition. Moreover, it establishes that pr [8] B. l\./leyer.l Applying “desigh by contract”. Computer

vate methods can modify invariant assertions. In the JML 25(10):40-51, 1992.

semantics, if a private method violates an invariant, an ex- [9] V. Piroumian. Wireless J2me Platform Programmingren-

ception must be thrown. Moreover, in order to preserve the tice Hall Professional Technical Reference, 2002. Fordwor

JML semantics, we usgter returning andafter throwing By-Mike Clary and Foreword By-Bill Joy.

advices, while the Jose tool only employs titer advice. [10] fJécihsge (filfrilgat':il).n Clzz-mziu”;ég- forP;F;?):ec/tAj\ b:{gi“iﬁ‘r'“;?er'

(Blzll_p)at[;icl)(])ri; tzeﬂggfggl Iﬂteejgf dsspf&lﬂiitlggelgr;f:ige mental Approaches to Softwar.e Engineering (FASE’ZOOS)
. T of ETAPS’2003Lecture Notes in Computer Science, Apr.

verify AspectJ programs. Differently, our work uses As- 2003.

pectJ to implement JML contracts in Java programs.

	Introduction
	Java Modeling Language
	A novel JML compiler based on AspectJ
	Mapping contracts to Aspects
	Precondition Mapping
	Normal Postcondition Mapping
	Invariant Mapping

	Comparative Study
	Related Work
	Conclusion and Future Work

