
A JML compiler based on AspectJ

Henrique Rebêlo, Ricardo Lima, Márcio Cornélio, Sérgio Soares
Pernambuco State University

Computing Systems Department
Rua Benfica, 455, Madalena, Recife - PE, Brazil

{hemr,ricardo,marcio,sergio}@dsc.upe.br

Abstract

The Java Modeling Language (JML) is a behavioral in-
terface specification language (BISL) designed for Java. It
was developed with the aim of improving the functional
software correctness of Java applications. The JML com-
piler (jmlc) generates bytecodes that use the Java reflection
mechanism and data structures not supported by Java ME
applications. In order to overcome this limitation, we pro-
pose the use of AspectJ to implement a new JML compiler,
which generates an instrumented bytecode compliant with
both Java SE and Java ME applications. The paper also
includes a comparative study to demonstrate the quality of
the final code generated by our compiler. Results indicate
that the overhead in code size produced by our compiler is
very small, which is essential for Java ME applications.

1 Introduction

The Java Modeling Language (JML) is a behavioral in-
terface specification language for Java. It combines the de-
sign by contract approach of Eiffel and the model-based
specification approach of the Larch family [4] of interface
specification languages, with some elements of the refine-
ment calculus. The generated bytecodes of the JML com-
piler (jmlc) [2] uses the Java reflection mechanism and data
structures, such asHashSetnot supported by Java ME ap-
plications. Observing such a scenario, the main motivation
of this work was to create a new JML compiler compliant
with both Java SE and Java ME applications.

Our approach consists in implementing a new JML com-
piler with support for Java ME applications. The strategy
adopted in this work employs AspectJ [5] to implement
JML contracts (assertions) that, when compiled, produce
instrumented bytecodes to check the correctness of the Java
programs during runtime.

To the best of our knowledge, this is the first JML
compiler with support for Java ME, which adopts aspect-

oriented programming with AspectJ to implement JML
contracts.

The main contributions of this paper are: (1) a novel JML
compiler compliant with Java ME and Java SE applications;
(2) the usage of aspect-oriented programming to implement
JML contracts; (3) a comparative study between our and
original JML compiler proposed by Cheon [2].

This paper is structured as follows. Section 2 presents
the Java Modeling Language (JML). Section 3 presents a
novel JML compiler based on AspectJ. A comparative study
between our and the original JML compiler that are dis-
cussed in Section 4. Finally, Section 5 presents related
work, and Section 6 contains the conclusions and future
work.

2 Java Modeling Language

The Java Modeling Language (JML) [7] is a behavioral
interface specification language designed for Java that fol-
lows the Design by Contract (DBC) [8] technique. JML
specifications are composed of pre-, postconditions, and
invariant assertions annotated in Java code in the form of
comments.

In the JML environment, Java comments are interpreted
as JML annotations when they begin with an@ sign, that
is, comments of the form://@ <JML specification> or /*@

<JML specification> @*/. In a JML specification, we use
the keywordsrequires, ensures andsignals that are
respectively used to specify preconditions, normal postcon-
ditions, and exceptional postconditions of a method. More-
over, the keywordinvariant denotes a predicate that will
always hold after constructor execution, and before and af-
ter every method call. JML supports both instance and static
invariants.

The JML compiler (jmlc) [2] converts JML annotations
into automatic runtime checks. It reuses the front-end of
existing JML tools [1] to verify the syntax and semantics of
the JML annotations and produces a typechecked abstract

syntax tree (AST). The compiler introduces two new com-
pilation passes: the “runtime assertion checker (RAC) code
generation”; and the “runtime assertion checker (RAC)
code printing”. The former modifies the AST to add nodes
for the generated checking code. The latter writes the new
abstract syntax tree to a Temporary Java Source File (TJSF).
For each Java method threeassertion methodsare gener-
ated into a TJSF: one for precondition checking, and two
for postcondition checking (for normal and exceptional ter-
mination). Finally, instrumented bytecode is produced by
compiling the TJSF through the Java compiler. The instru-
mented bytecode produced containsassertion methodscode
to check JML contracts during runtime.

3 A novel JML compiler based on AspectJ

In this section we describe a new approach for the im-
plementation of a JML compiler based on AspectJ. Cheon’s
technique [2] to implement JML compiler has the following
limitations to be employed for small devices: (1) it adopts
Java reflection specially to support specification inheritance
(not supported by Java ME); (2) it employs data structures,
such asHashSetandMap, both from the java.util package
(not supported by Java ME).

In order to overcome these limitations, we reuse the
front-end of the JML tools [1] and generateAspect Asser-
tion Methods(AAM) for each Java method from the type-
checked AST. Then, the AAM are compiled through the As-
pectJ compiler (ajc), which weaves the AAM with the Java
code. The result is an instrumented bytecode, compliant to
both Java SE and Java ME applications. This implementa-
tion technique (the reuse of the JML tools) is also provided
by Cheon [2].

3.1 Mapping contracts to Aspects

In this section, we present a mapping of JML intoas-
pects[5]. We concentrate on precondition, normal post-
condition and invariant. For the mapping rules, suppose a
method with signaturevoid m() in a classC that inherits
from a classB with an overridden methodm that has the
preconditionα, postconditionγ, invariantθ and possible
inherited specifications (from classB).

It is important that readers are familiar with the basic
concepts of Aspect-Oriented Programming (AOP) with As-
pectJ [5] and the following terminology: aspect, join point,
named and anonymous pointcut, and advice.

3.1.1 Precondition Mapping

In JML, preconditions must be satisfied (held) before any
code of a method is executed, otherwise an exception must
be thrown to signal the violation of the precondition. Thus,

for the precondition mapping, we have to know the current
precondition and take into account all the inherited precon-
ditions (if any). In JML, subclasses inherit specifications
as well (specification inheritance model). Thus, specifica-
tions can be added to an overridden method. According to
Leavens [6, Definition 1], the result of precondition inher-
itance is a disjunction of the form(pre′ || pre), wherepre

′ is
the method precondition defined by the subclass andpre is
the method precondition defined by the superclass.

In order to achieve the effect of precondition inheritance,
a static crosscuttingmechanism of AspectJ also known as
inter type declarationis used to insert a new method into
class C1 as follows:

1: public boolean C.checkPre$m(){
2: return α || super.checkPre$m();
3: }

This code inserts a method into classC (theC. prefix tells
AspectJ where to insert the method definition) that checks
its precondition in conjunction with the proper inherited
precondition (super.checkPre$m()). It is also used by the
following AspectJ’s advice to give a full-fledged JML pre-
conditions semantics.

1: before(C current) :
2: execution(void m())) && within(C) &&
3: this(current){
4: if(!current.checkPre$m()){
5: throw new JMLPreconditionError();
6: }

7: }

This before advice (line1) is responsible for inserting
an extra behavior (lines4, 5 and6) before some specified
points in the Java program. Moreover, the advice parameter
current indicates that we want to expose some informa-
tion about the execution context. The designatorthis (line
3) exposes the currently executing object, which is the ob-
ject executing the methodm. The affected points are defined
through the AspectJ designatorsexecution andwithin
(line 2). The former specifies which methods’ executions
will be affected, in this case, executions of avoid method
m without parameters in a classC. The latter constrains the
execution points to methods of a specified class(C), which
avoids executions in subclasses of it. The behavior added
by this advice is to check the precondition (line4) and
throwsJMLPreconditionError (line 5) if it is violated.
Assertion violations in the JML semantics are instances of
java.lang.Error [2].

3.1.2 Normal Postcondition Mapping

Postconditions are properties in JML that must hold af-
ter method calls. There are two kinds of postconditions

1If the method has formal parameters, their declaration is useful to dis-
tinguish from overloaded methods.

in JML: normal and exceptional postcondition. Here, we
cover only normal postcondition. Exceptional postcon-
dition will be treated in a future work. About postcon-
dition inheritance, Leavens [6, Definition 1] states post-
conditions as a conjunction of implications in the form
(\old(pre′)==>post

′) && (\old(pre)==>post). Expressing that
when one of the preconditions holds, then the correspond-
ing postcondition must hold. The expression(\old(pre′)) cor-
responds in JML, the evaluation of the precondition before
method call. Its implementation will be treated in a future
work as well. The method inserted intoC to verify the nor-
mal postcondition is the following:

1: public boolean C.checkPostmC(){
2: return !α || γ;
3: }

The returned expression by postcondition checking method
(line 2) is the Java code equivalent to the JML notation
(\old(α) ==> γ). The AspectJ’s advice that implements nor-
mal postcondition is the following:

1: void around(C current) :
2: execution(void C.m()) && this(current){
3: ...// saving all old values
4: proceed();
5: if(!current.checkPostmC()){
6: throw new JMLPostconditionError();
7: }

8: }

Note that this advice contains the postcondition testing
method with the class name (line5), because normal post-
conditions methods in subclasses preserve the postcondi-
tion of corresponding methods of their superclasses.This is
expressed by the absence ofwithin(C) that makes the ad-
vice affect executions ofm in subtypes ofC. It uses con-
junction of normal postconditions by checking all the in-
herited postconditions. We use thearound advice in order
to manipulate data before and after executing theproceed

method (necessary to treat JMLold expressions not dis-
cussed here). Theproceed method (line4) represents the
call to the original method from within the advice.

3.1.3 Invariant Mapping

Invariants are properties that have to hold in all visible states
of objects [7]. Moreover, like postconditions, invariantsare
conjoined in the specification inheritance model. Leavens
[6, Definition 2] states that the resulting invariant ofC is the
conjunction of the local invariant ofC and the local invari-
ants of all proper superclasses ofC. Moreover, this leads
to an instrumentation similar to preconditions. Thus, for a
classC whose invariant assertion isθ, the following method
is inserted intoC:

1: public boolean C.checkInv$instance(){
2: return θ && super.checkInv$instance();
3: }

The returned expression (line2) is the conjunction of invari-
ants (from the subtype and their supertypes).

In the JML semantics, the invariant test is performed at
the beginning and at the end of every method (with nor-
mal or abnormal termination). Suppose that a method vi-
olates an invariant assertion during method call and termi-
nates by throwing aJMLPostconditionError. In this case,
the assertion violation error thrown must be kept. Only if
the method terminates normally (when it holds the postcon-
dition), theJMLInvariantErrorshould be thrown. Note that
if the exception thrown is not an assertion violation error,
the invariant test must be performed. In order to instrument
this semantics, we usedbefore and the two kinds of af-
ter advice: after returning andafter throwing ad-
vice. Theafter returning advice is applied when the
method returns normally, with no exception thrown. On
the other hand, when the executing method terminates by
throwing an exception, theafter throwing advice is ap-
plied to add behavior after it. These advices use the method
super.checkInv$instance defined above and with a im-
plementation similar to preconditions, provide the invari-
ant test properly. However, the only difference is the
use of the AspectJ designatorexecution with the clause
execution(!static ∗ ∗ (..)). This clause provides the
invariant test of every non-static method.

The invariants instrumentation that we described here,
only checks instance invariants. In JML, static invariants
are also allowed and the mechanism used to instrument it
will be discussed in a future work.

4 Comparative Study

To evaluate our compiler, we have used the same appli-
cation, a Java ME floating point calculator2(MiDlet appli-
cation [9]), in three different ways: (1) using our compiler
based on AspectJ language (CalcAspSol); (2) using the orig-
inal compiler [2] (CalcJmlSol); (3) a pure one, with no byte-
code instrumentation (CalcPureSol). We compared the use
of the three compilers by analyzing: MiDlet class size; byte-
code size; library API size.

The Java ME floating point calculator application
presents a calculator screen where the operands and oper-
ations are requested and the result shown. We annotated it
with JML constructs presented here—which are fully sup-
ported by our compiler—to ensure two properties: it yields
only positive results and it prevents division by zero.

When we compile theCalcJmlSolversion by using the
JML compiler (jmlc) setting the class path to the Java ME

2An open source Java ME application available at
https://meapplicationdevelopers.dev.java.net/demobox.html

Table 1. Java ME calculator application met-
rics sizes results

MidLet class JAR Lib JAR
size (KB) size (KB) size (KB)

CalcAspSol 21.1 11.8 4.6
CalcJmlSol 39.5 278.0 261.0
CalcPureSol 4.9 2.7 —

API [9], the bytecodes we obtain do not pass the analysis
of the Java MEpreverifier tool that checks bytecode com-
patibility to run in the Java ME environment. The reason
for this failure is that Java ME does not support all features
present in Java SE. Despite the incompatibility, we use the
code in the comparative study.

Considering the three versions of the calculator appli-
cation, we analyze the mentioned metrics with the same
annotated input source file. Table 1 presents the result of
the analysis. Concerning bytecode size, we observe that,
CalcAspSolis 77.2% bigger thanCalcPureSol, but 95.8%
smaller thanCalcJmlSol. In relation library API size,Cal-
cAspSolshowed to be 98.3% smaller thanCalcJmlSol. This
happens becauseCalcAspSolrequires far less code than the
original JML runtime to execute instrumented bytecode. In
the case of the MiDlet class size,CalcAspSolis 76.8% big-
ger thanCalcPureSoland 46.6% smaller thanCalcJmlSol.
Such results provide indication that our approach requires
less memory space than the original JML compiler. As a
proof of concept, we executed the calculator in a real mo-
bile phone. We performed method calls with arguments that
lead to precondition violation as specified by contracts. The
application answered properly to these calls.

5 Related Work

Feldman [3] presents a DBC tool for Java, calledJose.
This tool adopts a DBC language for expressing contracts.
Similar to our approach, Jose adopts AspectJ to implement
contracts. The semantics of postconditions and invariantsin
Jose are distinct from JML. Jose defines that postconditions
are simply conjoined without taking into account the cor-
responding precondition. Moreover, it establishes that pri-
vate methods can modify invariant assertions. In the JML
semantics, if a private method violates an invariant, an ex-
ception must be thrown. Moreover, in order to preserve the
JML semantics, we useafter returning andafter throwing
advices, while the Jose tool only employs theafter advice.

Pipa[10] is a behavioral interface specification language
(BISL) tailored to AspectJ. It extends JML to specify and
verify AspectJ programs. Differently, our work uses As-
pectJ to implement JML contracts in Java programs.

6 Conclusion and Future Work

This paper presents the implementation of a new JML
compiler based on AspectJ. The paper explained how to use
the aspect-oriented programming technique to implement
JML assertions. For the best of our knowledge, this is the
first work to use AspectJ with this purpose.

The main contribution of this paper is the use of aspect-
oriented programming (AspectJ) for implementing con-
tracts written in JML. The result was a bytecode compliant
with both Java SE and Java ME applications. Thus, provid-
ing a way to extend the use of JML language to specify and
verify Java ME applications. The comparative study con-
ducted indicated that the overhead in size code is very small
if compared with the code produced by the jmlc [2]. It is
important to notice that code size is a very important metric
in the context of Java ME applications.

Currently, we are working to implement the remaining
JML constructors, such as exceptional postcondition.

References

[1] L. Burdy et al. An overview of JML tools and applica-
tions. International Journal on Software Tools for Technol-
ogy Transfer (STTT), 7(3):212–232, June 2005.

[2] Y. Cheon. A runtime assertion checker for the Java Mod-
eling Language. Technical report 03-09, Iowa State Uni-
versity, Department of Computer Science, Ames, IA, April
2003. The author’s Ph.D. dissertation.

[3] Y. A. Feldman et al. Jose: Aspects for design by contract80-
89. sefm, 0:80–89, 2006.

[4] J. V. Guttag and J. J. Horning, editors.Larch: Lan-
guages and Tools for Formal Specification. Texts and Mono-
graphs in Computer Science. Springer-Verlag, 1993. With
Stephen J. Garland, Kevin D. Jones, Andrés Modet, and
Jeannette M. Wing.

[5] G. Kiczales et al. Getting started with aspectj.Commun.
ACM, 44(10):59–65, 2001.

[6] G. T. Leavens. JML’s rich, inherited specifications for be-
havioral subtypes. In Z. Liu and H. Jifeng, editors,Formal
Methods and Software Engineering: 8th International Con-
ference on Formal Engineering Methods (ICFEM), volume
4260, pages 2–34, Nov. 2006.

[7] G. T. Leavens et al. Jml reference manual. Department of
Computer Science, Iowa State University. Available from url
http://www.jmlspecs.org, Apr. 2005.

[8] B. Meyer. Applying “design by contract”. Computer,
25(10):40–51, 1992.

[9] V. Piroumian.Wireless J2me Platform Programming. Pren-
tice Hall Professional Technical Reference, 2002. Foreword
By-Mike Clary and Foreword By-Bill Joy.

[10] J. Zhao and M. C. Rinard. Pipa: A behavioral inter-
face specification language for aspectj. InProc. Funda-
mental Approaches to Software Engineering (FASE’2003)
of ETAPS’2003, Lecture Notes in Computer Science, Apr.
2003.

	Introduction
	Java Modeling Language
	A novel JML compiler based on AspectJ
	Mapping contracts to Aspects
	Precondition Mapping
	Normal Postcondition Mapping
	Invariant Mapping

	Comparative Study
	Related Work
	Conclusion and Future Work

