
Expert Systems with Applications 40 (2013) 6894–6900
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
ATISA: Adaptive Threshold-based Instance Selection Algorithm
0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.06.053

⇑ Corresponding author. Address: Universidade Federal de Pernambuco (UFPE),
Centro de Informática (CIn), Av. Jornalista Anibal Fernandes, s/n. Cidade Univer-
sitária 50740-560, Recife, PE, Brazil. Tel.: +55 81 2126 8430x4346; fax: +55 81 2126
8438.

E-mail addresses: gdcc@cin.ufpe.br (G.D.C. Cavalcanti), tir@cin.ufpe.br (T.I. Ren),
clp@cin.ufpe.br (C.L. Pereira).

URL: http://www.cin.ufpe.br/~viisar (G.D.C. Cavalcanti).
George D.C. Cavalcanti a,⇑, Tsang Ing Ren a,b, Cesar Lima Pereira a

a Centro de Informática, Universidade Federal de Pernambuco, Brazil
b iMinds – Vision Lab, Department of Physics, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium

a r t i c l e i n f o
Keywords:
Instance selection
Instance-based learning algorithms
a b s t r a c t

Instance reduction techniques can improve generalization, reduce storage requirements and execution
time of instance-based learning algorithms. This paper presents an instance reduction algorithm called
Adaptive Threshold-based Instance Selection Algorithm (ATISA). ATISA aims to preserve important
instances based on a selection criterion that uses the distance of each instance to its nearest enemy as
a threshold. This threshold defines the coverage area of each instance that is given by a hyper-sphere cen-
tered at it. The experimental results show the effectiveness, in terms of accuracy, reduction rate, and
computational time, of the ATISA algorithm when compared with state-of-the-art reduction algorithms.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In supervised learning, a training set of instances is given as in-
put to a machine learning algorithm. Each instance is formed by a
descriptor vector and a label that represent its properties and class
respectively. After the learning process, unknown instances are
presented to the algorithm that must infer their classes through
generalizations (Mitchell, 1990).

Instance-based learning algorithms use the whole set of in-
stances from the training set to construct inference structures.
The Nearest Neighbor Rule (Cover & Hart, 1967) is a well-known
example of this kind of algorithm. It requires a large memory space
since the whole training instance set has to be stored. Each query
pattern is compared with every pattern in the training set. An un-
known instance is assigned to the class of the most similar instance
in the training set. Instead of using only the nearest instance, this
rule can be generalized (in the sense of proximity) by using the
classes of the k most similar neighbors; this algorithm is called
k-Nearest Neighbors (kNN). There are other algorithms that use
this neighborhood concept, for example: the Center-based Nearest
Neighbor classifier (Gao & Wang, 2006). In spite of the efficiency of
instance-based learning algorithms, they suffer from problems
such as: large storage requirements, low prediction performance
and sensitivity to noisy and redundant data (David, Aha, & Albert,
1991).
Instance reduction techniques are used as a pre-processing step
on the data set. One of its objectives is to overcome the limitations
faced by instance-based learning algorithms. This is obtained by
reducing the size of the training set by removing ‘‘irrelevant’’ in-
stances. Reduction techniques can be classified in three types: con-
densation, edition and hybrid (Garcia, Derrac, Cano, & Herrera,
2012; García, Marqués, & Sánchez, 2012; Nanni & Lumini, 2011).
Edition methods aim to remove noisy instances and Condensation
methods search for a consistent subset of the training set. A consis-
tent subset is formed by eliminating instances in the training set
that do not affect the classification accuracy of the whole training
set. Hybrid methods compute a subset of the training set combin-
ing the characteristics of Edition and Condensation methods; so,
noisy and superfluous instances are eliminated.

The Condensed Nearest Neighbor Rule (CNN) (Hart, 1968) is one
of the first method that attempts to reduce the number of in-
stances in a training set. It removes any well classified instance
using the nearest neighbor rule. The CNN algorithm maintains bor-
der instances and eliminates redundant ones. Another example of a
reduction technique is the Edited Nearest Neighbor Rule (ENN)
(Wilson, 1972) that keeps central instances by smoothing the deci-
sion boundaries. CNN is a condensation algorithm while ENN is a
noise filter. There are many algorithms that can not be classified
neither as condensation nor noise filter; they are hybrid selection
approaches. An example is the Iterative Case Filtering algorithm
(ICF) (Brighton & Mellish, 1999) that iteratively removes instances
according to a filtering rule. Wilson and Martinez (2000) proposed
a series of algorithms called Decremental Reduction Optimization
Procedure. Marchiori (2008) proposed a network-based represen-
tation of a training set, called Hit Miss Network (HMN) that pro-
vides a compact description of the nearest neighbor relation over
pairs of instances from each pair of classes.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.eswa.2013.06.053&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.06.053
mailto:gdcc@cin.ufpe.br
mailto:tir@cin.ufpe.br
mailto:clp@cin.ufpe.br
http://www.cin.ufpe.br/~viisar
http://dx.doi.org/10.1016/j.eswa.2013.06.053
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

G.D.C. Cavalcanti et al. / Expert Systems with Applications 40 (2013) 6894–6900 6895
This paper introduces an instance reduction algorithm called
Adaptive Threshold-based Instance Selection Algorithm (ATISA,
for short). It aims to find the best set of instances in order to reduce
the size of the stored set of instances while maintaining or even
improving the generalization accuracy. ATISA does not eliminate
an instance based on its spacial location - central or border points.
It selects important points based on a threshold that defines a cov-
erage area per instance.

This work is organized as follows. The Adaptive Threshold-
based Instance Selection Algorithm or ATISA is described in Sec-
tion 2. The experimental results are presented in Section 3. Finally,
Section 4 shows the conclusions.

2. Adaptive Threshold-based Instance Selection Algorithm
(ATISA)

The Adaptive Threshold-based Instance Selection Algorithm
(ATISA) is an incremental instance selection technique. Based on
a threshold, the algorithm decides whether or not instances are in-
cluded in the final subset. ATISA has three different approaches:
ATISA1, ATISA2 and ATISA3. These three versions are described in
the next subsections.

Algorithm 1 : Adaptive Threshold-based Instance Selection
Algorithm 1 (ATISA1)

Require: T {The training set}
1: Tf = T
2: for xi 2 T do
3: if class(xi) – classmax(NNk(xi,T)) then
4: Tf = Tfn{xi}
5: end if
6: end for
7: for xi 2 Tf do
8: h(xi) = d(xi,NE(xi,Tf))
9: end for
10: S = ;
11: for xi 2 Tf do
12: N = NNk(xi,S)
13: if class(xi) – classmax(N) or d0(xi,N) > h0(N) then
14: S = S [{xi}
15: end if
16: end for
17: return S {The subset of the selected instances from the

training set}
Fig. 1. Definition of the threshold h for the instance x. NE (x) represents the nearest
enemy of the instance x.
2.1. Adaptive Threshold-based Instance Selection Algorithm 1 (ATISA1)

In general terms, the algorithm applies a noise filter to the set
and afterwards it calculates one threshold for each instance. Each
remaining instance is classified based on its nearest neighbor. In
the case of an erroneous classification, the instance is inserted into
the final set. Otherwise, it is added only if the distance to its near-
est neighbor is greater than the threshold of that neighbor. Algo-
rithm 1 shows the pseudocode of ATISA1.

NNk(a,A) represents the set of the k nearest neighbors of the in-
stance a in the training set A, while class(a) represents the class of
the instance a. classmax(B) receives the set of instances B and re-
turns its predominant class. NE(a,A) represents the nearest enemy
of a in the set A. That nearest enemy is the nearest neighbor of a
that has a different class. The distance between instances a and b
is given by d(a,b). The threshold of each instance is represented
by the function h(a), where a corresponds to an instance. To use
this algorithm with k > 1, the distance and threshold functions
have the following variation: d0(a,A) and h0(A). The former returns
the average distance between instance a and all instances in the
set A, and the latter returns the average threshold calculated over
the set of instances A.

The selection solution of ATISA1 has three steps: pre-processing
(filter), thresholds assignment and reduced set generation.

The pre-processing is a filtering process that aims to remove
noisy data from the training set (lines 1 to 6 in Algorithm 1). The
Edited Nearest Neighbor Rule (ENN) (Wilson, 1972) is the algorithm
used for this purpose. ENN removes any instance that is not cor-
rectly classified by its nearest neighbor. In other words, given an
instance xi and its nearest neighbor NNk(xi), k = 1, this instance is
removed if its class class(xi) is different from the class of its nearest
enemy class(NNk(xi)). The algorithm ENN enlarges the spaces be-
tween classes, smoothing the decision boundaries.

Threshold assignment: The threshold of an instance xi is de-
fined by the distance to its nearest enemy NE(xi) (lines 7 to 9 in
Algorithm 1). Fig. 1 illustrates the threshold h of the instance x.
One threshold is assigned for each instance, it defines an area that
is covered by the instance. All the instances laying inside this
delimited area have the same class of the instance x.

The reduced set generation (lines 10 to 16 in Algorithm 1)
works as follows; after pre-processing, all remaining instances
are randomly selected. One selected instance xi is inserted in the
set S if it is correctly classified by its nearest neighbors in S. In a
particular case, a misclassified instance can be inserted in S. How-
ever, this only occurs if its distance to the nearest neighbor is
greater than the threshold of this neighbor (for k > 1, average dis-
tances and thresholds are used, regardless their classes).

Each threshold can be interpreted as a radius that forms a hy-
per-sphere centered at the instance position. If one instance is cor-
rectly classified, even standing outside this hyper-sphere, it must
be added to the final set, otherwise, it can be misclassified in the
upcoming steps of the process.

Fig. 2 shows an example of the ATISA1 third step: the procedure
to obtain the reduced set. In Fig. 2(a), random indexes were
assigned to each instance aiming to create an order. In Fig. 2(b),
the first two instances were inserted, because they were not
correctly classified and, at that point of the algorithm, the set S is
empty. After, the instance with index 3 is not inserted in S. This
happens because it is correctly classified, besides, it is inside the
circle created by the threshold of its nearest neighbor (Fig. 2(c)).
In this toy sample, the threshold of instance 1 is the distance
between instances of indexes 1 and 9. In the next verification,
instance 5 is checked. Although correctly classified, it is out of

Fig. 2. An example of how ATISA1 obtain the reduced set.

6896 G.D.C. Cavalcanti et al. / Expert Systems with Applications 40 (2013) 6894–6900

G.D.C. Cavalcanti et al. / Expert Systems with Applications 40 (2013) 6894–6900 6897
the area covered by its nearest neighbor (Fig. 2(d)); so, it is added
to the set S. At the end, the final set S is shown in Fig. 2(e).

Algorithm 2: Adaptive Threshold-based Instance Selection
Algorithm 2 (ATISA2)

Require: T {The training set}
1: Tf = T
2: for xi 2 T do
3: if class(xi) – classmax(NNk(xi,T)) then
4: Tf = Tfn{xi}
5: end if
6: end for
7: for xi 2 Tf do
8: h(xi) = d(xi,NE(xi,Tf))
9: end for
10: Tf = sort(Tf)
11: S = ;
12: for xi 2 Tf do
13: N = NNk(xi,S)
14: if class(xi) – classmax(N) or d0(xi,N) > h0(N) then
15: S = S [{xi}
16: end if
17: end for
18: return S {The subset of the selected instances from the

training set}
2.2. Adaptive Threshold-based Instance Selection Algorithm 2 (ATISA2)

In the second version of the ATISA algorithm, a step before the
process of creating the final reduced set is added. Instead of
randomly selecting the instances, as done by ATISA1, an ordering
procedure is required by ATISA2. So, the distance between each in-
stance and its nearest enemy (threshold value) is calculated. The
first selected instance is the one having the largest distance; the
second largest distance corresponds to the second selected in-
stance; and so on.

Initially, instances with the largest thresholds are inserted in S.
This means that these instances cover a representative area of the
feature space. Based on that, it is probable that the last inserted
instances (the ones with small thresholds) will be placed inside
their neighbors coverage areas. So, they will not be inserted in S.
In comparison with ATISA1, this procedure reduces the size of
the final instance set.
Fig. 3. (a) Show the instance labeled; (b) The reduced
Algorithm 2 shows the pseudocode of ATISA2. The difference
between ATISA1 and ATISA2 is in line 10. There is a sort function
in this line and it is responsible for ordering the instances from
the largest to the smallest threshold value.

Fig. 3 presents the behavior of ATISA2 for the same toy problem
shown in Section 2.1. In Fig. 3(a), the instances are labeled follow-
ing the ordering obtained by ATISA2. The first visited instances are
the ones more distant from their nearest enemy. In this example,
the first two inserted instances are the ones with labels 1 and 2.
These instances can be viewed in Fig. 3(b), each with its respective
coverage area. They are the instances with greater threshold in the
instance set, and, in this problem, all other instances are placed in-
side the coverage area of these two instances. As they are correctly
classified by instances 1 and 2, they are not included in S. There is
only one exception: the instance with index 12 that has instance 1
as its nearest neighbor. Instance 12 is added to S because the dis-
tance between this instance and instance 1 is greater than the
threshold of the instance 1. The final set of instances generated
by ATISA2 is presented in Fig. 3(b).

Algorithm 3: Adaptive Threshold-based Instance Selection
Algorithm 3 (ATISA3)

Require: T {The training set}
1: Tf = T
2: for xi 2 T do
3: if class(xi) – classmax(NNk(xi,T)) then
4: Tf = Tfn{xi}
5: end if
6: end for
7: for xi 2 Tf do
8: h(xi) = d(xi,NE(xi,Tf))
9: end for
10: Tf = sort(Tf)
11: S = one_by_class(Tf)
12: update_thresholds(S)
13: for xi 2 Tf do
14: N = NNk(xi,S)
15: if class(xi) – classmax(N) or d0(xi,N) > h0(N) then
16: S = S [{xi}
17: update_thresholds(S)
18: end if
19: end for
20: return S {The subset of the selected instances from the

training set}
instance set obtained after the ATISA2 procedure.

Fig. 4. An example of the ATISA3 procedure to updated the threshold dynamically.

Table 1
Accuracy rates of experiments on the datasets using the 3-Nearest Neighbor classifier. R represents the reduction percentage.

Databases 3-NN ATISA1 R ATISA2 R ATISA3 R

annealing 92.48 92.61 82.01 91.85 87.18 88.47 91.20
australian 85.94 85.80 79.82 85.36 85.27 85.80 91.01
breast cancer 95.42 95.42 90.53 94.71 94.91 93.71 96.92
crx 85.51 86.09 77.91 82.90 83.20 82.32 89.97
hepatitis 83.87 82.58 81.21 80.00 85.59 81.94 90.46
image segmentation 96.23 94.20 86.25 93.07 88.82 91.52 91.90
ionosphere 85.19 86.61 79.61 84.62 82.46 81.48 94.49
iris 94.67 98.00 81.56 94.00 84.00 92.00 88.74
liver 65.22 62.32 65.67 60.58 73.94 62.03 83.09
pima diabetes 74.35 72.53 79.25 72.01 84.46 71.48 90.39
promoters 84.91 83.02 61.64 83.02 72.96 72.64 78.09
sonar 83.65 79.81 56.46 79.81 65.81 73.08 76.66
soybean 89.58 81.76 66.77 78.18 77.24 79.15 77.20
tic tac toe 88.83 89.14 78.84 91.44 83.59 89.87 83.30
voting 92.64 93.79 87.28 93.79 92.03 91.95 95.76
wine 96.63 94.94 77.59 96.07 78.40 90.45 87.58

85.09 82.49 82.99 87.92
84.99 83.79 84.06 90.18

Wilcoxon � n/a n/a + � + �

6898 G.D.C. Cavalcanti et al. / Expert Systems with Applications 40 (2013) 6894–6900
2.3. Adaptive Threshold-based Instance Selection Algorithm 3 (ATISA3)
Average 87.19 86.16 77.03
Median 87.39 86.35 79.43
ATISA3 is an evolution of ATISA2 that calculates the threshold
dynamically. In other words, when the set S is modified, a proce-
dure is started to update all the instances thresholds. ATISA3
reaches even higher reduction rates than ATISA2. Initially, thresh-
olds are more likely to have higher values. This happens due to the
ordering inherited from ATISA2 combined with the fact that
thresholds are dynamically calculated. This dynamic threshold up-
date increases the chance of an instance to be within the coverage
area of another instance.

The pseudocode of ATISA3 is presented in Algorithm 3. Its main
difference in comparison to ATISA2 is in lines 11 to 19. In line 11,
the function S = one_by_class(A) receives a set of instance A as input
and returns a set having one instance of each class. Each class is
represented by the instance with the largest threshold. After, the
thresholds of the instances in S are updated and this is performed
by the function update_thresholds(S) – line 12.

ATISA3 starts with one instance per class, as shown in Fig. 4(a).
In this case, the instances labeled 1 and 2 have the same threshold
value (Fig. 4(b)) that corresponds to the distance between them.
This toy problem has only two different classes. It is possible to
observe that all other instances are correctly classified and they
are inside the boundaries of their respective neighbor threshold.
So, the reduced set constructed by ATISA3 has only two instances:
1 and 2.

3. Experimental results

Experiments were carried out using 16 databases from the UCI
Machine Learning Repository (Frank & Asuncion, 2010): annealing,
australian, breast cancer, crx, hepatitis, image segmentation, iono-
sphere, iris, liver, pima diabetes, promoters, sonar, soybean, tic tac
toe, voting and wine. All numerical values were normalized to a
number between 0 and 1. These databases have different number
of classes, attributes (categorical or numerical) and instances; also,
some of them have instances with missing values.

ATISA was compared with the following techniques: Decremen-
tal Reduction Optimization Procedure 3 (DROP3) (Wilson & Martinez,
2000), Hit Miss Network for Editing Iterated (HMN-EI) (Marchiori,
2008) and Iteractive Case Filtering (ICF) (Brighton & Mellish,
1999). Garcia et al. (2012) showed that DROP3 and ICF are between
the methods most used for comparison purposes and that HMN-EI
has found very competitive accuracy rates. It is also important to

Table 2
Results of experiments on the data sets. R is the percentage of training points removed. The symbols +, � and � show the number of times ATISA1 average accuracy (storage
reduction) is significantly better (+), significantly worse (�) or similar (�) than the other algorithm, according to a paired t-test at 0.05 significance level. In the ‘‘Wilcoxon’’ row, +
indicates ATISA1 was significantly better than the other algorithm according to a Wilcoxon test for paired samples, � indicates it was significantly worse and � indicates no
significant difference.

Databases DROP3 R HMN-EI R ICF R ATISA1 R

annealing 92.73� 88.36� 89.47+ 38.64+ 86.34+ 84.18� 92.61 82.01
australian 84.49� 85.04� 83.33+ 48.41+ 84.64� 82.00� 85.80 79.82
breast cancer 94.56� 92.99� 96.14� 52.03+ 94.42� 90.00� 95.42 90.53
crx 85.07� 86.33� 84.49� 50.68+ 82.90+ 82.69� 86.09 77.91
hepatitis 83.23� 89.18� 84.52� 54.48+ 83.87� 87.24� 82.58 81.21
image segmentation 94.94� 90.35� 92.03+ 37.88+ 90.65+ 79.86+ 94.20 86.25
ionosphere 85.76� 95.28� 86.61� 59.54+ 72.36+ 94.90� 86.61 79.61
iris 94.00+ 87.70� 96.00� 44.44+ 96.00� 71.19+ 98.00 81.56
liver 63.77� 74.56� 57.68� 57.01+ 56.52� 77.55� 62.32 65.67
pima diabetes 72.27� 83.44� 74.22� 50.30+ 70.44� 85.63� 72.53 79.25
promoters 84.91� 71.58� 84.91� 59.85� 74.53� 64.98� 83.02 61.64
sonar 77.88� 70.67� 75.48� 57.96� 73.56+ 67.89� 79.81 56.46
soybean 82.41� 65.58+ 80.78� 37.79+ 79.48� 55.77+ 81.76 66.77
tic tac toe 83.61+ 83.59� 81.00+ 82.73� 86.53+ 31.53+ 89.14 78.84
voting 92.87� 94.35� 90.11+ 55.40+ 90.80+ 87.77� 93.79 87.28
wine 96.07� 84.83� 96.63� 66.72+ 94.38� 87.64� 94.94 77.59

Average 85.54 83.99 84.59 53.37 82.34 76.93 86.16 77.03
Median 84.99 85.68 84.71 53.25 84.25 82.34 86.35 79.43
Wilcoxon � � + + + � n/a n/a

82 83 84 85 86 87 88

Accuracy (%)

50

60

70

80

90

100

R
ed

uc
tio

n
(%

)

ICF

ATISA3

HMN-EI

ATISA2
DROP3

ATISA1

Fig. 5. Accuracy x Reduction chart.

G.D.C. Cavalcanti et al. / Expert Systems with Applications 40 (2013) 6894–6900 6899
emphasize that there are in the literature previous methods that
construct a rank in order to find the best instances, for example:
the InstanceRank method (Vallejo, Troyano, & Ortega, 2010). How-
ever, this method did not perform as well as the DROP3, ICF and
HMN-EI methods. So, it was not used for comparison purposes.

The Heterogeneous Euclidean Overlap Metric (HEOM) (Wilson &
Martinez, 1997) was used in every required situation, i.e., in the
presence of hybrid attributes (numerical and categorical). HEOM
uses the Euclidean distance in numeric attributes and the Ham-
ming distance in categorical ones. Every distance between attri-
butes is calculated and the value returned by HEOM corresponds
to the square root of the sum of these distances, as it is described
in Eq. (1).

HEOMðx; yÞ ¼
ffiXm

a¼1

daðxa; yaÞ
s

ð1Þ
where x and y are instances, m is the number of attributes and xa

and ya represent the attributes of the instances x and y respectively.

daðx; yÞ ¼
ðx� yÞ2; numerical
0; categorical ðx ¼ yÞ
Max; categorical ðx – yÞ or missing

8><
>: ð2Þ

When the attribute values are numeric, the squared difference
is calculated as defined in Eq. (2). If they are categorical and have
the same value, the attribute distance is minimal (zero). But, if they
are categorical and do not have the same value, the attribute dis-
tance is maximal (Max = 1, because the whole dataset was normal-
ized to a number between 0 and 1).

All experiments reported use the k-Nearest Neighbor classifier
(k = 3) and the 10-fold cross-validation method. After preliminary
experiments, the number of nearest neighbor of the function NNk(�)
was also set to 3. Tables 1 and 2 show the experimental results. For

6900 G.D.C. Cavalcanti et al. / Expert Systems with Applications 40 (2013) 6894–6900
each technique, classification accuracy and reduction rate are
presented (R denotes reduction). In order to assess whether
differences in accuracy and storage reduction are significant, a
non-parametric Wilcoxon signed ranks test for zero median at a
0.05 significance level was used. The symbols +, � and �, in the
row labeled ‘‘Wilcoxon’’, indicate that ATISA1 is significantly bet-
ter, worse or equivalent compared with the other algorithms,
respectively.

Table 1 presents a comparison between the three versions of
ATISA. In this table, the 3-NN classifier is used as a reference result.
It shows that ATISA3 obtains better reductions rates than the other
ones. Observing the Wilcoxon test, ATISA1 is significantly better
than ATISA2 and ATISA3 and similar to 3-NN in terms of accuracy
rate. On the other hand, ATISA1 is significantly worse than ATISA2
and ATISA3, in terms of reduction.

Table 2 presents a comparison between ATISA1 (the best of the
three proposed methods) and three reduction techniques: DROP3,
HMN-EI and ICF. ATISA1 is significantly better than ICF and HMN-
EI in classification performance. Observing the reduction, ATISA1 is
better the HMN-EI and similar to ICF. In terms of accuracy rates,
ATISA1 and DROP3 show similar results.

Fig. 5 shows a two dimensional plot: accuracy versus reduction.
Each point in this figure represents the average value showed in
Tables 1 and 2. The top right corner is the best possible solution.
ATISA1 is ahead in terms of accuracy and ATISA3 reaches the best
reduction.

The average running time in seconds shows that the ATISA algo-
rithms are faster than the other ones. The reduction process of the
DROP3 algorithm took, in average, 4.29 s, while ATISA1 was almost
three times faster, 1.56 s. ICF and HMN-EI took 3.16 and 2.44
respectively. The values showed above represent the average time
of the reduction process per algorithm using all the datasets. The
algorithms were implemented in C++ using the GCC 4.1.2 compiler.
All the experiments were executed in a Linux (Kernel 2.6.18) con-
trolled environment using an Intel Xeon 3 GHz with 4 GB of RAM.

4. Conclusions

This paper proposed three algorithms to perform instance selec-
tion: Adaptive Threshold-based Instance Selection Algorithm 1,2,3
(ATISA, for short). ATISA calculates a hypersphere centered at each
instance and this hypersphere defines the coverage area of the in-
stance. The radius of the hypersphere is calculated based on the
distance between the instance and its nearest enemy. Instances
that belong to other instances area of coverage are removed. The
proposed algorithms maintain important points to define each
class, it does not matter if these points belong to the border or
are inner points of the class.

The three versions of the algorithm were evaluated using UCI
databases. In general terms, ATISA1 obtains the best classification
performance, ATISA3 obtains the best rates in the reduction task
and ATISA2 is a balanced choice between accuracy and reduction
rates. ATISA algorithms were compared with the state-of-the-art
instance selection methods. This empirical analysis shows the
effectiveness of the proposed techniques in terms of accuracy
and reduction rates. Moreover, when the computational cost was
evaluated, ATISA was the faster algorithm when compared with
DROP3, ICF and HMN-EI.

Acknowledgment

This research was partially supported by CNPq, Capes and
Facepe.

References

Brighton, H., & Mellish, C. (1999). On the consistency of information filters for lazy
learning algorithms. In European conference on principles of data mining and
knowledge discovery (pp. 283–288).

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13, 21–27.

David, W., Aha, D. K., & Albert, M. K. (1991). Instance-based learning algorithms.
Machine Learning, 6, 37–66.

Frank, A., & Asuncion, A. (2010). UCI machine learning repository.
Gao, Q.-B., & Wang, Z.-Z. (2006). Center-based nearest neighbor classifier. Pattern

Recognition, 40, 346–349.
Garcia, S., Derrac, J., Cano, J., & Herrera, F. (2012). Prototype selection for nearest

neighbor classification: Taxonomy and empirical study. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34, 417–435.

García, V., Marqués, A. I., & Sánchez, J. S. (2012). On the use of data filtering
techniques for credit risk prediction with instance-based models. Expert Systems
with Applications, 39, 13267–13276.

Hart, P. E. (1968). The condensed nearest neighbor rule. IEEE Transactions on
Information Theory, 14, 515–516.

Marchiori, E. (2008). Hit miss networks with applications to instance selection.
Journal of Machine Learning Research, 9, 997–1017.

Mitchell, T. M. (1990). The need for biases in learning generalizations. In J. Shavlik &
T. Dietterich (Eds.), Readings in machine learning (pp. 184–191). Morgan
Kaufman.

Nanni, L., & Lumini, A. (2011). Prototype reduction techniques: A comparison
among different approaches. Expert Systems with Applications, 38, 11820–11828.

Vallejo, C. G., Troyano, J. A., & Ortega, F. J. (2010). Instancerank: Bringing order to
datasets. Pattern Recognition Letters, 31, 133–142.

Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited
data. IEEE Transactions on Systems, Man and Cybernetics, 2, 408–421.

Wilson, D. R., & Martinez, T. R. (1997). Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research, 6, 1–34.

Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based
learning algorithms. Machine Learning, 38, 257–286.

http://refhub.elsevier.com/S0957-4174(13)00448-X/h0005
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0005
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0010
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0010
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0015
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0015
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0020
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0020
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0020
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0025
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0025
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0025
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0030
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0030
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0035
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0035
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0040
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0040
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0040
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0045
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0045
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0050
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0050
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0055
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0055
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0060
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0060
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0065
http://refhub.elsevier.com/S0957-4174(13)00448-X/h0065

	ATISA: Adaptive Threshold-based Instance Selection Algorithm
	1 Introduction
	2 Adaptive Threshold-based Instance Selection Algorithm (ATISA)
	2.1 Adaptive Threshold-based Instance Selection Algorithm 1 (ATISA1)
	2.2 Adaptive Threshold-based Instance Selection Algorithm 2 (ATISA2)
	2.3 Adaptive Threshold-based Instance Selection Algorithm 3 (ATISA3)

	3 Experimental results
	4 Conclusions
	Acknowledgment
	References

