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Abstract

Aspect-oriented programming (AOP) enables the effective modularization of well-known crosscutting concerns. To take advantage
of AOP, there are many techniques, including AOP laws, for a systematic refactoring of crosscutting concerns to aspects. However,
there is also a need for supporting the systematic refactoring of AOP constructs. Existing techniques for aspect-oriented refactoring
are too coarse-grained and make it too difficult to assure that the transformations preserve behavior and are indeed refactorings. This
paper presents a catalogue of AOP laws towards a systematic refactoring of AOP constructs. As long as these laws are fine-grained,
they make it easier to verify that the transformations they provide preserve behavior. Furthermore, as these laws can provide space
and time optimization, we conduce an empirical study using four applications in optimized and non-optimized versions generated
by ajmlc, a new JML compiler, presented in a previous work, which generates aspects that enforce JML contracts during runtime.
We show that the AOP laws provide a significant improvement, regarding bytecode size and running time, in the aspect code
generated by an optimized version of the ajmlc compiler.

Keywords: Aspect-oriented programming, Refactoring, Programming laws, JML

1. Introduction

Aspect-oriented programming (AOP) [2] is a well-known
technique that explicitly supports the modularization of cross-
cutting concerns. With the emergence of AOP, many techniques
has been proposed to help programmers in applying refactor-
ings on scattered and tangled implementations of crosscutting
concerns to aspects (OO-to-AO refactorings) [3, 4, 5]. Refac-
toring [6, 7, 8] is an useful technique, which appeared in the
context of object-oriented programming (OOP), for improving
code structure through behavior-preserving program transfor-
mations. In addition to refactoring of crosscutting concerns, the
importance of supporting aspect-oriented refactorings (AO-to-
AO) has been recongnized [9, 10]. Aspect-oriented (AO) refac-
torings are employed for improving existing AO code. Through
refactoring, one might increase code modularity, reusability,
decrease code size, etc. However, transformations performed
through refactorings might be difficult to understand. It is par-
ticularly true when they involve global changes. Furthermore,
as refactorings are usually coarse-grained (involve several lan-
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guage constructs), it might be hard to ensure that the transfor-
mations preserve program behavior and are indeed refactorings.

Our approach for solving this problem is to derive aspect-
oriented refactorings by using programming laws [11]. The
strategy establishes constraints on the program behavior. Two
programs are said to be equivalent if they respect such con-
straints. Thus, the effectiveness of programming laws is to show
that some particular aspect-oriented transformations are indeed
refactorings. In contrast with refactorings, laws are simpler, in-
volve only local changes, and are fine-grained (each law focus
on a specific language construct).

Programming laws have been successfully defined for the
most important programming models [11, 12, 13, 14, 15].
More recently, laws for aspect-oriented programming [5] were
also introduced to derive aspect-oriented refactorings and show
that they are behavior preserving transformations. However,
such aspect-oriented programming laws only provide support
for refactorings of crosscutting concerns (OO-to-AO refactor-
ings). In this paper, we focus on this problem and introduce
aspect-oriented programming laws that are useful to restructure
aspect-oriented constructs (AO-to-AO refactorings).

Another goal of this work is to apply aspect-oriented trans-
formations to automatically optimize aspect-oriented programs.
The consequences of incorrect transformations can be greatly
amplified when such an automatic approach is applied. We use
the rules defined through the aspect-oriented programming laws
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to provide trustworthy transformations.
We enriched the ajmlc compiler [16] with the aspect-oriented

transformations proposed in this paper. Ajmlc takes an input
code written in the Java Modeling Language (JML) [17, 18]
and generates AspectJ aspects to check the JML specifications
at runtime. Unlike the classical JML compiler, jmlc [19], ajmlc
does not use Java’s reflection facilities, and thus can also be
applied to constrained environments such as Java ME appli-
cations. In order to optimize the generated AspectJ code, we
draw on the work of Cole and Borba [5]. Their laws establish
how to restructure AspectJ code, by adding or removing As-
pectJ constructs. We use their laws and have proposed others to
derive refactoring rules that deal specifically with optimization.
Soundness of a few of the refactoring transformations follows
from the soundness of Cole and Borba’s laws, which have been
proven previously [20].

The recognition that the Design by Contract (DbC) [21] tech-
nique can be implemented and better modularized using AOP
is not new. There are several related works that implement such
dynamic contract checking using aspects [22, 23, 24], but none
of them optimizes the generated aspects. The optimization of
generated aspect code is what we demonstrate using ajmlc.

The contributions of this paper are threefold. First, it de-
scribes a collection of aspect-oriented laws and refactorings
used to restructure AspectJ constructs. Second, the paper de-
tails results about the use and the importance of such laws and
refactorings in optimizing ajmlc aspects. To better explain the
impacts of the optimizations, we provide an empirical study
with four applications. Third, to the best of our knowledge,
this is the first work that shows how to optimize aspect-oriented
assertion checking code. While we present almost of these laws
and refactorings using JML, they are independent of JML, and
can be used in other AspectJ programs.

This paper is organized as follows. We give an overview of
JML in Section 2. We discuss related research in Section 3.
After that, in Sections 4 and 5, we present the proposed aspect-
oriented laws and refactorings, respectively. These laws and
refactorings are discussed in Section 6. In Section 7, we quanti-
tatively and qualitatively assess the impact of the proposed laws
and refactorings in a case study involving four applications. Fi-
nally, in Section 8, we present our conclusions.

2. An Overview of JML

Java has assertions, but no other built-in support for
DbC [21]. The Java Modeling Language (JML) [25, 18] pro-
vides DbC support for Java.

JML includes a number of constructs to declaratively spec-
ify runtime behavior. Classes are declared by specifying their
fields, invariants over those fields, and by specifying the behav-
ior of constructors and methods. (In the following, we refer
to both constructors and methods as “methods” when there is
no need to distinguish them.) Basic method specifications are
written using pre- and postconditions. Such JML specifications
are written in Java code files using special comments, as shown
in Figure 1. This figure shows a simple JML specification for a

public class JMLExample {
//@ requires b > 0;
//@ ensures \result == a / b;
public int div(int a, int b) {

return a/b;
}

}

Figure 1: Example of JML specification.

before (C obj , int a, int b) :
execution(int C.div(int ,int))
within(C) &&
this(obj) && args(b) {

boolean rac$b = true;
rac$b = obj.checkPre$div;
if(!rac$b){

throw new
JMLPreconditionError("");

}
}

public boolean C.checkPre$div(int a, int b) {
return b > 0;

}

Figure 2: The aspect code to check div’s precondition defined in Figure 1.

class JMLExample with a method div. The method’s contract
is composed of a precondition, requiring b > 0 and a postcon-
dition, ensuring that the method’s result is a / b.

There are a number of tools that work with JML [17], in-
cluding the classical JML compiler (jmlc) [19]. Like jmlc, our
ajmlc compiler [16] translates JML-annotated Java source code
into Java bytecode with automatic runtime checks. Unlike jmlc,
ajmlc generates AspectJ code. For example, Figure 2 shows the
AspectJ code generated by ajmlc to check the precondition de-
fined in Figure 1 (some details are omitted for simplicity).

3. Literature Review on Aspect-Oriented Refactoring

Aspect-oriented refactorings contrast with classical object-
oriented refactorings in that they involve AOP constructs. Han-
nemann, Murphy, and Kiczales [4] classify aspect-oriented
refactorings into three categories: (i) aspect-aware OO refac-
torings, (ii) aspect-oriented refactorings, and (iii) refactorings
of crosscutting concerns. In this section, we present a review of
each category of aspect-oriented refactorings. We also briefly
discuss some works in the literature that are related to these cat-
egories. Its important to note that once the reader is aware of
those categories of aspect-oriented refactorings, the rest of this
paper only focuses on the second category.

3.1. Aspect-aware OO Refactoring
Several authors [26, 9, 27] have identified limitations when

applying conventional OO refactorings [8] in the presence of
aspects. The main limitation is that such OO refactorings mod-
ify the structure of join points of the base program 1. To handle
this problem, Hanenberg, Oberschulte, and Unland (HOU) [26]

1Base program is related to OO code of an AO system.
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draw on the work of Opdyke [6] by using preconditions which
have to be respected when applying a conventional refactoring
in the presence of aspects. They introduce aspect-aware ver-
sions of traditional OO refactorings, such as rename method [8,
p. 273], in order to exemplify the preconditions which make
the refactoring aspect-aware.

As with HOU [26], Iwamoto and Zhao [9] demonstrated
modifications to OO refactorings in order to make them aspect-
aware. However, instead of using preconditions, Iwamoto and
Zhao proposed guidelines joined to modifications of OO refac-
torings to make them aspect-aware. In addition, they also dis-
cuss implementation issues of their tool that supports automatic
refactoring of AspectJ programs. Similarly, Wloka [27] dis-
cusses OO refactorings in the presence of aspects. Nonethe-
less, that author does not tackle the issue on how to make OO
refactorings aspect-aware.

3.2. Aspect-Oriented Refactorings
Aspect-oriented refactorings are the activity to restructure

AO constructs of an AO system. To achieve that, we need
new refactorings that, in addition to the object-oriented ones,
restructure the aspect code (i.e., advice and pointcuts). In this
context, Iwamoto and Zhao [9] also proposed new refactor-
ings, besides aspect-aware refactorings discussed earlier, for
restructuring AOP constructs. They show examples and also
give guidelines on how to apply such AO refactorings they pro-
pose. The authors summarized their new refactorings for AOP
constructs as a catalogue which can help AO developers during
refactoring process. Similarly, Monteiro and Fernandes [28, 10]
proposed a catalogue of AO refactorings and described them in
a similar way to Fowler’s object-oriented ones [8]. For exam-
ple, Monteiro and Fernandes, demonstrated several AO refac-
torings by means of illustrative examples, such as move field
from class to intertype, move method from class to intertype,
and among others.

All the aforementioned aspect-oriented refactorings are fine-
grained in relation to crosscutting concern modularization, so
that they do not allow the designer to reason about the elements
involved neither in a specific nor groups of crosscutting con-
cerns. Therefore, coarse-grained refactorings for modularizing
crosscutting concerns have emerged as outlined in the next sec-
tion.

Its important to note that refactorings involve two kinds of
granularity depending on the point of view. For example, by
considering a refactoring itself, it can be coarse-grained. As dis-
cussed in the introduction (Section 1), a refactoring is coarse-
grained whether it involves several programming constructs.
However, a refactoring can also be fine-grained in a crosscut-
ting concern modularization view. Just one refactoring is usu-
ally not enough to provide a complete modularization of a par-
ticular crosscutting concern. Thus, we can reason that a single
refactoring is fine-grained in relation to a complete crosscutting
concern modularization.

Also considering fine-grained refactorings, this paper pro-
poses a catalogue of aspect-oriented programming laws (Ta-
ble 1) useful for deriving AO refactorings (see Section 4.1
for more details). The refactorings we derive are fine-grained

in relation to crosscutting concern modularization and coarse-
grained because they affect more than one programming con-
struct at a time. On the other hand, the laws we propose to
derive AO refactorings are fine-grained in both perspectives.
An aspect-oriented programming law is much simpler than a
refactoring; it involves only one aspect-oriented programming
construct at a time.

3.3. Refactorings of Crosscutting Concerns
Besides restructuring OO code, refactorings are useful to

migrate scattered and tangled implementations of crosscutting
concerns into aspects (OO-to-AO refactorings). Several ap-
proaches [3, 4, 5, 29] have been proposed on how to modu-
larize/refactor the so-called crosscutting concerns, which harm
code quality, into aspects. In addition, we have in the literature,
cookbooks to guide the “aspectization” of specific crosscutting
concerns, such as exception handling [30, 31], distribution and
persistence [32], and concurrency control [33]. We also have
works that show how to modularize design patterns with as-
pects [34, 35]. By using a different strategy, Binkley et al. [3]
present a human-guided automated approach that support the
composition of refactorings which extract Java code fragments
into aspects. Their approach are fine-grained, so that their ap-
proach is restricted to the replacement of Java code fragments
with pointcuts and advice.

Hannemann, Murphy, and Kiczales (HMK) [4] propose role-
based refactoring in that crosscutting concerns are described in
terms of abstract roles. The underlying idea is that refactor-
ing instructions for crosscutting concerns are written in terms
of those roles. In this way, a developer to apply a refactor-
ing needs to map a subset of such roles to concrete program
elements. Tool support is provided for developers in order to
refactor the code elements implementing the concern. As with
HMK’s approach, Marin et al. [29] proposed refactorings based
on crosscutting concern types. A concern type consists of a gen-
eral intent, an implementation idiom, and one aspect language
mechanism to address it. Similarly to HMK’s work, Marin et al.
also individualize and describe groups of crosscutting concerns
sharing common properties. However, while the former rely
on abstract roles, the latter restricts the concern classification
to implementation idioms or specific AOP mechanisms. Fur-
thermore, both HMK and Marin et al. approaches with concern
groups with similar structures are coarse-grained.

Cole and Borba [5] introduce a set of thirty aspect-oriented
programming laws for deriving refactorings for AspectJ. Their
laws help to ensure that the transformations do not change
the program’s behavior, when the provisos (preconditions) they
state hold. The transformations they propose are useful el-
ements in the migration of crosscutting concerns to aspects;
even though, they do not address crosscutting concerns directly.
Thus, their AspectJ laws are fine-grained transformations. They
describe code transformations with their respective precondi-
tions that can occur as steps in the (derived) aspect refactor-
ing of a crosscutting concern, but not the concern itself (as
HMK [4] and Marin et al. [29] approaches). In addition, their
laws are bi-directional, this implies that they do not always in-
crease code quality.
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4. Laws

For establishing a systematic and rigorous basis for opti-
mization via program transformation, we use algebraic laws
of programming [11] to design code optimizers [36]. We
illustrate the use of the algebraic approach by considering
two programming laws [11]: one related to the assignment
command, and the other one related to sequential composition.
The former law states that the assignment of a variable’s value
to itself has no effect. The latter law states that a command
skip, preceding or following a stmt, does not change the effect
of the stmt.

Laws 〈void assignment〉 and 〈unit-skip〉

(x := x) = skip

(skip; stmt) = (stmt; skip) = stmt

The sequential use of the above laws improves code quality
(by making it smaller) and consequently may decrease the pro-
gram’s expected execution time, which is our objective. Our
refactorings exploit such a composition of laws, and also ex-
ploit AspectJ programming laws [5].

4.1. AspectJ programming laws

In this section we describe our catalogue of aspect-oriented
laws. They are written using two side by side boxes, followed
by a provided clause. This clause introduces conditions, also
known as provisos, all of which must be true for the the law to
be applied. Each proviso is numbered and indicates what must
be satisfied when applying the rule from left-to-right. Note that
the notation “⇒” indicates that the laws can only be applied
from left-to-right. Unlike Cole and Borba’s laws, we refer to
our laws as unidirectional laws because their intent is for opti-
mization [36], increasing code quality.

4.1.1. Unidirectional laws
The first law we present (Law 1) allows us to remove an

empty privileged aspect, provided that A is not referenced in
ts; the set of type declarations (classes and aspects). We use
paspect to denote a privileged aspect declaration for simplicity.
We easily derive this law by applying Cole and Borba’s laws
〈make aspect privileged〉 and 〈add empty aspect〉 [5]. Both laws
are applied from right-to-left. Note that the derived law (Law 1)
is applied from left-to-right, as assumed in the notation.

Law 1 is useful in ajmlc optimization when no JML annota-
tions are provided (or when an empty class is being compiled),
since for such code ajmlc generates an empty privileged aspect.
The classical JML compiler (jmlc) [19] always generates 11.0
KB of source code instrumentation, which it compiles to 5.93
KB of bytecode instrumentation, even for empty classes [37].

Law 1. 〈remove empty privileged aspect〉

ts
paspect A {
}

⇒ ts

provided
(1) A is not referenced from ts. �

Law 2. 〈remove before-execution〉

ts
class C {

f s
ms
T m(ps) {

body
}
}
paspect A {

as
before(context) :

exec(σ(C.m)) &&
within(C) &&
bind(context) {
body′[cthis.m′]

}
T ′ C.m′(ps) {

this.exp
}
}

⇒

ts
class C {

f s
ms
T m(ps) {

body
}
}
paspect A {

as
T ′ C.m′(ps) {

this.exp
}
}

provided
(1) before advice does not contribute to execution flow of the
affected join point σ(C.m), or type C is declared abstract or it
is declared as an interface. �

Law 2 shows a transformation which removes the before ad-
vice when we apply it. We use σ(C.m) to denote the signature
of method m of class C; its return type and formal parame-
ters are denoted by T and ps, respectively. The list of fields
and methods of class C are denoted by f s and ms, respectively.
Moreover, we use bind(context) to denote the list of advice pa-
rameters, including the current executing object (represented
by cthis). We use the AspectJ designators this and args to ex-
pose such arguments. Thus, in AspectJ, bind(context) is writ-
ten as this(cthis) && args(ps). Additionally, we use the As-
pectJ designator within(C) to prevent the before advice from
applying to executions of method m in subtypes of C. We write
body′[cthis.m′] to indicate that body′ contains a reference to the
method m′, having cthis as target. Finally, we use as to denote

4



a list of other advice declared in A.
The proviso of Law 2 states that when the before advice does

not add any behavior (or it has an empty body) to the affected
method m, we can remove it. Moreover, we can also remove
the before advice if the declared type is abstract or if it is an
interface. These latter two conditions are valid because the re-
quired within(C) pointcut designator does not allow the advice
to be applied to subtypes. Also since we cannot instantiate a
concrete class when we have an abstract or an interface type,
we always can remove such an advice.

This is the simplest law to remove a before advice, it can
always be applied when necessary to remove other before ad-
vice that can appear in as. The derivation of this law is also
simple. We apply the Law 〈add before execution〉 [5, Law 3]
from right-to-left. However, this law is slightly different from
ours, because it is concerned with OO code transformations into
AO code. In this way, our proviso must consider different sit-
uations, even though the result is the same advice elimination.
Additionally, our law is unidirectional.

In the context of JML and ajmlc, Law 2 is useful when we
specify abstract classes or interfaces. So, if we specify a con-
crete class and, for example, a method has a default precon-
dition (i.e., its precondition is true), then we can remove the
related advice, since the before advice that is generated will not
contribute to the execution flow of the affected join point.

The next law, Law 3, is similar to the previous one. When it
is applied, it removes the around advice. The proviso of Law 3
is also similar to that of Law 2. Thus, when the around advice
does not insert any behavior, neither before nor after execution
of the constrained method m, we can remove such an around 2

advice.
According to Law’s 3 template, the around advice must call

the proceed method. This call is mandatory because its absence
skips the execution of the intercepted join points (e.g., method
calls), denoted by jp. For this reason, the developer should be
aware that the law’s template is only matched (in the left-hand-
side) with the call to proceed method. We use α preceding
a list of context parameters to represent the list of its values.
Moreover, jp denotes a list of intercepted join points by the
around advice in the type C.

As can be observed, Law 3 is a variation of Law 2. It does
not consider intertype declarations and is more general purpose
than Law 2. Hence, Law 3 assumes a set of join points ( jp),
which belong to type C, that can be captured by the around
advice. Note that all laws responsible for removing advice can
have variations like this one.

We also have similar laws for the remaining three kinds of
advice: after, after returning, and after throwing advice (See
Table 1). Since those laws are quite similar to the ones de-
scribed for before and around advice, we leave their presen-
tation to Appendix B, which is a complement to Sections 4.1

2around advice is a special dynamic crosscutting feature of AspectJ lan-
guage which encompasses either before and after execution states, both sepa-
rated by the proceed method. Thus, around advice can be thought as before
and after advice into a single advice

and 5. It shows all laws and refactorings not demonstrated in
the referred sections.

Law 3. 〈remove around-execution〉

ts
class C {

f s
ms
}
paspect A {

as
T around(context) :

exec( jp) &&
within(C) &&
bind(context) {
body
proceed(αcontext)
body′

}
}

⇒

ts
class C {

f s
ms
}
paspect A {

as
}

provided
(1) around advice does not contribute to execution flow of the
affected set of join points denoted by jp, or type C is declared
abstract or it is declared as an interface. �

Advice restructuring

There are also laws that help restructuring an advice in or-
der to improve legibility. They are general propose and can be
applied to any aspect-oriented system. However, in the context
of ajmlc legibility is not an important requirement, because the
aspect code generated is not supposed to be handled directly by
the developer.

The Law 4 is responsible for removing the this designator of
an advice provided that the parameter t is not used in the advice
body. Type T is any type represented by the set of types ts.
The notation exp is more general then the execution join point
(exec) used in previous laws for removing advice. Here, exp
might be an execution or call join point, read or write access
join points (used for field access), and so forth. In addition, exp
represents a compositional set of join points. Hence, join points
that are combined by using unary and binary operators can be
denoted by exp. We use such generality because the focus of
this law is the this designator.

Removing the this designator from the pointcut expression
implies a generalization. This may cause the advice to capture
more join points after the transformation. To prevent this, the
developer must be aware that the designator, which expose the
join point (e.g., exec join point), explicitly defines the type of
affected join point. For example, to apply this law, consider the
affected join point (the execution of σ(C.m)) of the Law 2. As
one can observe, its type (C) is explicitly given. If one change
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the signature of the join point to σ(m), this leads to capture ev-
ery method m’s execution hosted by an ordinary class. Thus,
the laws’ template must be carefully design to perform the cor-
rect pattern matching, avoiding undesired behaviors. Finally,
note that the Law 4 also has similar versions for each kind of
advice.

Law 4. 〈remove this designator〉

ts
paspect A {

as
before(T t, ps) :

exp &&
this(t) {
body′

}
}

⇒

ts
paspect A {

as
before(ps) : exp {

body′

}
}

provided
(1) t is not referenced from body′ or exp. �

Law 5. 〈remove within designator〉

ts
paspect A {

as
before(context) :

exp &&
within(T ) &&
bind(context) {
body′

}
}

⇒

ts
paspect A {

as
before(context) :

exp &&
bind(context) {
body′

}
}

provided
(1) The members in the set of join points exposed by exp are
static or there is no subtype of type T which overrides the
affected members. �

For the partial derivation of Law 4, we apply the Law
〈remove this parameter〉 [5, Law 14] from left-to-right. Such
a law is useful to remove the unused parameter t defined in the
template of Law 4. Then, we also remove the this designator
since the type of the intercepted execution is given (as explained
before). Hence, the presence of the this designator become re-
dundant. In this way, we can safely remove such a designator.

Law 5 is another law used for restructuring an advice. Even
though it is similar to Law 4, it deals with pointcut designator
within 3. When applied, the Law 5 is responsible for remov-

3The AspectJ within designator constrains an advice to apply to overridden
methods of subtypes.

ing such a designator from the advice’s header. To achieve that,
the selected points of a program exposed by exp must be static.
Hence, the advice will not affect new definitions of those mem-
bers because the owner of static members is the class, not an
object instance. Thus, this restriction make the advice not ap-
plicable to subtypes even without the within designator. On the
other hand, if the affected join points in exp are non-static mem-
bers, we must ensure that they have no subtype that overrides
them. By respecting these conditions (as stated in the law’s pro-
viso), we can argue that the resulting transformation will not
change the expected behavior of the program.

Law 5 is fine-grained. It is not a composite law, making the
use of derivation unecessary. Additionally, Cole and Borba [5]
have no similar law which handles the within designator.

Law 6. 〈move before advice body to around advice〉

ts
paspect A {

as
before(ctx) : exp
{

body
}
T around(ctx) : exp{

body′

proceed(αctx)
body′′

}
}

⇒

ts
paspect A {

as
before(ctx) : exp
{
}
T around(ctx) : exp{

body
body′

proceed(αctx)
body′′

}
}

provided
(1) The set of local variables declared by body, body′, and
body′′ are disjoint;
(2) The set of join points, represented by exp of the before and
around advice, are the same;
(3) exp binds all parameters in context; Both before and
around advice use the same parameters within advice body;
(4) exp does not execute an if pointcut;
(5) The before advice has higher precedence than the around
advice. �

Law 6 is responsible for moving the body from a before to
an around advice. Due to lack of space and for correct indenta-
tion, we use ctx to denote context for short. In relation to law’s
provisos, the first one ensures that we have no duplicated local
variable declarations. So, the set of declared variables of body,
body′, and body′′ must be disjoint in order to avoid conflict af-
ter the law’s application. The second one states that both advice
perform different actions at the same join points, denoted by
exp. The third proviso states that the advice involved, besides
exposing the same join points, must bind the same parameters.
Hence, a particular variable used in the body of a before advice
might also be referred within the around advice after transfor-
mation.
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Table 1: Summary of Aspect-Oriented Laws and Refactorings
Laws Refactorings
1. remove empty privileged aspect 1. inline method intertype within advice
2. remove before-execution 2. merge distinct advice
3. remove around-execution 3. split around into
4. remove this designator before, after returning
5. remove within designator and after throwing
6. move advice body to other advice 4. split around into
7. replace method intertype reference after returning and

with method intertype implementation after throwing
within advice 5. split around into

8. remove after-execution before and after
9. remove after-execution returning 6. extract aspect method
10. remove after-execution throwing
11. remove method intertype implementation

One important constraint that must be respected is related to
join points composition, denoted by exp. As aforementioned,
we can use unary and binary operators, such as &&, to combine
join points in exp. Nevertheless, we cannot combine exp with
an if pointcut. Such a pointcut application can potentially dis-
able the execution of the around advice, and thus, after law’s
application, the behavior would be not the same. To prevent
this, we provide the fourth proviso for Law 6, which does not
allow the execution of if pointcuts by exp, during join points
composition. Finally, the fifth proviso states how to apply the
transformation in order to preserve the precedence rules im-
posed on advice before the transformation, and that must be
obeyed after the transformation.

Note that the Law 6 can have many variations involving dif-
ferent kinds of advice. In the case of the template presented by
Law 6, we consider a before and around advice. As illustrated,
we move the body of the before to the around advice. Also, ac-
cording to the fifth proviso, as the before advice has precedence
over around, the code must be placed just before the call to the
proceed method and immediately in the beginning of around
advice. Hence, body appears first than body′. Assuming now
that we have an opposite scenario, the around advice having
precedence over the before advice, the result would be differ-
ent, having the body appearing immediately after the already
declared body′.

Considering the same scenario of the Law 6, but instead of
before advice, if we have an after advice, the result would
be moving the body to after the call of proceed method and
immediately before the body′′. This could be surprising, but
according to the rules imposed by aspect precedence, in this
case, the around advice (more specifically the body′′) has
precedence over the after advice declared first (specifically the
body). Thus, the advice precedence depends on the kind of ad-
vice and the ordering which it appears in an aspect. As our laws
only treat a single aspect at a time, the precedence is just the
advice ordering. But when considering more than one aspect,
the precedence is determined explicitly by using the AspectJ
declare precedence clause.

Still considering Law 6, one may observe that the resulting

code, after transformation, generates an empty before advice.
To remove such an empty advice, one must apply the Law 2.

Law 7. 〈replace method intertype reference with method
intertype implementation within advice〉

ts
class C {

f s
ms
T m(ps) {

body
}
}
paspect A {

as
before(context) :

exec(σ(C.m)) &&
within(C) &&
bind(context) {
body′[cthis.m′]

}
T ′ C.m′(ps) {

this.exp
}
}

⇒

ts
class C {

f s
ms
T m(ps) {

body
}
}
paspect A {

as
before(context) :

exec(σ(C.m)) &&
within(C) &&
bind(context) {
body′[cthis.exp]

}
T ′ C.m′(ps) {

this.exp
}
}

provided
(1) m′ is not referenced from C, ts, or as. �

Eventually, Law 7 replaces the method intertype reference
by its implementation. This transformation is useful because
just one method intertype is only referenced by one advice (re-
specting the law’s proviso). As discussed in the previous law,
the resulting code seems to be useless, since they keep the in-
tertype method which is no longer used. This happens because
the intent of the law is just to replace the intertype reference
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before (C obj , int a, int b) :
execution(int C.div(int ,int))
within(C) &&
this(obj) && args(b) {

boolean rac$b = true;
rac$b = obj.checkPre$div;
if(!rac$b){

throw new
JMLPreconditionError("");

}
}

public boolean C.checkPre$div(int a, int b) {
return b > 0;

}

⇒

before (C obj , int a, int b) :
execution(int C.div(int ,int))
within(C) &&
this(obj) && args(b) {

boolean rac$b = true;
rac$b = b > 0;
if(!rac$b){

throw new
JMLPreconditionError("");

}
}

Figure 3: Result of the application of Refactoring 1 in the AspectJ code presented in Figure 2.

with its implementation. To remove such an unused intertype
method we apply the Law 11, which removes it. As outlined in
the next section, we discuss that the application of both Laws 7
and 11 are useful to derive the Refactoring 1, which inlines a
method intertype within advice.

Soundness of laws
As aforementioned, programming laws [11] define equiva-

lence between two programs, given that some conditions are
respected. However, the proof of the behavior preserving
property of programming laws is not trivial. So, the sound-
ness of our laws relies on the proofs of Cole and Borba’s
work [20]. They present a proof sketch for one of their
laws (add before-execution) based on a formal semantics of
an AOP language [38], which is similar to AspectJ. Further-
more, they argue that their solution allows the proof for other
five laws [20]. As some of our laws are justified by means of
the application of their laws, we rely on their correctness proofs
for their laws.

However, there are laws 4 in our work that are not derived
from Cole and Borba’s. Proving the soundness of these laws
using a formal semantics is desirable. Thus, as future work we
intend to use the same formal semantics [38] to prove that these
laws are behavior-preserving transformations.

Even though we have some laws 5 that are not yet proved
sound, we have informally considered their correctness. This is
possible because, compared to refactorings, such laws are much
simpler, involving only local changes, and each one concerns
only a specific AspectJ construct.

5. Deriving AspectJ refactorings

In this section we describe our catalogue of aspect-oriented
refactorings. Likewise our laws, they are written using two side
by side boxes, followed by provisos (provided clause) in order
to apply them. Furthermore, as with laws, the notation “⇒” in-
dicates that the refactorings we present are unidirectional (they
are only applied from left-to-right).

4Except by Law 1, which we derived completely from [5, 20], the other
laws and refactorings are proposed by this work.

5Law 3, 7, 8, 10, and 11.

Refactoring 1. 〈inline method intertype within before-execution〉

ts
class C {

f s
ms
T m(ps) {

body
}
}
paspect A {

as
before(context) :

exec(σ(C.m)) &&
within(C) &&
bind(context) {
body′[cthis.m′]

}
T ′ C.m′(ps) {

this.exp
}
}

⇒

ts
class C {

f s
ms
T m(ps) {

body
}
}
paspect A {

as
before(context) :

exec(σ(C.m)) &&
within(C) &&
bind(context) {
body′[cthis.exp]

}
}

provided
(1) m′ is not referenced from C, ts, or as. �

5.1. Unidirectional refactorings
The first AO refactoring we present, Refactoring 1, is a

refactoring that inlines the method intertype implementation
within the before advice. This transformation is useful because
the method intertype is only referenced by just one advice. The
transformation removes the method intertype and moves its im-
plementation to the advice (before advice). The derivation of
this refactoring involves two simple laws. Consider them step
by step: (1) apply Law 7 〈replace method intertype reference
with method intertype implementation within advice〉, replacing
all references of the method intertype m′ within before advice
with its implementation, and (2) apply Law 11 〈remove method
intertype implementation〉, removing the method intertype m′.
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Refactoring 1 is useful for ajmlc optimization when, for ex-
ample, a before advice is checking a precondition and makes
a reference to a method intertype with a precondition predicate
that is not referenced by any other advice, aspect or class. Since
the method intertype is only referenced in one place by the ad-
vice, it is safe to remove it through the Refactoring 1. This
scenario is illustrated in Figure 2, where we can see pieces of
code generated by ajmlc. The result of applying Refactoring 1
is shown in Figure 3.

The template of Refactoring 1 shows the transformation
concerning a before advice, but there are variations of such
a refactoring that can deal with other kinds of AspectJ ad-
vice [39].

Refactoring 2. 〈merge distinct advice〉

ts
paspect A {

as
T around(ctx) : exp{

body′

proceed(αctx)
body′′

}
before(ctx) : exp {

body
}
}

⇒

ts
paspect A {

as
T around(ctx) : exp{

body′

body
proceed(αctx)
body′′

}
}

provided
(1) The set of local variables declared by body, body′, and
body′′ are disjoint;
(2) The set of join points, represented by exp of the around
and before advice, are the same;
(3) exp binds all parameters in ctx; Both around and before
advice use the same parameters within advice body;
(4) exp does not execute an if pointcut;
(5) The around advice has higher precedence than the before
advice. �

Refactoring 2 merges a before advice with an around ad-
vice. This is possible since both advice intercept the same set of
join points, denoted by exp (second proviso). The first proviso
ensures that we have no duplicated local variable declaration. In
other words, the set of declared local variables from before and
around advice are disjoint. This avoids conflicts when moving
body from before to around advice’s body. The third proviso
states that both advices must bind the same parameters referred
in advices’ body. Hence, exp is responsible for binding all pa-
rameters in ctx. In addition, the fourth proviso, as discussed in
Section 4.1, constrains the execution of if pointcuts.

The fifth proviso states that the around advice has higher
precedence over the before advice. This is due to advice prece-
dence imposed by AOP languages such as AspectJ. As a result,
we can observe that the before advice’s body (body) was placed

immediately after the existing code denoted by body′ (as illus-
trated by the right-hand-side of the refactoring template).

For the derivation of Refactoring 2, we apply Laws 6 and 2,
respectively. Law 6 is used just to move the before advice body
(represented by body) to around advice. Then, the useless
before advice, which now has an empty body, is removed by
applying the Law 2. As previously discussed, a programming
law may involve different advices. Moreover, the advice prece-
dence depends on the kind of advice and the ordering which it
appears in an aspect. This fact is exemplified in the Refactor-
ing 2 template, which changes the advice order observed in the
template of Law 6. We performed this change only to empha-
size the variations that a law or refactoring might present.

Refactoring 3. 〈split around into before, after returning, and
after throwing〉

ts
paspect A {

as
T around(ctx) : exp{

try {
body
proceed(αctx)
body′

} catch(E e) {
body′′

}
}

}

⇒

ts
paspect A {

as
before(ctx) : exp{

body
}
after(ctx)
returning(T t) : exp{

body′

}
after(ctx)
throwing(E e) : exp{

body′′

}
}

provided
(1) body′ and body′′ do not use local variables declared
by body;
(2) body is localized before the call to proceed method;
(3) body does not change the values of context vari-
ables in ctx. �

In the context of aspects generated by ajmlc compiler, the
Refactoring 2 is useful, for example, to merge a precondi-
tion and a postcondition into a single aspect construct. In this
way, when we have a static method annotated with JML, which
generates a before advice for precondition checking and one
around advice for postcondition checking, we can merge them
into a single advice, resulting in a single around advice for both
precondition and postcondition checking.

It is worth noting that the Refactoring 2 is only applied to
static methods since the around advice checks JML postcon-
ditions in a conjunction way (when we have inherited speci-
fications with overridden methods). And, since JML checks
all preconditions in a disjunction form, the application of this
refactoring for non-static methods might break JML semantics
for precondition checking. So, such a refactoring is still valid
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for join points that are non-static in an aspect-oriented systems
which are non-ajmlc based.

Refactoring 4. 〈split around into after returning and
after throwing〉

ts
paspect A {

as
T around(ctx) : exp{

try {
proceed(αctx)
body

} catch(E e) {
body′

}
}

}

⇒

ts
paspect A {

as
after(ctx)
returning(T t) : exp{

body
}
after(ctx)
throwing(E e) : exp{

body′

}
}

provided
(→) body and body′ do not use local variables declared before
the proceed method. �

The Refactoring 3 splits the around advice into three dis-
tinct advice: (i) before, (ii) after returning, and (iii) after
throwing. We can apply such refactoring only if body′ and
body′′ do not refer to local variables declared by body (first
proviso). The piece of code body is localized immediately be-
fore the call to proceed method (second proviso). Without this
dependency, one is allowed to replace the around advice, in
the left-hand-side of the template, for one before advice and
two kinds of after advice: after returning and after throwing.
Then, each part of the around advice’s body is placed in its re-
spective advice.

The third proviso states that the body cannot modify the val-
ues of context variables denoted by ctx. This constraint is valid
since once body changes the values of context variables, both
body′ and body′′ refer to modified values. This collateral ef-
fect cannot be reproduced when we separate each body with its
respective advice. So, to safely apply the transformations de-
scribed in the Refactoring 3, such a collateral effect must be
avoided.

To derive Refactoring 3, we have to define new program-
ming laws to add advices. To do so, we adapted laws from
Cole and Borbas work [5], which were originally developed
to restructure OO code. We modified them to restructure AO
code. The new programming laws is then applied in the fol-
lowing order to derive the Refactoring 3: (1) apply the Law
〈add before-execution〉 [5, Law 3] from left-to-right; this law
introduces a before advice which modularizes the code repre-
sented by body, (2) apply Law 〈add after-execution returning
successfully〉 [5, Law 7], from left-to-right, to modularize body′

into an after returning advice; body′ denotes the code used for
normal termination of the affected join points exp, and (3) ap-
ply Law 〈add after-execution throwing exceptions〉 [5, Law 10],

from left-to-right, to modularize body′′ within after throwing
advice; body′′ denotes the code used for exceptional termina-
tion of the affected join points exp.

In relation to ajmlc, Refactoring 3 is useful when we have,
for example, a static method with preconditions and the two
kinds of JML postconditions [25]: normal postcondition and
exceptional postcondition. In this scenario, the aspects gen-
erated to check those JML features is somewhat equivalent to
Refactoring’s 3 left-hand-side. If we have postcondtions that
do not consider JML old expressions [25], we can perform the
transformation mechanics of Refactoring 3.

JML old expressions refer to pre-state variables (class fields)
in postconditions. Thus, we need to save state variables be-
fore method’s execution (pre-state) and after method’s execu-
tion (post-state). Afterwards, we can refer to pre-state variables
in postconditions. The around advice is used to handle situa-
tions like that. The proceed method is responsible for separat-
ing each state. Before its call, we have the pre-state, after its
call, we have the post-state. Such a dependency, imposed by
JML old expressions, breaks the first proviso of Refactoring 3.
So, if we can guarantee that postconditions are free from old
expressions, we do not have a coupling between the states dur-
ing a method execution. In this way, we can safely apply such
a refactoring, which decouples them into different advices.

Refactoring 4 is slightly different from previous one. When
applied, from left-to-right, it splits the around advice only into
after returning and after throwing. The single proviso states
that both body and body′ cannot use local variables declared
before the call to proceed method. As discussed, this implies
in a dependency, and hence, we cannot split the around ad-
vice. The derivation of Refactoring 4 is similar to previous
one. Since we do not address, in this paper, laws for adding ad-
vice, we use an adaptation of programming laws from Cole and
Borba’s work [5]. We slightly modified the laws to give support
to refatoring of AO code. Then, we can apply Law 〈add after-
execution returning successfully〉 [5, Law 7] and Law 〈add
after-execution throwing exceptions〉 [5, Law 10], respectively.
Both laws are applied from left-to-right, and modularize body
within an after returning and body′ within an after throwing
advice.

Regarding ajmlc, the template of Refactoring 4 applies
when we have a method in which only normal and exceptional
postconditions are specified. As aforementioned, if those post-
conditions do not use JML old expressions, the around advice
generated by ajmlc can be divided into the two kinds of after
advice. This is possible since the absence of JML old expres-
sions does not cause a dependency between pre- and post-states
(proviso), which can be only handled with around advice.

Other refactorings
Besides the refactorings presented above, we have identified

others that can be useful for restructuring AO code. For in-
stance, Refactoring 5 is a variation of the Refactoring 3. For
this reason, we leave its presentation to Appendix B. The main
difference is that the template of Refactoring 5 assumes the
same code (body′) to be executed either in normal and abnor-
mal termination (by throwing exceptions). In this way, the re-
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sulting code uses only an after advice to encapsulate body′.
We use a single after advice because when a method termi-
nates normally or abnormally, it is always executed. The pro-
visos required to apply Refactoring 5 are the same provided
by Refactoring 3. Moreover, to derive Refactoring 5, we use
〈add after-execution〉 [5, Law 3] and 〈add after-execution〉 [5,
Law 5], respectively. Note that we assume that those laws are
adapted to handle aspect-oriented constructs.

In relation to Refactoring 6, we leave its presentation to Ap-
pendix B because we cannot derive it using our programming
laws or employing laws from Cole and Borba. In Section 5,
we present all refactorings that can be derived by using aspect-
oriented programming laws described in this paper or by ap-
plying programming laws proposed in related works. Hence,
we need specific new laws to derive Refactoring 6. Refactor-
ing 6 was created to extract duplicated code that cuts across
several members (two distinct advice in this case) of an aspect.
It then modularizes such a duplicated code in a method inside
an aspect. Note that this aspect method is not an intertype dec-
laration, and thus cannot be used outside the aspect in which it
is declared.

The code generated by the ajmlc compiler has no around
advice that matches with the template defined in the Refac-
toring 5. This is a consequence of the semantics of the JML
language. However, JML semantics is being modified in the
OpenJML project 6. The semantic of OpenJML will impose
modifications in the ajmlc compiler. The aspects generated by
the new compiler will include different patterns of around ad-
vices. It opens opportunities to apply the Refactoring 5. On
the other hand, there are many cases where the Refactoring 6
can be applied to aspects generated through the current version
of ajmlc compiler.

6. Discussion

We showed that aspect-oriented code can be more cleaner
and more legible, increasing the overall systems maintainabil-
ity. Even though we use the aforementioned catalog of laws
and refactorings in terms of compiler optimization (ajmlc [16]),
we claim that the benefits are general enough to be applied in
any aspect-oriented system. In addition, the transformations
we provided, in almost all cases, reduced the number of lines
of code and consequently improve the final bytecode size and
running time of the system being restructured. Regarding these
two quantitative methods, bytecode size and running time is
discussed and demonstrated by means of an empirical study in
Section 7.

We have argued that the transformations we conduct in Sec-
tions 4.1 and 5 results in a reduced code with less number of
lines and consequently a smaller bytecode size. Hence, ideally,
having one piece of advice rather than two reduces the com-
plexity of the aspect code. However, this reasoning is not too
straightforward. Depending on the scenario, we can have as-
pects with more lines of code that generate smaller bytecode

6http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml

than ones with less lines of code that generate bigger bytecode.
The answer to this instability is in the aspect-weaving mecha-
nism. As an example, consider a scenario when we have two
aspects A and A′. The former declares a single around advice
and the latter declares two pieces of advice, before and after
advice. After weaving, we can observe that, surprisingly, the
second aspect (A′), even declaring two advice, has a smaller
bytecode in relation to the first one A. This result depends on
what weaver is used for aspect composition.

The main issue behind around advice weaving is the ineffi-
ciency in its instrumentation, resulting in a bigger bytecode than
the one which does not use it. Hence, we have a trade-off. On
the one hand, when we employ around advice, we have fewer
lines of code, but these result in a larger bytecode size after
weaving. On the other hand, we have more lines of code and
smaller bytecode size, when employing before and after ad-
vice. Nevertheless, we can obtain different results if we apply
a weaver in which has optimization strategies for around ad-
vice that reduce the generated bytecode size. Therefore, those
aforementioned laws and refactorings can also be used to im-
prove the AO system. Further information and discussions refer
to Section 7. There, we consider two existing AspectJ weavers
(ajc and abc [40]).

Another important issue to consider is related to system
evolvability. The transformations based on our AO laws and
refactorings are not guaranteed to be correct when new features
are added to a system (e.g., new types with new methods and
overridden methods). Thus the transformed code could have
inconsistencies when adding such new features to a system.
That is, our laws are, in some cases, only designed for closed
programs—as we did not consider evolvability. This means that
when changing the set of types or methods in a program, the
ajmlc tool will have to be run again to regenerate all the run-
time assertion checking code, which should not be too much
of a burden. However, this limitation makes it dangerous to
use our laws and transformations by hand on an evolving sys-
tem. Thus, depending on the scenario, the developer may even
need to undo some transformations. For instance, suppose the
developer applies Law 5, to remove a within designator, by re-
specting the second part of its proviso. If the developer later
adds a subtype of type T , then earlier application of the law is
not valid with respect to this new system, since the advice, in
which its within designator was removed, would have affected
methods in T that T overrides from its supertype. Future work
would be needed to make these laws valid for evolvability, or to
describe the kinds of system evolution that are valid for earlier
applications of certain laws.

7. Case Study

This section conducts a case study to evaluate the benefits
and limitations of the optimization mechanisms proposed in this
article.

7.1. Study Settings
This subsection describes assessment procedures of our em-

pirical study.
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Table 2: Quantification of Laws and Refactorings in the JAccounting, JSpider, Prevayler, and Bomber systems
JAccounting JSpider Prevayler Bomber

Qty Qty Qty Qty
Law 1 28 148 69 5
Law 2 33 27 46 10
Law 3 11 249 126 20
Law 4 34 7 1 2
Law 5 34 7 1 2
Law 6 8 9 8 3
Law 7 2 95 40 2
Law 9 30 36 57 -
Law 11 5 115 65 2
Refactoring 1 2 94 39 2
Refactoring 2 8 9 2 3
Refactoring 3 3 43 21 -
Refactoring 4 11 249 126 20
Total (T) 209 1,088 601 71

The study explores four different applications annotated with
JML specifications [25]. Three of them are pure Java programs
and one is a Java ME application. The case study takes into
account a Java ME application, called Bomber 7 We do so be-
cause, unlike jmlc, our ajmlc compiler generates code compli-
ant with the Java ME platform [16]. Bomber is a simple soft-
ware product line game based on Java ME MIDP 2.0. The case
study also involves the JAccounting 8, JSpider 9, Prevayler 10.
We believe that these applications are representative of how De-
sign by Contract is typically used to ensure functional software
correctness in real software development efforts.

After annotating the four programs with JML, we compiled
them using both the classic JML compiler jmlc [19] and the
ajmlc [16]. The latter compiler implements the optimizations
proposed in this paper. We employed the latest versions of each
compiler: jmlc-5.5 11 and ajmlc-1.1 12. For ajmlc we evaluated
two versions: with and without the laws and the refactorings
(optimizations) proposed in this work. In addition, we used
ajmlc with two different weaving processes: the standard As-
pectJ compiler (ajc), and abc [40]. We considered the ajc-1.3 13

and the latest version of abc (abc-1.3 14). The difference is that
the abc weaver itself includes various optimizations.

In the measurement process, the data was partially gathered
by the Tracing and Profiling Eclipse Plugin 15. It addresses the
tracing and profiling phases of the application lifecycle.

We restricted the performance analysis to the methods an-
notated with JML specifications. Thus, from the set of meth-
ods annotated with JML, we randomly chose three methods of

7http://j2mebomber.sourceforge.net.
8https://jaccounting.dev.java.net.
9http://j-spider.sourceforge.net/.

10http://www.prevayler.org/.
11http://sourceforge.net/projects/jmlspecs/
12http://www.cin.ufpe.br/ hemr/JMLAOP/ajmlc.htm
13http://www.eclipse.org/aspectj/downloads.php
14http://abc.comlab.ox.ac.uk/dists/1.3.0/package
152http://www.eclipse.org/projects/project summary.php?projectid=tptp.

performance

each application. Using the profile information, we collected
the mean execution time of one thousand executions of each
method. The values are given in milliseconds.

The quantitative assessment was based on three metrics: in-
strumented source code size (ISC), instrumented bytecode size
(Bytecode), and execution time. ISC is calculated for the code
generated through both jmlc and ajmlc compilers. It encom-
passes only the intermediate source code produced. ISC is
useful to assess the amount of additional code necessary to
translate the JML specifications into automatic runtime checks.
Bytecode, in turn, encompasses the final Java bytecode with
such extra code for checking contracts during runtime.

7.2. Study Results

This subsection presents the results of the measurement pro-
cess. The data have been collected based on the assessment
procedures and metrics described in subsection 7.

Table 2 summarizes the number of laws and refactorings ap-
plied by ajmlc compiler to optimize each target system. As can
be observed, for the Jspider application, ajmlc’s optimizer ap-
plies a total of 1,088 transformations to the aspects generated
by original ajmlc compiler. On the other hand, only 71 trans-
formations are used to optimize the Bomber application. Law 3
is applied with higher frequency in three applications:JSpider,
Prevayler, and Bomber. Recall that Law 3 is responsible for
removing the around advice,

Table 3 presents the results for code size performance met-
rics: instrumented source code size (ISC) and instrumented
bytecode size (Bytecode). For the ajmlc compiler, the Bytecode
metric is calculated using two different weavers: ajc and abc.
For both metrics, code size is measured in megabytes (MB). We
applied the paired t-test to compare the values in Table 3 and
evaluate if there are statistically significant difference between
the compared results. We drew the following conclusions: 1)
the source code produced by ajmlc compiler is smaller than the
code generated by the jmlc compiler; 2) the optimizations re-
duce the ISC; 3) the optimizations reduces the bytecode size
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Table 3: Code size measurements
Application Original Optimized Decrease Application Original Optimized Decrease

(MB) (MB) (%) (MB) (MB) (%)
JAccounting JSpider
– ISC – – ISC –
jmlc 5.42 - - jmlc 10.0 - -
ajmlc 1.28 1.25 2.34 ajmlc 1.93 1.85 4.15
– Bytecode – – Bytecode –
jmlc 2.14 - - jmlc 4.10 - -
ajmlc(ajc) 4.71 3.11 33.97 ajmlc(ajc) 7.81 5.59 28.43
ajmlc(abc) 1.56 1.29 17.31 ajmlc(abc) 2.56 2.17 15.23
Prevayler Bomber
– ISC – – ISC –
jmlc 3.29 - - jmlc - - -
ajmlc 0.90 0.87 3.33 ajmlc 0.89 0.79 11.24
– Bytecode – – Bytecode –
jmlc 1.29 - - jmlc - - -
ajmlc(ajc) 3.65 2.54 30.41 ajmlc(ajc) 2.93 2.01 31.40
ajmlc(abc) 1.25 1.05 16.00 ajmlc(abc) 1.07 0.86 19.63

*Denotes an updated measurement [1]

Table 4: Running time measurements
Original Optimized Decrease

Method (msec) (msec) (%)
jmlc ajmlc ajmlc ajmlc ajmlc ajmlc ajmlc

ajc abc ajc abc ajc abc
JAccounting/getCreated 0.33 0.06 0.05 0.04 0.03 33.33 40.00
JAccounting/getCompanyKey 0.33 0.06 0.05 0.03 0.04 50.00 20.00
JAccounting/perform2 6.9 5.78 5.75 4.97 4.90 14.01 14.78
JSpider/createTool 25.22 35.81 36.02 21.32 26.28 40.46 27.04
JSpider/createURL 6.77 11.55 6.17 4.43 4.33 61.64 29.82
JSpider/translate 2.14∗ 1.94∗ 0.26∗ 0.20∗ 0.17∗ 89.60∗ 34.61∗

Prevayler/createAccount 0.18 0.044 0.042 0.043 0.039 2.27 7.14
Prevayler/deleteAccount 0.48 0.11 0.10 0.09 0.08 18.18 20.00
Prevayler/findAccount 0.40 0.11 0.09 0.09 0.08 18.18 11.11
Bomber/handle - 3.47 0.07 2.97 0.04 14.40 42.85
Bomber/getRadius - 3.97 0.06 3.15 0.04 20.65 33.33
Bomber/getDamage - 3.53 0.05 3.32 0.03 5.94 40.00

produced by the ajmlc compiler - this result was confirmed for
both ajc and abc weavers; 4) when the ajc weaver is used, the
byte code produced by the jmlc compiler is smaller than that
generated by the ajmlc compiler - this result is observed even
when the optimizations are applied; 6) when the abc weaver is
employed, the ajmlc compiler produces a far smaller byte code
when compared with the jmlc compiler.

Concerning the execution time (see Table 4), we observed
that the optimized ajmlc produced code that executes faster
than the non-optimized version. Moreover, the running time
is greatly reduced when the optimized ajmlc employs the abc
weaver. Additionally, the execution time of the ajmlc aspects
code is faster than the jmlc code, even without our optimiza-
tions. Such bad performance in jmlc is due to many reflective
calls in the jmlc generated code. These conclusions were statis-
tically attested through the application of the paired t-test.

Note that we did not measure the execution time of meth-
ods compiled with jmlc in the Bomber program. This is due
to the lack of support for reflection and other Java SE features
by Java ME applications [16]. Thus, we cannot execute jmlc
generated code for the Bomber program with the Java ME API
that it uses.

8. Conclusions

In this paper, we have presented a catalog of programming
laws and refactorings for aspect-oriented programming and
used them to define behavior-preserving transformations for
AspectJ constructs. The laws are simple and localized, which
should make it easy to prove their soundness. Moreover, we
also use a comprehensive set of aspect-oriented programming
laws, already proved to be sound, from the literature. Those
laws help us to derive the refactoring transformations that we
use in optimization.

As future work, we plan to augment our set of laws to han-
dle more AspectJ constructs. Moreover, we also intend to use
those set of laws to derive new refactorings and to derive those
already proposed in the literature. Another interesting issue is
about soundness. The new laws we proposed do not yet have a
formal soundness proof. We plan to fix this limitation in future
work. Currently, we are also conducting more case studies to
evaluate our proposed laws and refactorings.

Our main contribution is that we have shown how to use the
proposed laws and refactorings to optimize compilation of JML
in our compiler, ajmlc. To better explain the impacts of such op-
timizations, we have conducted a case study on four Java pro-
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grams. The results provided evidence that the ajmlc compiler
produces smaller source and bytecode instrumentation when it
employs the transformations proposed by this work. We also
considered the two existing AspectJ weavers (ajc and abc) that
ajmlc supports. The case study showed that the instrumented
bytecode produced by the optimizing ajmlc compiler is much
faster when using the abc weaver. Such results are essential
when considering constrained environments such as Java ME.
To the best of our knowledge, this is the first work that concerns
aspect-oriented assertion checking code optimization.

Although we use the laws and refactorings presented here
for optimization, they are of more general utility. As a result,
besides their use in optimizing JML compilers, one could apply
these transformations to other AspectJ programs.

Appendix A. Online Appendix

We invite researchers to replicate our case study. Anno-
tated source code with JML and our ajmlc compilers (the non-
optimized and optimized version), AspectJ weavers (ajc and
abc), JML classical compiler (jmlc), and our results are avail-
able at:
http://www.cin.ufpe.br/~hemr/JMLAOP/scp10.

Appendix B. Laws and Refactorings

Law 8. 〈remove after-execution〉

ts
paspect A {

as
after(context) :

exec( jp) &&
within(T ) &&
bind(context) {

body
}

}

⇒

ts
paspect A {

as
}

provided
(1) after advice does not contribute to execution flow of the set of
affected join points jp, or type T is declared abstract or it is declared
as an interface. �

Law 9. 〈remove after-execution returning〉

ts
paspect A {

as
after(context)

returning(T t) :
exec( jp) &&
within(T ′) &&
bind(context) {

body
}

}

⇒

ts
paspect A {

as
}

provided
(1) after returning advice does not contribute to execution flow of
the set of affected join points jp, or type T ′ is declared abstract or it
is declared as an interface. �

Law 10. 〈remove after-execution throwing〉

ts
paspect A {

as
after(context)

throwing(E e) :
exec( jp) &&
within(T ) &&
bind(context) {

body
}

}

⇒

ts
paspect A {

as
}

provided
(1) after throwing advice does not contribute to execution flow of the
set of affected join points jp, or type T is declared abstract or it is
declared as an interface. �

Law 11. 〈remove method intertype implementation〉

ts
paspect A {

as
T ′ C.m′(ps) {

this.exp
}

}

⇒

ts
paspect A {

as
}

provided
(1) m′ is not referenced from ts, or as. �

Refactoring 5. 〈split around into before and after〉

ts
paspect A {

as
T around(ctx) : exp{

try {

body
proceed(αctx)
body′

} catch(E e) {

body′

}

}

}

⇒

ts
paspect A {

as
before(ctx) : exp {

body
}

after(ctx) : exp {

body′

}

}

provided
(1) body′ does not use local variables declared by body; body is
localized before the call to proceed method;
(2) body does not change the values of context variables in ctx. �
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Refactoring 6. 〈extract aspect method〉

ts
paspect A {

as
before(ctx) : exp {

body
body′

}

after(ctx) : exp {

body′′

body
}

}

⇒

ts
paspect A {

as
before(ctx) : exp {

m(αps)
body′

}

after(ctx) : exp {

body′′

m(αps)
}

T m(ps) {

body
}

}

provided
(1) The set of local variables declared by body, body′, and body′′ are
disjoint;
(2) body does not use context variables in ctx. �
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