
Compiling Standard ML to Java Bytecodes

Nick Benton Andrew Kennedy George Russell

Persimmon IT, Inc.
Cambridge, U.K.

{nick,andrew,george}Opersimmon.co.uk

Abstract

MLJ compiles SML’97 into verifier-compliant Java byte-
codes. Its features include type-checked interlanguage work-
ing extensions which allow ML and Java code to call each
other, automatic recompilation management, compact com-
piled code and runtime performance which, using a ‘just in
time’ compiling Java virtual machine, usually exceeds that
of existing specialised bytecode interpreters for ML. Notable
features of the compiler itself include whole-program optimi-
sation based on rewriting, compilation of polymorphism by
specialisation, a novel monadic intermediate language which
expresses effect information in the type system and some in-
teresting data representation choices.

1 Introduction

The success of Sun Microsystem’s Java language [3] means
that virtual machines executing Java’s secure, multi-
threaded, garbage-collected bytecode and supported by a
capable collection of standard library classes, are now not
just available for a wide range of architectures and operat-
ing systems, but are actually installed on most modern ma-
chines. The idea of compiling a functional language such as
ML into Java bytecodes is thus very appealing: as well as the
obvious attraction of being able to run the same compiled
code on any machine with a JVM, the potential benefits of
interlanguage working between Java and ML are consider-
able.

Many existing compilers for functional languages have
the ability to call external functions written in another lan-
guage (usually C). Unfortunately, differences in memory
models and type systems make most of these foreign func-
tion interfaces awkward to use, limited in functionality and
even type-unsafe. Consequently, although there are, for ex-
ample, good functional graphics libraries which call X11,
the typical functional programmer probably doesn’t bother
to use a C language interface to call ‘everyday’ library func-
tions to, say, calculate an MD5 checksum, manipulate a GIF
file or access a database. She thus either does more work
than should be necessary, or gives up and uses another lan-
guage. This is surely a major factor holding back the wider

adoption of functional languages in ‘real world’ applications,
and the situation is getting worse as more software has to
operate in a complex environment, interacting with com-
ponents written in a variety of languages, possibly wrapped
up in a distributed component architecture such as CORBA,
DCOM or JavaBeans.

Because the ‘semantic gap’ between Java and ML is
smaller than that between C and ML, and because Java uses
a simple scheme for dynamic linking, MLJ is able to make
interlanguage working safe and straightforward. MLJ code
can not only call external Java methods, but can also ma-
nipulate Java objects and declare Java classes with methods
implemented in ML, which can be called from Java. Thus
the MLJ programmer can not only write applets in ML, but
also has instant access to standard libraries for 2 and 3D
graphics, GUIs, database access, sockets and networking,
concurrency, CORBA connectivity, security, servlets, sound
and so on, as well as to a large and rapidly-growing collec-
tion of third-party code.

The interesting question is whether ML can be compiled
into Java bytecodes which are efficient enough to be useful.
Java itself is often criticised for being too slow, especially
running code which does significant amounts of allocation,
and its bytecodes were certainly not designed with compila-
tion of other languages in mind. There is little opportunity
for low-level backend trickery since we have no control over
the garbage collector, heap layout, etc., and the requirement
that compiled classes pass the Java verifier places strict type
constraints on the code we generate. Furthermore, current
Java virtual machines not only store activation records on
a fixed-size stack, but also fail to optimise tail calls. Thus
the initial prospects for generating acceptably efficient Java
bytecodes from a functional language did not look good (our
first very simple-minded lambda-calculus to Java translator
plus an early JVM ran the nfib benchmark 40 times slower
than Moscow ML), and it was clear that a practical ML to
Java bytecode compiler would have to do fairly extensive
optimisations. MLJ is still a work-in-progress, and there is
scope for significant improvement in both compilation speed
and the generated code (in particular, the current version
still only optimises simple tail calls), but it is already quite
usable on source programs of several thousand lines and pro-
duces code which, with a good modern JVM, usually out-
performs the popular Moscow ML bytecode interpreter.

129

2 Overview

2.1 Compiler phases

MLJ is intended for writing compact, self-contained appli-
cations, applets and software components and does not have
the usual SML interactive read-eval-print top level. Instead,
it operates much more like a traditional batch compiler. The
structures which make up a project are separately parsed,
typechecked, translated into our typed Monadic Interme-
diate Language (MIL, see section 4) and simplified. These
separately compiled MIL terms are then linked together into
one large MIL term which is extensively transformed before
being translated into our low-level Basic Block Code (BBC,
see section 7). Finally, the backend turns the BBC into a
collection of compiled Java class files, which by default are
placed in a single zip archive.

This whole-program approach to compilation is unusual,
though not unique [26, 221. It increases recompilation times
considerably, but does allow us easily to produce much faster
and (just as importantly for applets) smaller code. We
monomorphise the whole program and can perform trans-
formations such as inlining, dead-code elimination, arity-
raising and known-function call optimisation with no regard
for module boundaries, so there is no runtime cost associated
with use of the module system.’

Appendix A contains an example of JVM code generated
by MLJ.

2.2 Compilation environment

MLJ can be run entirely in batch mode or as an interactive
recompilation environment. Top-level structures and signa-
tures are stored one-per-file, as in Moscow ML (MLJ 0.1
doesn’t implement functors). All compilation is driven by
the need to produce one or more named Java class files: for
an application this is usually just the class containing the
main method, whilst for an applet it is usually a subclass
of java. awt .Applet. Once these root classes and their ex-
ported names have been specified, the make command com-
piles, links and optimises the required structures using an
automatic dependency analysis. There is a smart recompi-
lation manager, similar to SML/NJ’s CM [7], which ensures
that only the necessary structures are recompiled when a
file is changed, though the post-link optimisation phase is
always performed on the whole program. Typically, the re-
compile time (relinking all the translated MIL structures
from memory, optimising and generating code) is around
two thirds of the total initial compile time (which also in-
cludes parsing, typechecking and translation into MIL).

During compilation, the compiler not only typechecks
the ML code, but if any external Java classes are men-
tioned, their compiled representations are read (typically
from within the standard classes.zip file) to typecheck
and resolve the references.

3 The Language

ML3 compiles the functor-free subset of SML’97 [14] (in-
cluding substructures, the new where construct, etc.), plus
our non-standard extensions for interlanguage working with

“Whole program compiler’ sounds a bit naive, so we prefer to
think of it as a ‘post-link optimiser’, which has a much more sophis-
ticated ring :-1

Java.’ A large subset of the new standard Basis Library has
been implemented.

The interlanguage features bring Java types and val-
ues into ML, whilst enforcing a separation between the two
(though a Java type and an ML type may well end up the
same in the compiled code). External Java types may be
referred to in ML simply by using their Java names in quo-
tation marks. Thus

” java. awt . Graphics” * int

is the type of pairs whose first component is a Java object
representing a graphics context and whose second compo-
nent is an ML integer. An important subtlety is that, whilst
in Java all pointer (reference) types implicitly include the
special value null, we chose to make their quoted Java type
names in ML refer only to the non-null values. Where a
value of Java reference type t may be passed from Java to
ML code (as the result of an external field access or method
call, or as a parameter to a method implemented in ML),
then that value is given the ML type “t” option with the
value NONE corresponding to Java null and values of the
form SOME(v) corresponding to non-null values. Similarly
we guarantee that any ML value of type “t” option will be
represented by the an element of the underlying Java class.
This complication allows the type system to catch statically
what would otherwise be dynamic NullPointerExcaptions
and also gives the compiler more freedom in choosing and
sharing data representations (see Section 6).

The builtin structure Java includes ML synonyms for
common Java types and coercions between many equivalent
ML and Java types, for example Java. tostring, which con-
verts a Java String into an ML string. With one exception
(fromWord8), these all generate no actual bytecodes, and are
included just to separate the two type systems securely in
the source.

MLJ code can perform basic Java operations such as field
access, method invocation and object creation by using a
collection of new keywords, all of which start with an under-
score ‘-’ (which fits well with the existing lexical structure
of SML), and we also use quotation marks for Java field and
method names. Thus, for example

let type colour = “java. awt .Color”
val grey = valOf (-getfield colour “gray”)

in Java. toInt (-invoke “getRed” (grey))
end

makes colour be an ML synonym for the Java class Color
and then gets the static field called gray from that class.
MLJ reads the compiled Java class file which states that
the field holds an instance of the class Color and so in-
fers the type ” java. awt . Color” option for the -getf ield
construct, because it’s an external value which might be
null. We then invoke the virtual method getRed on the
returned colour value to get the Java int value of its red
component, which we convert into an ML int. The valOf
is required to remove the option from the type of the re-
turned value (it raises an exception if its argument is NONE)
because MLJ does not allow method invocation on possibly-
null Java values.

The new constructs such as -getf ield and -invoke have
essentially the same static semantics as their equivalents in

‘Actually, version 0.1 departs from the Definition in four places.
The only significant one is that arithmetic operations do not raise the
Overflow exception.

130

datatype Behave = B of unit -> Behave

-classtype MLButton -extends “java.awt.Button” (
-private -field “behaviour” : Behave

-public -method “action” (e:“java.awt.Event” option, o : Java.Object option) : Java.boolean =
let val B(b) = -getfield “behaviour” -this
in (-putfield “behaviour” (-this, b 0) ; Java.fromBool true)
end

-constructor (name : string, b:Behave)
{-super (Java. fromString name) ; “behaviour” = bl

Figure 1: Generating a Java class from MLJ

the Java language. ,4t a virtual method invocation, for ex-
ample, the compiler searches up the class hierarchy for a
method matching the given name and argument types, ap-
plying the same rules for finding the ‘most specific method’
by possible coercions on the arguments as Java does. (ML
polymorphism isn’t allowed to confuse things further as all
uses of these new constructs must he implicitly or explicitly
monomorphic.) This makes it easy to convert existing Java
programs or code fragments into MLJ hut is not intended to
make MLJ a fully-fledged object-oriented extension of SML;
in particular, inheritance does not induce any subtyping re-
lation on ML types.

MLJ structures can also declare new Java classes with
fields and methods having a mixture of ML and Java types
and methods implemented in ML. In fact, all programs must
contain at least one such class for the Java runtime system
to call into; otherwise no ML code could ever get called. The
extensions for declaring classes can express most of what can
he expressed in the Java language, including all the access
modifiers (public, private, etc.), though there are some
natural restrictions, such as that static fields of ML type (or
non-option .Java reference type) must have initialisers, since
there are no default values of those types, and overloading
on ML types is forbidden (as two ML types may end up rep-
resented as the same Java type). Class definitions in struc-
tures are all anonymous (there are ML type names hound to
them, hut no Java class names) so a class that is referenced
purely by ML code will end up with an internal name in the
compiled program, and so not he directly accessible from
external Java code.3 However, as we’ve already mentioned,
at least one top-level class has to he exported with a given
Java name. Since exported classes can he accessed from
Java, there are some not entirely trivial further restrictions
concerning the t,ypes and access modifiers of their fields and
methods which are necessary to ensure that anything which
is visible, either directly or by inheritance, to the external
Java world is of Java primitive or optioned Java class type.

Just to give the flavour of how Java classes may be gen-
erated from MLJ, Figure 1 shows the definition of an ML
button class, similar to one which might form part of a
functional GUI toolkit. MLButton subclasses the standard
Java Button class and has an instance variable which is of
a higher-order ML datatype Behave. When the button is
pressed, its action method is called, which causes its he-
haviour function to be called (presumably with some side-

3Unless it uses Java’s introspection capabilities, which we consider
to be cheating...

effects), returning a new hehaviour which is stored in the
instance variable ready for the next click. The constructor
(for which our syntax is particularly baroque) is called with
an ML string and the initial behaviour. It starts by call-
ing the superclass initialiser with a Java String and then
initialises the instance variable with the supplied behaviour.

4 MIL

The Monadic Intermediate Language, MIL, is the heart of
the compiler. MIL is a typed language, inspired by Moggi’s
comnutational lambda calculus 1151. which makes a distinc-
tionbetween computations and ;alLes in its type system. It
has impredicative System-F-style polymorphism and refines
the computation type constructor to include effect informa-
tion. MIL also includes some slightly lower level features so
that most of the optimisations and representation choices
we wish to make can be expressed as MIL-to-MIL transfor-
mations. These include not-quite-first-class sequence types
(used for multiple argument/multiple result functions and
flat datatype constructors), Java types (used not just for
interlanguage working, but also to express representations
for ML types) and three kinds of function: local, global and
closure.

Typed intermediate languages are now widely accepted
to he A Good Thing [19, 22, 111. Types aid analysis and op-
timisation, provide a more secure basis for correct transfor-
mations, and are required in type-directed transformations
such as compilation of polymorphic equality. They also help
catch compiler bugs! In our case it seems especially natural,
as the Java hytecode which we eventually produce is itself
typed.

The use of computational types in the intermediate lan-
guage is more unusual, though similar systems have recently
been proposed in [23, 11, 241 and the use of a monadic in-
termediate language to express strictness-based optimisa-
tions was proposed in [4]. The separation of computations
and values gives MIL a pleasant equational theory (full p
and 11 rules plus commuting conversions), which makes cor-
rect rewriting simpler. Order of evaluation is made explicit
(much as it is in CPS-based intermediate representations
[l]), and our refinement of computation types into differ-
ent monads gives a unified framework for effect analysis and
associated transformations.

131

v ::= x,y,f

I ;‘vl,... ,Vn)
iniV

1 - in,V
1 IGV

i vi
1 fold, V
1 unfold V

r,V

M ::= “al G
(let Zc’e=Ml in MZ

1 VP
ref V

I !V

1 zi;e=v”z

try 2 + Ml handle y + M3 in Mz
case V of inlZ1 =+ MI;. ; in,& * M,
caseVofin,,Zl *MI;... ;inxn& *M,;-=+ M
caseVofcl *Ml;... ;cn * M,;-+-M

1 leth~fl(~‘l:i;)=M1:yl;...;f,(~~::~)=M,:y,inM

Figure 3: Terms in MIL

value variables
constant of base type
tuple
injection into sum
injection into exception
type abstraction
type application
recursive type introduction
recursive type elimination
projection

trivial computation
evaluation
function application
reference creation
dereferencing
assignment
throw an exception
evaluate and catch
case on sum
case on exception
case on base type
(recursive) function declaration

int 1 char (
71 x ” x Tn
?1 + + 7:,
l-+-y
r ref
exn

_ I pt.7
::= (71,. ,Tn)

; ::= TE(F)
E C {I, throws, reads, writes, allots}

base types
product
sum
function type
reference type
exception
polymorphic type
recursive type
vector of types
computation type
effects

Figure 2: Types in MIL

4.1 Types and terms

Types in MIL are divided into value types (ranged over by
r) and computation types (ranged over by y) as shown in
Figure 2.4 Value types include base types (int, char, etc.),
products, function types with multiple arguments and re-
sults, sum types with multiple argument summands, refer-
ence types, polymorphic types and recursive types. Compu-
tation types have the form TE(?), indicating a computation
with result types r’ and effect E. The subset relation on
effects induces a subtyping relation on types in an unsur-
prising way. Note that because we are only interested in
compiling a call-by-value language, we have restricted func-
tion types to be from values to computations.

Terms are also divided into values (ranged over by V) and

4Some simplifications have been made for this presentation. In
particular the implementation has mutual recursion over multiple
types; also, lower-level features that capture Java representations are
omit,ted.

computations (ranged over by M) as shown in Figure 3. All
evaluation happens in let or try. The ‘Moggi let’ construct

evaluates the computation term Ml and binds the result to
x in the scope of the computation term Mz. The construct

try Z -+ MI handle y + M3 in M2

generalises this by providing a handler M3 in which the ex-
ception raised by Ml is bound to a variable y and the con-
tinuation M3 is not evaluated. (It is interesting to note that
this construct cannot be defined using let and the more con-
ventional MI handle y + M2 without recourse to a value of
sum type). The construct val ? allows a value (or multiple
values) to be treated as a trivial computation.

4.2 Translation from SML

The initial translation from typed SML to MIL is essentially
Moggi’s call-by-value translation [15]. For example, a source
application ezpl exp2 translates to

letz+M1inlety+Mzinzy

where Ml and M2 are the translations of expl and expcpz. The
translation also expands out certain features of the source
language that are not present in the target: patterns are
compiled into flat case constructs, records are translated
as ordinary tuples (with fields sorted by label) and even
the structure constructs of the SML module language are
compiled into ordinary tuples of values. (The latter relies on
the impredicative polymorphism in MIL. An alternative [20]
would be to stratify the intermediate language in a similar
way to the stratification of SML into code and module lev-
els.)

132

Uses of polymorphic equality are also compiled away, us-
ing a simple dictionary-passing style. One might expect that
equality would be an ideal candidate for exploiting Java’s
virtual methods, overriding the equals method in classes
representing ML types. But that would prevent us sharing
representations between ML types with different equality
functions, so doesn’t seem worth doing.

5 Transformations

Most of the compiler’s time is spent applying a set of MIL-to-
MIL transformations to the term representing the whole pro-
gram. Some of these are considered to be general-purpose
‘simplification’ steps, and are applied at several stages of the
compilation, whilst others perform specific transformations,
such as arity-raising functions.

Most of the transformations are ‘obviously’ meaning-
preserving rewrites5, but the tricky part is deciding when
they should be applied. At the moment, most of these de-
cisions are taken on the basis of some simple rules, rather
than as the result of any sophisticated analysis. Some of
these rules are type-directed whereas others involve simple
properties of terms, such as the size of a subterm or number
of occurrences of a variable. The effect inference is currently
rather naive, particularly with regard to recursive functions
and datatypes, so there are a very small number of places
in the basis where we have annotated computations as pure
so that they may be dead-coded in programs in which they
are not referenced.

5.1 Simplification

The most basic of the transformations are essentially just
the ‘pure’ p and 71 reductions and the commuting conver-
sions one obtains from the proof theory of the computa-
tional lambda calculus [5], adapted so that large or allo-
cating terms are not duplicated (see Figure 4). The re-
ductions are genuine simplifications whilst the commuting
conversions are reorganisations which tend to ‘expose’ fur-
ther reductions. MLJ applies the commuting conversions
exhaustively to obtain a CC-normal form from which code
generation is particularly straightforward. Doing this sort
of heavy rewriting on a large term can be expensive, partic-
ularly when it is done functionally as the heap turnover is
then very high. Our current simplifier uses a quasi-one-pass
algorithm similar to that described by Appel and Jim in
[2]: it maintains an environment of variable bindings, a cen-
sus to count variable occurrences and a stack of ‘evaluation
contexts’ to perform commuting conversions efficiently. This
algorithm is several times faster than our first version, but
simplication still ends up being the most expensive phase
because it is repeated at several stages during compilation
- the total time spent in the simplifier is typically around
half the recompile time.

The validity of certain rewrites depends on effect infor-
mation in the types. Some of these are shown in Figure 5.

5.2 Polymorphism

Most implementations of SML compile parametric polymor-
phism by boxing, that is, by ensuring that values of type t

case-beta: -e
case iniV of inl& j MI; . ; inn& * M,

- let Zi *val C in Mi

let-eta :
let2t=Minvall

-bM

let-let-cc :
letZ~e=(let&*M1inM2)inM3

?~let&*M~inlet&GM2inM3

let-case-cc :
let c+case Vof in121 =+ Ml ; ... ; in,& + M, in M

‘u let f(y3 = M in
case V of

inlZ1 =+ lety’+Ml infa; ... ;
in,&, + let y’e M,, in f y’

Figure 4: Some proof-theoretic rewrites

dead-let :
let cZ* MI in MZ

- M2

if 3c not free in M2 and MI : T=(l) for E c {allots, reads}

dead-try :
try Z S= Ml handle y =+ M2 in M3

- let Z+ Ml in Ms
if Ml : TE(F) where throws 4 E

hoist-let :
lety’+Min caseVofinl& *Ml; ... ; in,& *M,

- case V of
inI& * Ml ; ... ;
ini& =S let y’eM in Mi ; ... ;
in&, + M,

if y’ free only in Mi and M : TE(F) for E s {allots, reads}

Figure 5: Some rewrites dependent on effect information

5Not that we’re claiming to have justified them formally with re-
spect to a semantics for the full language!

133

inside a value of type Vt.r are represented uniformly by a
pointer (they are ‘boxed’). In Java, the natural way to box
objects is by a free cast to Object, and the natural way
to box primitive types is to create a heap-allocated wrap-
per object and cast that to Object. Unboxing then involves
using Java’s checkcast bytecode to cast back down again
and in the case of primitive types, extracting a field. Done
naively, this kind of boxing can be extremely inefficient and
there are a number of papers which address the question
of how to place the coercions to reduce the cost of boxing
(e.g.[13, 91). For an early version of our compiler we imple-
mented a recent and moderately sophisticated graph-based
algorithm for coercion placement [12].

Whilst the graph-based algorithm worked fairly well, we
have more recently taken a more radical and straightforward
approach: removing polymorphism entirely. This is possible
firstly because we have the whole program to work with, and
secondly because it is a property of Standard ML that the
finite number of types at which a polymorphic function is
used can be determined statically. In languages with poly-
morphic recursion (such as recent versions of Haskell) this
property does not hold: the types at which a function is
used may not be known until run-time.

Each polymorphic function is specialised to produce a
separate version for each type instance at which it is used.
In the worst case, this can produce an exponential blowup
in code size, but our experience is that this does not ac-
tually happen in practice. Three reasons can be cited for
this. First, we specialise not with respect to source types
but with respect to the final Java representations, for which
much sharing of types occurs. For example, suppose that
the filter function is used on lists containing elements of
two different datatypes, both of which are represented by
the ‘universal sum’ class discussed in Section 6. Then only
one version of filter is required.6 Second, boxing and un-
boxing coercions introduce a certain amount of code blowup
of their own and this is avoided. Third, polymorphic func-
tions tend to be small, so the cost of duplicating them is
often not great. Indeed, not only are many polymorphic
functions inlined away prior to monomorphising, but after
monomorphising it is often the case that a particular in-
stance of a function is used only once and is consequently
inlined and subject to further simplification.

5.3 Arity raising

Heap allocation is expensive. We try to avoid creating tuples
and closures by replacing curried functions and functions
accepting tuples with functions taking multiple arguments,
and to flatten sums-of-products datatypes by using multi-
ple argument constructors. We also remove the type unit
(nullary product) entirely. These transformations should
ideally be driven by information about how values are used,
but we find that fairly simple-minded application of type
isomorphisms such as the following

71 x 72 -+ y
N
- (71,T2) + y

71 + T0(72 + y) = (n,n) -+ y
71 x rz + 7-3 x 74 E (71,T2) + (75,T4)

7- x unit 2 T
unit + y
T,(unit) z $T;’ E

‘This can itself be regarded as a kind of boxing, since we’re using
uniform (shared) representations for certain ML types, but note that
we never box primitive types.

Object

I\ /\ I\
F, F, SI s, El E,

Figure 6: Java classes representing MIL types

combined with the other rewrites, produces a significant
improvement in most programs. For example, the Boyer-
Moore benchmark runs in 4 seconds with all optimisation en-
abled but takes 6 seconds when tuple-argument arity raising
is turned off. Worse, it crashes with a stack overflow when
de-currying is also disabled because MLJ is then unable to
use a got0 instruction in place of a tail call.

Observe that de-currying depends upon effect informa-
tion in the types (including termination), for otherwise it
would be unsound.

6 Data representation

6.1 ML base types

Most ML base types have close Java equivalents, so ML . __-
ints are represented by Java ints, and ML strings are
represented as Java Strings. There are a couple of small
differences in the semantics of these types or their operations
which have led us to diverge from the ML definition: integer
arithmetic does not raise Overflow and for us the Char a.nd
String structures are the same as WideChar and WideString
since Java is based on Unicode.

6.2 Products

Each distinct product type ri E ri x x rn is represented
by a different class Pi whose fields have types 71, , r, (see
the class hierarchy in Figure 6). Because we monomorphise,
representations can be shared by ‘sorting’ the fields by type,
for example using the same class for the type int x string as
for stringx int, but the current version of the compiler doesn’t
do this yet.

6.3 Sums

The natural ‘object-oriented’ view of a sum type ri +. .+m
is to represent the n summands as n subclasses of a single
class and then to use method lookup in place of case. For
example, one would represent lists by a class List with sub-
classes Nil (with no fields) and Cons (with a field for the
head and a field for the tail). The length function would
compile to a method whose implementation in Nil simply
returns zero and whose implementation in Cons returns the
successor of the result of invoking the method on the tail.

Whilst this technique is elegant, it is not necessarily effi-
cient Typical functional code would generate a large num-

134

ber of small methods; moreover it is necessary to pass in
free variables of the bodies of case constructs as arguments
to the methods.

If the JVM had a classcase bytecode then it would be
possible to use this instead of method invocation. Unfortu-
nately it does not: one must check the classes one at a time
(using instanceof) and then cast down (using checkcast).

A variation on this idea is to store an integer tag in the
superclass and to implement case constructs as a switch on
the tag followed by a cast down to the appropriate subclass.
We take this a stage further, using a single superclass S for
all sum types with a subclass S, for each type of summand.
This reduces the number of classes required for summands;
moreover, because only a single class is used to represent
most sum types occurring in the source program, further
sharing of representations is obtained in types constructed
from sum types.

This ‘universal sum’ scheme is used in general, but for
two special cases we use more efficient representations as
described below.

Enumeration types: for datatypes whose constructors
are all nullary we use the primitive integer type.

‘l+’ types: In Java, variables of reference type con-
tain either a valid reference to an object or array, or
the value null. We make use of this for types of the
form () + T where r can itself be represented by a non-
null class or array type. For example, the SML type
(int *int 1 opt ion is implemented using the same class
as would be used for int*int, with NONE represented by
null. The type int list is implemented by a single
product class with fields for the head (an integer) and
tail (the class itself) with nil represented by null.

If 7 is primitive then a product class is used to first
‘wrap’ the primitive value. What if 7 is itself of the
form () + r’? Then we create an additional dummy
value of appropriate class type to represent the extra
value in the type. For example, a value SOME x with
the SML type int list option is represented in the
same way as would be x of type int list, but NONE is
an extra value created and stored in a global variable
when the class is initialised.

Reference types

In general a reference type 7 ref is simply represented by a
unary product class. For references created at top-level (i.e.
not inside functions) that are not used in a first-class way
(assigned to and dereferenced but not compared for equality
or passed around), we use static fields in a distinguished class
G, in other words, global variables. In the future we hope
to perform escape analysis in order to use local variables for
reference types where possible.

6.5 Exceptions

In SML the type exn has a special status in that it is ez-
tensible. Exception declarations create fresh distinguishable
exception constructors; in the operational semantics this is
formalised by the creation of fresh names. However, for ex-
ceptions declared outside of functions there will be a fixed
finite set of names that can be determined at compile-time.
We exploit this by representing each such exception con-
structor by a separate class Ei that subclasses E, the class

of ‘ML exceptions’. In contrast to sums, we do not use the
same class for exception constructors whose argument types
are the same. ML’s handle construct then fits better with
the JVM try-catch construct where the class of the excep-
tion is used to determine a block of code to execute.

For generative exception declarations that appear inside
functions, we generate a fresh integer count from a global
variable and store this in a field in the exception constructor
object. This field is tested against in exception handlers and
case constructs.

Exceptions also give a nice anecdotal example of the
sort of low-level Java-specific tweaking that we’ve found to
be necessary in addition to high-level optimisations. In an
early version of the compiler we noticed that certain pro-
grams which used exceptions as a control-flow mechanism
ran hundreds of times more slowly than we would have ex-
pected. The problem was tracked down to a ‘feature’ of
Java: whenever an exception is created, a complete stack
trace is computed and stored in the object. The solution
was simply to override the fillInStackTrace method in
the ML exception class so that no stack trace is stored.

6.6 Functions

As mentioned earlier, functions in MIL are divided into lo-
cals,

0

globals and closures. These are used as follows:

Functions that only ever appear in tail application po-
sitions sharing a single ‘continuation’ can be compiled
inline as basic blocks. Function application is compiled
as a goto bytecode. Incidentally, this is one good rea-
son for comniline: to JVM bvtecodes rather than Java
source - the got\ instruction is not available in Java.
For example:

let
val f = fn x => some-code

in
if 2<3 then f(z) else f (w+z)

end

The body of f is simply compiled as a block of code
and the two calls to f are compiled as jumps.
It is sometimes even possible to transform a non-tail
function application into a tail one. Consider the fol-
lowing fragment of ML:

let
val f = fn x => some-code
val y = if 2<3 then f(z) else f(w+z)

in
some-more-code

end

Assuming that f does not appear in the expression
some-more-code, then this ‘continuation’ can be moved
into the definition of f and the calls to f implemented
by jumps.

Other functions appearing only in application positions
are compiled as static Java methods in a distinguished
class G. Function application is implemented by the
invokestatic bytecode, unless it is a recursive tail call
to itself, in which case goto is used.

The remaining functions are used in a higher-order way
and so must be compiled as closures. There are a num-
ber of ways that this can be achieved. The most ob-
vious is to generate for each function type an abstract

135

class with an abstract app method, and then to sub-
class this for each closure of that type, storing the free
variables as instance variables in the object. This is
rather wasteful of classes, using one per function type
and closure appearing in the program.

We currently use a different (and at first sight rather
alarming) scheme. Instead of ‘a single app method, we
use different method names for different function types.
There is a single superclass F of all functions, “with
dummy methods for each possible app method. Then
closures with the same types of free variables but dif-
ferent function types share subclasses of F. It is even
nossible for the actual closure obiects to be shared, if
&ir free variables are the same but app methods are
different. For example:

fun f (x:string) =
let

val fl = fn y:int => (x,y)
val f2 = fn z:string => (x,2)

in

end

If closures are required for f 1 and f 2 then they can
share the same closure class as their free variable types
are the same but function types are different. More-
over, the values of their free variables are the same so
the same object can be used for both, saving an allo-
cation.

A simple flow analysis is used to decide how each func-
tion should be compiled. A more sophisticated flow analysis
would not only allow us to identify more known functions,
but would also refine our type-based partitioning of appli-
cation methods, allowing more sharing of classes between
closures.

7 BBC

The Basic Block Code (BBC) is a static single-assignment
representation of the operations available in the Java virtual
machine, which abstracts away from certain instruction se-
lection details, including the distinction between stack and
local variahles. Normal form MIL (with all commuting con-
versions applied) is translated into BBC (which also includes
some information about effects and which object fields are
mutable) and the backend then orders and selects instruc-
tions to turn that into real bytecode. Currently the hack-
end constructs a dependency DAG from the BBC and then
works from the top down, using the stack where possible but
(mostly) storing intermediate results in local variables where
they are used more than once, or where ordering constraints
make their immediate use on the stack impossible. After
that, there is a pass in which local variable numbers are re-
assigned, so that the number of copies between basic blocks
is minimised, combined with a standard register-colouring
phase in which we try to minimise the total number of local
variables used.

This scheme produces code which is respectable but far
from optimal. Data passed between basic blocks is never left
on the stack but is instead passed via local variables. Within
basic blocks themselves, the JVM’s stack is only used in a
fairly simple-minded way. This causes too many local vari-
ables to be used and leads to code being somewhat larger
than we would like. Heavy optimisation of the backend is

Benchmark 1 MLJ) Moscow 1 SML/NJ
Nfib I 3.2 0.5 0.4
Quicksort 5.7 1.3 0.7
Life 10.6 1.0 2.4
Knuth-Bendix 20.6 1.8 5.3
Mandelbrot 4.3 0.5 0.7
Boyer-Moore 51.8 5.0 8.0
FFT 13.7 1.5 2.4

Table 1: Compile times (seconds)

probably not justified from the point of view of execution
speed, given that the bytecodes will usually be recompiled
by a JIT-compiling virtual machine which does its own in-
dependent mapping of stack locations and local variables to
registers and memory, but we are also keen to reduce the
size of the bvtecodes. We are currently developing an im-
proved backend which will make muchmore
of the stack.

- -
intelligent use

8 Current Status and Performance

MLJ 0.1 currently comprises about 60,000
written using SML/NJ version 110, plus
brary code. It is freely available over .~

lines of SML,
the Basis li-
the web (at

http://research.persimmon.co.uk/mlj/) as an SML/NJ
heap image for Solaris, Win32, Linux and Digital Unix with
the Basis code compiled in.

Although there is scope for further improvement, MLJ
is already useful in real applications. Internal projects at
Persimmon using MLJ include

Writing functional SGML/XML stylesheets which can
be downloaded into web browsers or run on servers.
This involves a lot of interlanguage working, includ-
ing with Javascript (using Netscape and Microsoft’s
browser-specific Java classes) and with third-party Java
XML parsers.

Implementing a graphical functional language for fil-
tering and classifying events from web servers. This
involves interworking with a third-party graph editor
written in Java.

We have a number of nice demonstrations, including Paul-
son’s Hal theorem prover for first-order logic [18] compiled
with some third-party Java terminal code to produce an ap-
plet, several functional programs with graphical user inter-
faces and some which access an Oracle database via Java’s
JDBC API. The largest program which we have successfully
compiled is around 12,000 lines (a compiler for ASN.l, pro-
ducing C++).

8.1 Compile times

The compile times for a range of standard SML benchmark
programs are shown in Table 1. All timings were taken
on a 200MHz Pentium Pro with 64MB of RAM running
Windows NT4.0. We have compared a recent (July 1998)
internal version of MLJ (O.le) with Moscow ML 1.42 and
SML/NJ 110.

136

Benchmark MLJ (Moscow (SML/NJ
Nfib 3.7 3.4 310
Quicksort 7.1 3.8 346
Life 11.4 5.9 337
Knuth-Bendix 24.6 9.8 360
Mandelbrot 4.2 3.7 316
Boyer-Moore 25.4 39.1 439
FFT 15.4 6.5 374

Table 2: Code size comparisons (kilobytes)

8.2 Code size

Table 2 lists the sizes of compiled code produced by the
three compilers. To obtain a (roughly) fair comparison, each
excludes the run-time system. For MLJ, the total size of
the class files is given (so this excludes the Java interpreter
required to run it). For Moscow ML, the size of the hytecode
file alone is given (so this excludes the camlrunm interpreter
required to run it). For SML/NJ, the size of the Windows
heap image produced by exportFn is given (so this excludes
the run. x86-win32 run-time system required to run it).

8.3 Run times

Some preliminary benchmark times are shown in Table 3.
All timings were performed on the same machine as the
compilation benchmarks and we again compare MLJ O.le
with Moscow ML 1.42 and SML/NJ 110. The run times do
not include start-up time for the run-time system.

Four different Java implementations were used to run the
code compiled by MLJ:

java NT: the latest version (1.2 beta 3) of Sun’s Java
Development Kit running under Windows NT4.0 with
Symantec’s JIT (3.00.023(x)) enabled;

jview NT: the latest version of Microsoft’s JIT compiler
(build 2613) running under Windows NT4.0;

kaffe Linux: the latest version (0.9.2) of Tim Wilkin-
son’s Kaffe JVM with JIT enabled, running under Red-
Hat Linux 5.0;

java Linux: Steve Byrne’s 1.1.6~2 port of Sun’s inter-
preting JVM running under RedHat Linux 5.0.

To illustrate the effect that initial heap size can have
on performance, Sun’s JVMs were tested twice: firstly with
the default initial heap of 1MB and secondly with the heap
starting at 30MB.

8.4 Interpretation of the results

As usual, the details of these small-program benchmark fig-
ures should be treated with some scepticism, but it’s possible
to make some broad generalisations.

The first thing to note is that MLJ compile times are
very high (between 4 and 11 times slower than Moscow ML
and between 4 and 8 times slower than SML/NJ), though
it’s worth reiterating that the recompile times, which are
the important numbers for software development, are typ-
ically a third less than the total compile times given here.
But it’s hardly surprising that extensive functional rewriting
of the whole program turns out to be a costly compilation

technique - if SML/NJ is given a whole program as a sin-
gle file, then its compile times are often higher than MLJ’s.
Our intermediate language certainly uses more space than
a more traditional untyped lambda calculus would, firstly
because we are carrying types around and secondly because
the computational lambda calculus translations are inher-
ently more verbose. This slows compilation by increasing
heap turnover. The current parser also contributes to long
compile times as it uses parser combinators rather than be-
ing table-driven.

Secondly, Java Virtual Machines vary widely in perfor-
mance. A good JIT compiler produces significant speedups,
but the current state of the art is that the fastest JITs also
have bugs. Microsoft’s Win32 JIT is generally quite fast but
has a fundamental bug that sometimes causes operations
to be unsoundly reordered. Luckily, we have been able to
identify the problem sufficiently precisely to add a compiler
option to produce slightly less efficient code which avoids
the bug. The current version of Symantec’s JIT is some-
times very good but has a number of serious bugs which
often prevent it, from running our code. These problems in-
dicate a pragmatic (though we hope temporary!) drawback
of ‘clever’ compilation of other languages to Java bytecodes
- most Java compilers produce fairly naive, stylised hyte-
codes whereas MLJ produces rather more contorted byte-
codes which, whilst perfectly legal according to the JVM
specification, could not have been produced by any Java
compiler. This tends to uncover bugs which have not have
been found by JVM implementers who have only tested
against the output of existing Java compilers.

In general, MLJ code run with a JIT compiler tends
to have particularly good performance (even better than
SML/NJ) on heavily numeric benchmarks such as Nfib,
Mandelbrot and FFT. This is unsurprising, as our monomor-
phisation should allow such code to be easily translated by
a JIT into much the same code as would be generated by a
naive C compiler. More typical functional code which does a
lot of heap allocation (e.g. Quicksort, Boyer-Moore and Life)
tends to run rather more slowly, showing that storage man-
agement in JVMs is still fairly poor (we suspect that the fact
that increasing the initial heap size makes a significant differ-
ence to Quicksort, Knuth-Bendix and Boyer-Moore but not
to Life when running on the Sun/Symantec JVMs indicates
inefficient heap expansion rather than just slow garbage col-
lection per se). The comparison with SML/NJ on the Life
benchmark is particularly interesting - taking the bench-
mark as originally written, our whole program optimisa-
tion allows us to specialise representations, including uses
of polymorphic equality, and run up to 3 times faster than
SML/NJ. However, when the program is constrained with
a minimal signature, SML/NJ can also specialise and runs
nearly 4 times faster than the best MLJ can manage. The
particularly poor performance of Microsoft’s JIT (and unim-
pressive performance of the others) on the Knuth-Bendix
benchmark seems to be due to the fact that as well as doing
a good deal of allocation, it makes heavy use of exceptions.

The code produced by MLJ is impressively compact but
not quite as small as that produced by Moscow ML. Al-
though Moscow has the advantage of a bytecode specifically
designed for ML, we expect to be able to narrow the gap in
future. We have already mentioned ongoing improvements
to our backend, but just as significant is the non-trivial space
overhead associated with the fairly large number of distinct
Java classes produced by MLJ. For example, the Knuth-
Bendix benchmark produces a total of 42 classes and over

137

Benchmark

Nfib
Quicksort
Life
Knuth-Bendix
Mandelbrot
Boyer-Moore
FFT

MLJ Moscow SML/NJ

jview java
lava NT kaffe Java

Java

NT NT Linux Linux Linux
30MB 30MB

0.8 0.9 0.9 1.7 5.1 5.1 8.2 1.3
t8.5 $25.1 $17.7 109.1 35.7 18.2 21.8 0.9
7.0 7.1 6.3 16.3 32.3 31.9 38.3 +18.9

t82.1 37.0 10.7 426.8 63.0 26.9 10.0 2.4
32.7 $217.9 t217.9 167.4 217.2 217.4 322.7 41.9

4.2 $6.8 0.9 37.3 8.3 3.3 2.1 0.6
15.5 11.8 12.3 28.8 71.3 71.8 441.6 k28.7

t requires compilation with MLJ’s microsoftbug switch set to avoid bug in the Microsoft JIT

$ program crashed due to a bug in the Symantec JIT; timing is with JIT disabled

* SML/NJ gave incorrect results

* timing improves to 1.7 seconds when top-level structure is constrained by minimal signature

Table 3: Run times (seconds)

6K of the total size of 24.6K is taken up by the product,
sum, exception and F classes, each of which contains essen-
tially no ‘real’ code. There is certainly scope for improving
our representation choices to decrease code size still further.

9 Conclusions and Further Work

ML.7 is a very useful tool: a compiler for a popular func-
tional language which produces compact, highly portable
code with reasonable performance and which has unusually
powerful and straightforward access to a large collection of
foreign libraries and components. But the reasonable per-
formance has only been achieved at the price of high compile
times and a limitation on the size of programs which may
reasonably be compiled. Our decision to do whole-program
optimisation is certainly controversial, so it seems worth try-
ing to give some explicit justification:

Most importantly, because of the relative inefficiency
of current JVMs and the difficulty of mapping ML to
Java bytecodes, it was simply the only way to achieve
what we considered to be adequate performance.

The limitation on program size is just not a problem for
many real applications. The number of SML programs
which are more than, say, 15,000 lines long is actually
rather small, as one can do an awful lot in that much
SML. We have had it suggested to us that a compiler
which cannot compile itself is useless, but this is clearly
nonsense.

Trends towards component architectures, interlan-
guage development, dynamic linking and distributed
systems mean that the large monolithic application is
becoming less common. Of course, component bound-
aries reintroduce the problems of separate compilation
in a worse form, but that’s all the more reason to com-
pile each component as well as possible.

Completely separate compilation at the granularity of
modules introduced for software engineering purposes
is an anachronism for which high-level languages can

pay dearly, as the earlier discussion of SML/NJ’s per-
formance on the Life benchmark indicates (more real-
istically, we have ourselves doubled the speed of parts
of MLJ simply by manually demodularising the code).
There is a whole range of approaches between com-
pletely naive whole-program compilation and simple-
minded separate compilation and, whilst the optimum
lies somewhere in the middle, the two extremes are
much the easiest for the compiler writer. As MLJ
develops, caching more information about each mod-
ule and sacrificing some rewrites to be able to handle
larger programs, and other compilers add ever more
complex intermodule optimisations, we expect them to
come much closer together.

It is interesting to compare MLJ with Wadler and Oder-
sky’s Pizza [17]. We have started with a standard func-
tional language and added extensions to support interlan-
guage working with Java, whereas Pizza starts with Java
and adds some ‘functional’ features, such as pattern match-
ing and parameterised types. We are aware of two other
attempts to compile SML into Java, one by Bertelsen [S],
based on Moscow ML, and the other by Walton at Edin-
burgh. Both of these use uniform representations and do not
perform anything like the same level of optimisation as MLJ.
Wakeling has also compiled Haskell into Java bytecode, with
‘disappointing’ results (large code and performance consid-
erably slower than the Hugs interpreter) [25].

The other main attempt to compile a mainly functional
language into Java bytecode is Bothner’s Kawa compiler for
Scheme [8]. Kawa has an interactive top-level loop and com-
piles bytecodes dynamically, but has to use uniform repre-
sentations. Some informal tests indicate that Kawa typically
runs an order of magnitude more slowly than MLJ and tends
to run out of memory or stack space much earlier than MLJ.

We are currently developing concurrency extensions for
MLJ which are built on top of Java’s built-in threads and,
looking further into the future, are thinking about the pos-
sibility of taking advantage of Java’s remote method invo-
cation infrastructure to develop distributed and mobile ap-
plications in ML.

138

We have reason to believe that JVMs which do tail call
elimination may appear soon, which would remove one of the
other significant limitations of MLJ - although we already
compile most simple loops into jumps, the lack of more gen-
eral tail call optimisation does make some programs run out
of stack space on reasonable-sized inputs. If tail call opti-
misation is not done for us, then we will reluctantly have to
consider selective use of two techniques: placing some func-
tions in the same method, and the ‘tiny interpreter’ tech-
nique used in the Glasgow Haskell compiler [lo]. Naive use
of of these techniques would cause a significant worsening
of code size and speed, so we would base our decisions on a
more sophisticated flow analysis, which would also allow US

to improve most of the other transformations [21, 161. This
would appear to point to even longer compilation times, but
we hope that this can be avoided by improving the represen-
tation of our intermediate language. The compiler currently
spends a vast amount of time (and memory) performing
trivial rewrites on the MIL term. Many of these rewrites
are commuting conversions, which would simply disappear
if a suitable graph representation were used instead. If we
were also to rewrite destructively, then we should be able
to obtain further compiler speedups. A further minor im-
provement which we need to make is to ensure that MLJ
never generates methods which exceed the JVM’s 64K byte
limit. This has so far only happened to us on one unusual
program, and we do not anticipate any great difficulty in
modifying the code generator to prevent it happening.

Our use of a monadic intermediate language is particu-
larly novel. Whilst we would not claim that this allows us
t,o perform any optimisations which could not be achieved
by more ad hoc methods, we have found it to be a power-
ful and elegant framework for structuring the compiler. In
general, we would strongly advocate a principled use of type
theoretic and semantic ideas in compiler implementation.

One of the good things about compiling to Java byte-
codes is that there is a large ongoing effort to develop better
faster JVMs which we can take advantage of for free. Early
information from Sun about their next generation of JVMs
indicates that allocation and collection will be improved sig-
nificantly, possibly by a factor of 4. That could make MLJ’s
runtime performance competitive with native compilers even
if we made no further improvements ourselves.

References

[l] A. W. Appel. Compilzng with Contznuations. Cam-
bridge University Press, 1992.

[2] A. W. Appel and T. Jim. Shrinking lambda expres-
sions in linear time. Journal of Functional Program-
ming, 7(5), September 1997.

[3] K. Arnold and J. Gosling. The Java Programming Lan-
guage. Addison-Wesley, second edition, 1998.

[4] P. N. Benton. Strictness Analysis of Lazy Functional
Programs. PhD thesis, University of Cambridge Com-
puter Laboratory, August 1993. Technical Report 309.

[5] P. N. Benton, G. M. Bierman, and V. C. V. de Paiva.
Computational types from a logical perspective. Jour-
nal of Functional Programming, 1998. To appear.

[6] P. Bertelsen. Compiling SML to Java bytecode. Mas-
ter’s thesis, Dept. of Information Technology, Technical
Univ. of Denmark, January 1998.

[7] M. Blume. CM: A compilation manager for SML/NJ.
Technical report, 1995. Part of SML/NJ documenta-
tion.

[8] P. Bothner. Kawa - compiling dynamic lan-
guages to the Java VM. In USENIX Conference,
June 1998. Compiler and paper available from
http://www.cygnus.com/-bothner/kawa.html.

[9] F. Henglein and J. Jorgensen. Formally optimal box-
ing. In ACM Symposium on Principles of Programming
Languages, pages 213-226, 1994.

[lo] S. L. Peyton Jones. Implementing lazy functional lan-
guages on stock hardware: the spineless tagless G-
machine. Journal of Functional Programming, pages
127-202, April 1992.

[II] S. L. Peyton Jones, J. Launchbury, M. Shields, and
A. Tolmach. Bridging the gulf: a common intermediate
language for ML and Haskell. In ACM Symposium on
Principles of Programming Languages, January 1998.

[12] J. Jorgensen. A calculus for boxing analysis of poly-
morphically typed languages. Technical Report 96/28,
DIKU, University of Copenhagen, May 1996.

[13] X. Leroy. Unboxed objects and polymorphic typing.
In 19th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 177-188, 1992.

[14] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). MIT Press,
Cambridge, Mass., 1997.

[15] E. Moggi. Notions of computation and monads. Infor-
mation and Computation, 93(l), 1991.

[16] C. Mossin. Flow analysis of typed higher-order pro-
grams. Technical Report 97/l, DIKU, University of
Copenhagen, 1997.

[17] Martin Odersky and Philip Wadler. Pizza into Java:
Translating theory into practice. In ACM Sympo-
sium on Principles of Programming Languages, Jan-
uary 1997.

[18] L. C. Paulson. ML for the Working Programmer. Cam-
bridge University Press, second edition, 1996.

[19] Z. Shao. An overview of the FLINT/ML compiler.
In ACM SIGPLAN International Conference on Func-
tional Programming, pages 85-98, June 1997.

[20] Z. Shao. Typed cross-module compilation. Technical
Report YALEU/DCS/TR-1126, Department of Com-
puter Science, Yale University, July 1997.

[21] 0. Shivers. Control-flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie Mellon University, May
1991. CMU-CS-91-145.

[22] D. Tarditi, G. Morrisett, P. Cheng, C. Stone,
R. Harper, and P. Lee. TIL: A type-directed opti-
mizing compiler for ML. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation, pages 181-192, Philadelphia, PA, May 1996.

139

P31

P4

1251

1261

A

A. Tolmach. Optimizing ML using a hierarchy of
monadic types. In Workshop on ‘Qpes in Compilation,
March 1998.

P. Wadler. The marriage of effects and monads. In 3rd
ACM SIGPLAN Conference on Fzlnctional Program-
ming, September 1998. (this volume).

D. Wakeling. VSD: A Haskell to Java virtual ma-
chine code compiler. In 9th International Workshop
on Implementation of Functional Languages, Septem-
ber 1997.

S. Weeks. A whole-program optimizing compiler
for Standard ML. Technical report, NEC Re-
search Institute, November 1997. Available from:
http://uww.neci.nj.nec.com/homepages/sweeks/smlc/.

Sample output

The code below implements the quicksort algorithm for in-
teger lists.

fun quick xs =
let

fun quicker (xs, ys) =
case xs of

Cl => ys
[xl => x::ys
a::bs =>
let

fun partition (left ,right, Cl 1 =
quicker (left, a: :quicker (right, ys))

I partition (left,right, x::xs) =
if x <= a
then partition (x::left, right, xs)
else partition (left. x::right, xs)

in
partitionc Cl , Cl ,bs)

end

quicker (xs, [I)
end

The internal function quicker compiles to the following
static method:

Method Ra b(Ra, Ra)
0 goto 31
3 new x22 <Class Ra>
6 dup
7 iload-
8 aload-
9 invokespecial 138 <Method Ra(int,Ra)>

12 a&ore-O
13 goto 55
16 new X22 <Class Ra>
19 dup
20 iload 4
22 aload-
23 aload-
24 invokestatic X39 <Method Ra b(Ra, Ra)>
27 invokespecial t38 <Method Ra(int,Ra)>
30 astore-
31 aload-
32 ifnull 105
35 aload-
36 getfield t35 <Field Ra b>

39 dup
40 astore 5
42 ifnull 92
45 aload-
46 getfield #37 <Field int a>
49 istore 4
51 aconst-null
52 astore-
53 aconst-null
54 adore-0
55 aload 5
57 ifnull 16
60 aload 5
62 getfield X37 <Field int a>
65 dup
66 istore-
67 iload 4
69 aload 5
71 getfield t35 <Field Ra b>
74 astore 5
76 if-icmple 3
79 new X22 <Class Ra>
82 dup
83 iload-
84 aload-
85 invokespecial X38 <Method Ra(int,Ra)>
88 astore-
89 goto 55
92 nsw X22 <Class Ra>
95 dup
96 aload-
97 getfield #37 <Field int a>

100 aload-
101 invokespecial X38 <Method Ra(int,Ra)>
104 areturn
105 aload-
106 areturn

This program illustrates some of the code transformations
performed by MLJ.

Integer lists have been represented by the class Ra, with
nil represented by null and x: :xs represented by an in-
stance of Ra with x stored in field a and xs in field b.

Notice how the calls to partition and the first call to
quicker have been implemented by goto bytecodes. The
tuples have been removed: the triple passed to partition
has vanished, and the function quicker expecting a pair has
been transformed into a method with two arguments.

140

