
Common Component
Market: even your mother
will want one

Boom! I close the door and get home.

While leaving my bag in the closet, I hear a

voice calling me from the kitchen.

- Son, are you there? – asks my

mom.

- Yes, it’s me, I answer, while going

there.

- Sit down here, and stay with me,

while I prepare a lunch for you, says my

mom.

My mother, nostalgic as she is, asks me if I

remember what today’s date is. As I usually

forget, I try to think quickly if it is Mother’s

Day or her birthday; I quickly realize that it

is none. Without success, I tell her that I

can’t remember anything special and

apologize.

Then, she tells me that I should be more

attentive, because today is a special day:

it’s been twenty-two years since she had

made a nine hour trip and the reward was

watching me to be awarded my Master’s

degree in Computer Science.

Surprised, I begin adding up the numbers

and realize that it is true. At the same time,

I realize that, despite all these years all that

MSc process is still alive in my mind.

Kidding about it, my mother say kidding

that she is able to remember about

dissertation, and I am not. Next, she

suddenly asks me what the work was about

and why I spent so much time to conclude

it. By the way, it was exactly one year and

eleven months.

I try thinking of a short explanation for

an Approach for Distributed Component-

Based Software Development, in some

minutes. At this moment, flash through my

mind frameworks, design patterns,

middleware, the MVCASE tool…at last, I

give up.

- I say, Mom, it was more or less like

this, in short: from since client requests, I

built software components, that, were next

in application development. My mom’s

face wrinkles in disapproval.

When I try thinking of a better

explanation, she continues:

- Yes, so are you trying to say that

you created something once, these so called

“components”, and then you created again

another things, that you call applications?

Why do you have to create twice to do only

a thing?

So, I think to take back a particularized

explanation, when, unexpectedly, another

question is raised:

- And, what do you mean by

“components”?

So, the problem becomes worse, I think.

Why does my mother get curious like this?

Ok, mother is mother. However, if forty-

five experts took eighteen months to define

the software component concept [1], how

can I explain this to my mother now? No

doubt, she is becoming worse than my

Master’s defense committee.

I start thinking in components

definitions, interfaces, plug-ins, when I say:

- Components, mother, are like those

toys that I had when I was a child that

connected to one another to form something

that I wanted, do you remember?

My mother says yes of course that she

remembers, after all, who bought all those

toys?

Next, I say that the components are used

for this. They get together and connect to

one another, until they form complete

software. I look at my mother and I see that

she is relieved, when, suddenly, she says to

me:

- Are you saying that it is so easy to

make software, and yet you spent hours at

the laboratory and at home to do that?

I notice a little tone of fun; so, my

mother says:

- Thus, even I can make software,

and I won’t spend as much time as you.

Where can I find these components?

I tell her that there were none before the

Common Component Market (CCM).

- CCM, what is it? - she asks.

I am surprised with my mother’s interest

but I am happy having to explain to her

what the CCM is, instead of what an

Approach for the Distributed Component-

Based Software Development is, as I had to

do twenty-two years ago.

I look at her and I say:

- The CCM is a large grocery store,

where the members can search for

components and their corresponding

documentation, according to their needs

and then devise own software.

My mother smiles and asks:

- Simple as doing my groceries?

- It is similar, mom. You access the

CCM and you give your informations.

Based on it, the CCM opens the doors,

where you can inform what you want or

look for specific shelves.

-

-

-

-

-

-

-

-

-

-

My mother, interested, asks, while she is

preparing lunch:

- What do you mean by “inform what

you want”?

- It’s similar to choosing your car,

when you bought one, do you remember?

You specified, with your own words, that

you wanted either a red or black car, that

had been used for two years, with six doors,

etc… and it brought a list of options. Then,

there were a few more choices and that was

it: the car was delivered on time. The same

thing happens with components. Based on

information provided, the CCM brings the

possible components, for example: I can

specify to the market that I want

components to be executed in a medical

system, keeping patient, doctor, empty and

occupied bed data, that will be executed in

the internet, using a specific program, on a

computer with the quantity “X” of memory,

with a speed “Y”. With such data, it builds

a sort of table relating the data and brings

me specific components.

- Do you understand? I ask. Look at

this drawing, and you will understand.

Software Components in the Common Component
Market (CCM)

In the Common Component Market (CCM), the definition of software component used is

according with [1]: “Software component is a software element that conforms to a

component model and can be independently deployed and composed without modification

according to a composition standard”.

In addition to a software component description, the CCM provides sufficient descriptive

documentation to enable a consumer (company) to assemble the component into a target

application. Its description, depending on the consumer’s type, goes from requirement

specifications until source code and test cases.

Like this the process of purchasing a car

was done. But, we don’t see this table. You

only have seen the images, navigated

through the cars and only. Like this other

scrawl.

- Ah, it is truth! Now I understand –

she answers. But, what about the idea of

shelves? - She asked again.

- That is simple. You access the

market shelves that you are interested in,

for example:

Common Component Market (CCM)

In the movie “Back to the Future” [2], the hero, Marty Macfly, travels back to 1955 in

the Delorean time machine. Macfly’s objective was to change his future. Our proposal will

be “simpler”: to know how the component market has been developed in the last thirty-five

years and propose an efficient solution.

In 1968, at the NATO Software Engineering Conference, McIlroy [3], in his

evolutionary paper “Mass Produced Software Components”, presents his thesis which states

that: ”the software industry is weakly founded and that one aspect of this weakness is the

absence of a software component sub industry”. The author proposes to investigate mass-

production techniques in software, according to some ideas from the industry of

construction.

McIlroy idealized, with the components sub industry, to see standard catalogues of

routines, classified by precision, robustness, time-space performance, size limits, and

binding time of parameters; to apply routines in the catalogues to any one of a larger class

of often quite different machines; to have confidence in the quality of the routines; and, at

least, that the different types of routine in the catalogue that are similar in purpose to be

engineered uniformly, so that two similar routines should be available with similar options

and two options of the same routines should be interchangeable in situations indifferent to

that option.

For almost four decades, extensive researches has been carried out and presented in

conferences, like International Conference on Software Engineering (ICSE), International

Conference on Software Reuse (ICSR) and in journals like Communications of ACM and

IEEE (Software and Transaction on Software Engineering), in the area of Component-

Based Development (CBD), trying to follow the directions pointed by McIlroy. However,

none of these research results have achieved all the goals set forth by McIlroy.

Among the main reasons for the gap between McIlroy’s ideals and the current state-of-

the-art, are the software industry lagging behind the hardware industry, in terms of

manufacturing principles and catalogues of standard parts; the cultural change in

developers, who always use the verb “to build”, instead of the verb “to reuse” (Wrong –

“What caching mechanisms do we build?” Right – “What caching mechanisms do we

reuse?”); the lack of effective techniques for a couple of familiar purposes; the fact of the

current repository systems rarely consider Domain Engineer or Product Line process for

development of artifacts, and processes for Software Reuse Assurance before publishing the

artifacts for reuse; and, finally, these research results do not consider this piece of McIlroy’s

ideas: ”To develop a useful inventory, money and talent will be needed. Thus, the whole

project is an improbable one for university research”.

Differently from Marty Macfly we cannot physically go back to the past and change the

future. But, anyway, we can make this trip. We have the opportunity to mould the

component industry future, learning the lessons since the evolution of the previous works

and interaction with industry, and to give one more step to resolving the presented questions

with development of CCM.

- After choosing from the

information, cars are presented

(components).

- I prefer this, says my mother. And

she continues: I don’t really trust these

machines. Imagine if it forgets to bring just

my car?

- Mom, don’t be so extreme.

- Ok, and after that what can I do?

asks my mother.

- Then, you bring the necessary

components, request execution and it is

ready. They automatically connection to

one another and the software can be used.

- Oh, my son and why did you spend

so much time in the laboratory, working on

holidays and weekends, if, with

components, making software is so fast?

- Mom, we had not created the CCM.

- Ah, and how did you create this

thing?

- Do you remember the hours of

study, laboratories, trips to conferences,

holidays and weekends? So, let’s have

lunch. Maybe one day, on the beach, if you

have patience, I will explain that to you.

Salvador, Bahia, Brazil, 2025.

References

1. Heineman, G., T., Council, W., T.

Component-Based Software Engineering:

Putting the Pieces Together, Addison-

Wesley. 2001.

2. Universal Studios. Back to the Future.

1985. Available by Universal Studios URL:

http://www.bttfmovie.com. Consulted in

July 1, 2003.

3. Naur, P., Randell, B. Software

Engineering, Report on a conference

sponsored by the NATO SCIENCE

COMMITTEE. 1968.

EDUARDO SANTANA DE ALMEIDA
(esa2@cin.ufpe.br) is PhD Candidate in Computer

Science at Federal University of Pernambuco, Brazil.

JONES OLIVEIRA DE ALBUQUERQUE

(joa@ufrpe.br) is PhD in Computer Science at

Federal University of Minas Gerais, Brazil, and

assistant professor at Federal University of

Pernambuco.

SILVIO ROMERO DE LEMOS MEIRA

(srlm@cin.ufpe.br) is PhD in Computer Science at

University of Kent, at Canterbury, England, and full

professor at Federal University of Pernambuco,

Brazil.

