
RV 2005 Preliminary Version

Checking and Correcting Behaviors of
Java Programs at Runtime with Java-MOP1

Feng Chen, Marcelo d’Amorim, Grigore Roşu

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

{fengchen, damorim, grosu}@uiuc.edu

Abstract

Monitoring-oriented programming(MOP) is a software development and analysis tech-
nique in which monitoring plays a fundamental role.MOP users can add their favorite
or domain-specific requirements specification formalisms into the framework by means of
logic plug-ins, which essentially comprise monitor synthesis algorithmsfor properties ex-
pressed as formulae. The properties are specified together with declarations statingwhere
andhow to automatically integrate the corresponding monitor intothe system, as well as
what to do if the property is violated or validated. In this paper we presentJava-MOP,
an MOP environment for developing robustJava applications. Based upon a carefully
designed specification schema and upon several logic plug-ins,Java-MOP allows users to
specify and monitor properties which can refer not only to the current program state, but
also to the entire execution trace of a program, including past and future behaviors.

1 Introduction
It is relatively broadly accepted today that proper usage ofassertions and runtime
checking can significantly increase the quality and reduce the cost of software de-
velopment. Most of the systems supporting assertions and online checking, how-
ever, tend to focus on contracts between interfaces or on simple checkpoints, pro-
viding limited or no support for specifying and checking complex requirements
referring, for example, to past or to future events. Moreover, most of the cur-
rent approaches support, encourage and promote auniqueunderlying requirements
specification formalism, assumed by its designers to be sufficiently powerful to ex-
press properties of interest. Nevertheless, it is often thecase that such “hardwired”
property specification formalisms cannot express naturally intuitive properties of
certain applications, especially in domain-specific contexts.

Monitoring-oriented programming(MOP) was introduced in [7,9] as a formal
framework for software development and analysis, aiming atreducing the gap be-
tween formal specification and implementation of software systems. InMOP, mon-
itoring is supported and encouraged as a fundamental principle. Monitors are au-
tomatically synthesized from formal specifications and integrated at appropriate

1 Partly supported by NSF/NASA grant CCR-0234524 and NSF CAREER grant CCF-0448501.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Chen, d’Amorim and Rosu

places in the program, according to user-configurable attributes. Violations and/or
validations of specifications can trigger user-defined code, for instance error recov-
ery, outputting/sending of messages, or throwing of exceptions, at various points
in the program.MOP allows users to insert their favorite or domain-specific re-
quirements specification formalisms vialogic plug-ins, which can be essentially
regarded as monitor synthesizers for properties expressedas formulae.

Our previous efforts in [7,9] focused on presenting the basic, fundamental prin-
ciples ofMOP in a programming-language-independent manner. In this paper we
take a more pragmatic attitude and focus onJava-MOP, an instance ofMOP whose
aim is to allow users to specify and verify at runtime safety properties ofJava pro-
grams. Our current implementation ofJava-MOP supports most, but not all, of
the desired features ofMOP. Future versions of the system will gradually incorpo-
rate the remaining features by need, driven by practical experiments.Java-MOP

builds upon our experience with another runtime verification and monitoring sys-
tem, NASA’s Java PathExplorer [15], whose practicality hasbeen testified in the
context of NASA applications.Java-MOP is the basis for our experiments on code
instrumentation, on monitor generation and integration, as well as on the use of
MOP in practical applications.

Efforts have been recently invested in makingJava-MOP a practical tool for
monitoringJava programs against requirements expressed in various formalisms,
with full support for executing user-provided (recovery) code when these require-
ments are violated or validated. In particular, following the fundamental idea of
keeping the three components of monitoring (observation, checking and recovery)
decoupled, we have devised a general meta-specification language for adding re-
quirements specifications toJava applications without modifying manually the na-
tive code. By analyzing such a user-provided meta-specification, Java-MOP can
automaticallygenerate monitors together with corresponding recovery actions, and
can then integrate them into the original programs. We have usedJava-MOP on
a non-trivial case study, namely Sun’sJava Card API 2.1. Even though the tech-
niques discussed in this paper are specialized toJava, we believe that they are
general enough to apply to other object-oriented programming languages.

This paper is organized as follows. Section 2 introduces thereader toJava-

MOP, by means of a simple example showing how one can useMOP to detect and
recover from concurrency errors in aJava HTTP client application. Section 3 dis-
cusses related work. Section 4 presents theJava-MOP tool. Section 5 approaches
some implementation details, and, finally, Section 6 concludes the paper.

2 MOP in Java: A Simple Example
In this section we show a simple example whereMOP helps to increase the ro-
bustness of a software system through online detection of requirements violations
caused by “unexpected” thread interleavings; moreover, once a violation is de-
tected, user-provided recovery code is executed, thus reflecting MOP’s runtime
detect-and-recover capability. Figure 1 shows aJava code fragment of an HTTP
client taken from [6], which tries to request resources fromthe server and uses a
shared queue to keep track of waiting clients. The client first requests access to the

2

Chen, d’Amorim and Rosu

server. If not granted, it adds itself into a waiting queue (/*1*/) and then suspends
itself (/*2*/), waiting for another client to resume it. If granted, it does its work
with the server and then it resumes a waiting client, if thereis any waiting (/*3*/).
The client continuously requests access to the server in a loop. To avoid dataraces,
the access to the waiting queue needs to be synchronized.

public class HttpClient extends Thread {
private static Vector suspendedClients = new Vector();
... irrelevant code ...
public void run() {
while (true) {
... request server access ...
if (!accessGranted) {

/*1*/ synchronized (suspendedClients) {
suspendedClients.add(this);

}
/*2*/ suspend();

} else {
... work with server ...
synchronized (suspendedClients) {
if (!suspendedClients.isEmpty()) {

/*3*/ ((HttpClient)suspendedClients.remove(0)).resume();
}}}}}}

Fig. 1. Java code fragment of an Http client.

There are (at least) two subtle concurrency errors in this code. The first is as fol-
lows. Suppose that a client’s access is denied for some reason and that, right before
it adds itself to thesuspendedClients queue (at/*1*/), the thread scheduler de-
lays it so long that all other clients terminate their job. Our client then continues and
adds itself to the waiting queue, but, unfortunately, thereis no other client working
with the server to ever resume it. So that client will suspenduntil another client
hopefully comes and is granted access, to eventually resumethe starved client.

The other concurrency error is as follows. Suppose that a client is denied access,
puts itself into the waiting queue, and then right after releasing the lock but before
suspending itself (at/*2*/) it is delayed long enough to allow another client to
remove it from the waiting queue and resume it (/*3*/) – resume has no effect
if the thread is not suspended. Then the thread regains control and continues to
suspend itself. Now there is no information about its suspension in the waiting
queue, so no other client will ever resume it: this client is suspended forever.

One could try to fix these concurrency errors by enforcing additional atomicity,
such as by synchronizing the check for server access, the waiting queue operation,
and/or the suspend action. However, besides the usual efficiency penalties, such
additional synchronizations are deadlock prone; in particular, sincesuspend does
not release the locks that the corresponding thread holds, its occurrence in a syn-
chronized section is almost equivalent to a deadlock. A better solution could be to
reorganize the code to usewait() andnotify() instead.

Both errors are difficult to detect during testing, and even harder to locate their
causes. WhatMOP provides here is a mechanism to detect and recover from these
errorsat runtime. Without even having or understanding a particular implemen-
tation of an HTTP client, one can state that a basic natural requirement for using
suspend andresume is that, for any thread, calls tosuspend andresume on

3

Chen, d’Amorim and Rosu

the thread alternate and start with asuspend. This can be specified as a regular
pattern, namely(suspend resume)*, disregarding any other irrelevant events.
Java-MOP can automatically generate and integrate a runtime checkerfor this re-
quirement, thus detecting the second bug above, in case it occurs, since it is caused
by a mis-ordering of calls:resume is called before a correspondingsuspend.

Logic = ERE;
var int flag = -1;
Event suspend: called(void suspend()) {flag = 1;};
Event resume: called(void resume()) {flag = 2;};
Formula: (suspend resume)*
Violation Handler:

if (flag == 2) {
System.out.println("resume() called before suspend() in HttpClient!

Adding client back to queue ...");
synchronized(suspendedClients){

suspendedClients.add($this);
}

} else {
System.out.println("suspend() called again before

resume() is called in HttpClient!");
}

Fig. 2.Java-MOP specification with recovery

Figure 2 shows this requirement specified inJava-MOP. Here the underlying
formalism is that of extended regular expressions (ERE), and that is stated first
using the keywordLogic. This way,Java-MOP knows which logic plug-in to
use for generating the monitoring code. Then the events to monitor are declared,
which form the atoms over which the requirements are then formalized as a regular
expression. Events declared usingcalled are examined within the context of
the callee and can also bind the arguments of the called method for further use in
warning messages or recovery (not the case here). One can declare local variables,
such asflag, for use in the generated monitor and can associate actions (any Java
code) to events. Here the actions are very simple, they only set theflag variable to
recall the method-call that occurred last. The violation handler allows one to carry
out any task when the requirements are violated; error-reporting and/or exception
raising are just simple special cases. Here, for example, the monitor recovers from
the error by adding the wrongly resumed thread back to the waiting queue. Thus,
Java-MOP can not only help to locate errors, but also recover online.

The first concurrency error above, which is likely to self-recover (when another
client is granted access), is, however, not fixed by the aboveJava-MOP specifi-
cation. This error yields a violation of a liveness property, namely that “any sus-
pended client will be eventually resumed”. Unfortunately,such unbounded liveness
properties arenot monitorable[27,12]. Nevertheless, one can use metric temporal
logic (MTL) [26] (see [35] for a monitor synthesis algorithm) to state bounded live-
ness properties of the form “any suspended client will be eventually resumed int
seconds”. The generated monitor would check if a thread is resumedt seconds after
it suspends, and the violation handler would resume the starved thread.

Since the properties to check should follow the informal requirements of a sys-
tem, they are expected to be independent from any implementation details, so they
can be provided by the system designers or analyzers even before the implementa-

4

Chen, d’Amorim and Rosu

tion process starts. Programmers then only need to provide the violation handlers,
which can contain any recovery code suitable for the particular implementation.

In this example we have only discussed howMOP can detect violations of trace-
related properties expressed using regular expressions. It is worth noticing that
MOP is not limited to regular expressions or to related formalisms. Any specifica-
tion language supported by a corresponding logic plug-in can be employed.

3 Related Work
There are many existing software development approaches related toMOP that
were a major source of inspiration and documentation to us. What makesMOP

different is its generality and modularity with respect to the logics underlying spec-
ification requirements, which allow it to include other runtime checking approaches
as special cases. In this section we mention some approachesmore closely related
to MOP, and intuitively discuss their relationships toMOP.
Assertion-based runtime checking.The use of runtime assertions in software de-
velopment is not new. [29] presents an annotation pre-processor for C, named APP,
and discusses a classification of assertions. Design by Contract (DBC) [22] was
proposed as a software design methodology, well supported in Eiffel [2], in which
specifications given as assertions/invariants in programsare compiled into runtime
checks. There areDBC extensions proposed for several languages.JASS [5], jCon-

tractor [3], andJML [21] areDBC approaches forJava. MonGen [14] is another
DBC monitoring approach for Java, aiming at checking constraints in design pat-
terns specified as formal contracts [33]. However,MonGen assumes the monitors
are manually coded instead of being automatically generated.

These techniques and tools have shown their strength in practice. However,
they can only reason about thecurrent program state – they cannot support trace
requirements. Trace properties concern the sequence of states rather than only the
current state. In particular, safety and liveness are critical requirements in concur-
rent systems and can only be specified in terms of program traces (see examples in
Section 2 and 5.4). Efforts have been made to support advanced properties inDBC-
style approaches.JML, for instance, providesghostandmodelvariables that can
be used to store information from past states, but that essentially requires the user
to manually translate the formal specification into programs. This makes the final
JML specification hard to understand and error-prone.Jass 2.x provides support
for trace assertions in the style of CSP [18], but can only encode strings over the
method calls of a program. Moreover, all the above usefixedanddifferentspecifi-
cation formalisms. However, all these different formalisms fall under the uniform
format of logic plug-ins inMOP. For instance, we have already implemented logic
plug-ins for significant subsets ofJASS andJML (Section 5.3).
Runtime verification(RV) [16,32] aims at providing more rigor in testing. InRV,
monitors are automatically synthesized from formal specifications. These moni-
tors can then be deployedoff-line for debugging, i.e., they analyze the execution
trace “post-mortem” by potentially random access to states, or on-line for dynam-
ically checking that safety properties are not being violated during system execu-
tion. Java-MaC [20], JPaX [15], JMPaX [31], andEagle [4] are such RV systems.

5

Chen, d’Amorim and Rosu

Java-MaC uses a special interval temporal logic as the specification language, while
JPaX andJMPaX currently support only linear temporal logic.Eagle is a finite-
trace general logic and tool for runtime verification.Temporal Rover [13] is a
commercial RV system based on metric temporal logic (MTL) [26] specifications.

These systems, unfortunately, also have their specification formalisms fixed.
While a fixed formalism to express requirements may seem appealing for a tool
designer, experience tells us that there is no “silver bullet” logic whose formulae
can naturally express any property of interest in any application. We believe that
all the RV systems that we are aware of would become special instances ofMOP,
provided that appropriate logic plug-ins are defined. In fact, the general ideas and
the modular approach underlyingMOP are a result of our experience in the area
of runtime verification, and were motivated by our strong interest inunifying the
apparently different RV approaches.
Aspect-oriented programming(AOP) [19] is a software development technique
aiming at separation of concerns. An aspect is a module that characterizes the
behavior of cross-cutting concerns. Aspects are comprisedof three basic elements:
join point, point cut, and advice. The first identifies relevant points in the control
flow of a program. A point cut represents several join points concisely in a single
abstraction, and an advice relates a point cut to an expression that is evaluated
when control flow hits the join point.AOP provides a means to define behavior
that cross-cuts different abstractions of a program, avoiding scattering code that
is related to a single concept throughout the code. One can understand AOP as a
language transformation technique that mechanically and transparently instruments
the code with advice expressions.

Although MOP’s most challenging part is the synthesis of monitors and in-
strumentation code from high-level specifications, the importance of a powerful
mechanism to facilitate the integration of monitors into the implementation can-
not be overstated.AOP provides such a mechanism. Our current implementation
of Java-MOP usesAspectJ [1] as an instrumentation infrastructure: synthesized
monitoring code is wrapped as advices and thenAspectJ is invoked to finish the
integration work. From anAOP perspective, one can understandMOP as asyn-
thesizer ofAOP advices. However, it is important to note thatMOP and AOP

are intended to solve different problems.MOP is tuned and optimized tomerge
specification and implementation via monitoring, whileAOP aims atseparation
of concerns. Even thoughAspectJ providesJava-MOP with an elegant and rapid
mechanism to integrate monitors into an implementation, itdoes not provide every-
thing a powerfulMOP environment needs: in particular,AspectJ does not provide
support for someMOP features such as atomicity of actions associated to events,
or property checks at every state change of a particular object.

4 Java-MOP

Java-MOP is anMOP development tool for Java. The major purpose ofJava-MOP

is to provide an infrastructure for combining formal specification and implemen-
tation by automatic generation of monitoring code and instrumentation of moni-
tored programs forJava. To accommodate the underlying pluggable logic frame-

6

Chen, d’Amorim and Rosu

work, Java-MOP provides a general and extensible specification schema, allowing
users to specify properties using different formalisms andto optionally state how to
steer the behavior of the system when requirements are violated or validated. This
schema is devised to fitJava, but is general enough to easily support other object-
oriented languages. This section focuses on the specification schema ofJava-MOP,
leaving the implementation details to the next section.
4.1 Standalone Specifications v.s. Annotations
We encourage users to provideJava-MOP specifications in separate files. However,
for users’ convenience, we also allow specifications to be added as code annota-
tions. This makesMOP look similar in spirit to other DBC-like tools, e.g.,Jass

or JML. When annotations are used, theJava-MOP front end generates a separate
specification file from the annotated source file.

The current tool supports only properties within the scope of a class. Therefore,
eachJava-MOP specification file corresponds to aJava class, containing all the
properties concerning that class. Each property is formally given as aJava-MOP

specification that will be further turned into a monitor. Figure 3 shows the format
of aJava-MOP specification. Note thatJava comments are allowed.
4.2 Specification Schema

/************** Heading starts ****************/
[attribute]* <Type> <Name> Logic=<Logic Name> {

/************* Body starts ********************/
... Specification Body ...
/************* Handler starts *****************/
[Violation Handler: ...handling the violation...]
[Validation Hander: ...handling the validated...]

}

Fig. 3. Syntax of theJava-MOP Specification

The design of theJava-MOP specifications is mainly driven by the following
factors: uniformity in the use of various logics, ability tocontrol monitor behav-
iors, and compatibility with existing tools such as those based on DBC. A formal
specification consists of three parts: the heading, the bodyand the handlers.
Theheadingis composed of optional attributes, type, name of the specification, as
well as the name of the underlying logic (the unique name identifying the corre-
sponding logic plug-in). We next discuss each of these in more depth.

Attributesare used to configure the monitor with different installation capabili-
ties. They are orthogonal to the actual monitor generation.One important attribute
is static, which states that the specification is related to the class instead of the
object. For a static monitor, only one instance is generatedat runtime and is shared
by all the objects of the associated class. By default, monitors are non-static, mean-
ing that every object will be monitored individually. Theasyn attribute requires the
monitor to run asynchronously. When omitted, the monitor runs in synchronized
mode, forcing the system to wait until the monitor finishes its work.

The typedefines points in the execution where properties are checked. Four
types are available:class-inv, interface-constr, method, and check-
point. The typeclass-inv states that the property is a class invariant and
should be checked whenever the referred fields are updated orthe referred methods

7

Chen, d’Amorim and Rosu

are called.interface-constr denotes a constraint on the interface. It should
be checked at every observable state change, specifically onboundaries of public
method calls. It is similar to a class invariant inJML [21]. Themethod specifica-
tion is used to specify pre, post, and exceptional conditions for a method.check-
point specifications are placed inside the code and checked whenever they are
hit during the execution. If thecheckpoint specification is written in a separate
file, the programmer may place a reference to the name of the specification,//@
<specification name>, at the appropriate positions in the source code.

The logic nameused in the specification, e.g.JML or ERE, is needed in order
for Java-MOP to generate the monitor using the appropriate logic plug-in.

The bodyof the specification formally specifies the desired property. Its syn-
tax varies with the underlying logic. ForJML andJass specifications, we adopt
their original syntax except for the format of comments. So one can translateJML

andJass specifications intoJava-MOP simply by changing their headings and pro-
viding violation handlers. Properties written in logics that express requirements
over traces of the program, such asERE andLTL, need a different structure of the
specification body, like the one discussed in Section 4.3.
Thehandlersare provided by the user at the end of the specification to handle the
violation and validation of the property. It is worth notingthat violation and vali-
dation of a formula arenot complimentary to each other. For example, a property
stating “event A eventually leads to event B” would never be violated or validated.
To provide better support for error handling,Java-MOP pre-defines some variables
which can be used in handlers. These give the handler the ability to retrieve en-
vironment information, such as the current object reference ($this), arguments
and the return value of a method call, as well as other information to locate the
violation, such as the name of the monitored specification, and so on.

4.3 Specifying Trace Properties
Trace logics, such asERE andLTL, give users the ability to specify safety proper-
ties concerning the entire execution trace. Specifying such trace properties requires
a different structure of the specification body from that used in contract-based for-
malisms such asJML andJass. Based on experience with runtime verification of
temporal properties, we devised a typical structure for thebody of the trace spec-
ification, which consists of two parts, as Figure 4 shows. Thefirst specifies how
to extract the abstract trace of the program, by declaring predicates and events
building the trace, along with some assistant variables. The second is a formula
specifying the property, whose syntax is specific to the underlying logic. It is worth
noting that, although we believe this structure is suitablefor many trace logics, the
user can devise her own syntax for the logic that she adds to theJava-MOP tool.

There are two important aspects regarding the abstraction of the execution trace.
One is to define theobservation pointsand the other is to extract the necessarystate
information, i.e., theabstract state. Most types of MOP specifications have their
observation points fixed by design. But for the class invariant, the observation
points are implicitly determined by the specification, e.g., by the declaration of
predicates and events in the above example. Specifically, this specification should

8

Chen, d’Amorim and Rosu

For CruiseController

class-inv CruiseControlBehavior Logic=FTLTL {
/******** specification body (declarations) *******/
var double x = 0;
event ControlOn: called(void On()) {x = $this.speed;}
event ControlOff: called(void Off());
predicate isNormal: ($this.speed < x+5) && ($this.speed > x-5);
/******** specification body (formulae) **********/
/* After the cruise control is turned on, the speed should be */
/* kept within the cruise speed +/- 5 until the control is off. */
formula : ControlOn -> (isNormal U ControlOff);
/*********** Handlers begin **********************/
Violation Handler: {

// if violated, try to restore the speed.
if ($this.speed > x) $this.brake() else $this.accelerate();

}
}

Fig. 4. A cruise control specification using future-time linear temporal logic(FTLTL).

be checked at the end of calls to methodson() andoff() in the CruiseCon-
troller class (stated by theFor keyword at the top of Figure 4) as indicated by
events, as well as at every update of thespeed field since it is referred from the
isNormal predicate.

The declaration of events follows the format:event <name> : <event

type> [&& <boolean expression>] [action]. The following event types
are supported:update(<field>), called(<method>), begin(<method>),
end(<method>), andexception(<method>). The semantics of event types
is as follows. Forupdate, an event is sent right after the corresponding field
assignment; forcalled, an event is generated right before the method is called
in the caller’s context (this may be necessary because sometimes the source code
of the method is unavailable, e.g., methods of the superclass that come from a
library); for begin, an event is generated right before the beginning of the method
execution; forend, when the execution of a method ends but has not returned;
for exception, when the method throws an exception and exits and before the
exception is caught. One can put additional constraints on the event. This is realized
by attaching a boolean expression that must be true when the event is triggered.

Java-MOP also allows users to associate actions, declared within curly brackets,
to monitored events as Figures 2 and 4 show. This strengthensthe expressiveness
and effectiveness of the specification language. For example, like in Figure 2, we
may associate counters with events together with a regular expression and thus
specify properties like “the trace contains as many A’s as B’s”, which are beyond
the expressive power of regular languages. In general, developers can associate
any action to events. This allows one to create orthogonal data-structures that can
be used to smoothly “wrap” an application and “observe” eachof its execution
steps. In the example in Figure 4,x is updated to the current speed when the cruise
control is turned on. This way we maintain themonitor state, a necessary feature
in the support of parametric events.

Predicates are declared with the keywordpredicate and follow the format:
predicate <name> : <boolean expression>. As discussed, for class in-
variants, predicates also indicate the observation points, namely that class invari-

9

Chen, d’Amorim and Rosu

ants should be checked every time when any of the variables used in the defining
predicates are updated. Currently, due to limitations of theAOP framework that we
use, only fields of primitive types are allowed in the class invariant inJava-MOP.

Predicates and events are then used in the context of a formula as atomic propo-
sitions. When the observation point of interest is encountered, the corresponding
monitor will evaluate these propositions based on the program state and the event
that it received, and then use their values to evaluate the formula.

5 Implementation
Java-MOP provides both GUI and command-line interfaces for editing and pro-
cessing specifications. The tool can be obtained from our website [23]. A web-
based interface is also available for the interested user toexperiment online before
having to go through the installation process.

TheJava-MOP tool incorporates two functionalities: code generation and mon-
itor integration. Code generation is encoded within logic plug-ins, andAspectJ is
used as an integration (instrumentation) mechanism. Specifically, the tool gen-
eratesAspectJ aspects for specifications which are notcheckpoint, and invokes
theAspectJ compiler to instrument the original program. In this section, we briefly
discuss the design and implementation ofJava-MOP.
5.1 Architecture
To provide the extensiblity ofMOP, we employ a client-server architecture style.
The client includes the interface modules and theJava-MOP specification proces-
sor, while the server contains a message dispatcher and logic plug-ins forJava. The
message dispatcher takes charge of the communication between the client and the
server, dispatching requests to corresponding logic plug-ins. The communication
can be either local or remote, based on the installation of the server. The advantage
of this architecture is that one logic server can provide monitor generation services,
which can require intensive computation and/or search through already processed
formulae (for efficiency), to multiple clients. Besides, the client is implemented
purely inJava and thus can run on different platforms, while some of the logic en-
gines, namely those for linear temporal logics andERE, are implemented in Maude
[11], an efficient meta-logic development tool which runs best under Linux. This
architecture provides a more portable tool, since the client and the server are al-
lowed, but not enforced, to run on different platforms.

The client provides both a command-line and a graphical userinterface. The
command-line interface takes as input argument either a sequence ofjava files and
specification files, or a folder path that contains these. Then it processes all theJava

file(s) found in the input path, generating files in which monitors are synthesized
and integrated appropriately into the original source code. Currently the GUI can
only handle annotatedJava files. It is based on theEclipse platform [1]. We also
implemented a Web-based interface [23] through which one can try Java-MOP

online without having to install it locally.
Java-MOP currently usesAspectJ for code instrumentation. Forcheckpoint

specifications, monitoring code is inserted where the annotations were defined.As-

pectJ aspects are produced for all other kinds of specifications. However, note that

10

Chen, d’Amorim and Rosu

Dispatcher

Java
Shell

for ERE

Java
Shell for
FTLTL

Java
Shell for
PTLTL

Java
Shell

for Jass

Java
Shell

for JML

Logic Server

Logic
Engine
for ERE

Logic
Engine

for FTLTL

Logic
Engine

for PTLTL

ERE Plugin FTLTL Plugin PTLTL Plugin Jass Plugin JML Plugin

Specification
Processor

Web Interface
Graphic
Interface

Command-line
Interface

Local or Remote
Communication

Fig. 5. The Architecture ofJava-MOP.

AspectJ performsstaticcode instrumentation, while monitoring isdynamic. This
may be inconvenient in some applications. For example, for aclass invariant, one
may need to monitor every update of a field on aspecific instanceof a class, instead
of monitoring all the updates to the field in all the objects ofthat class.

5.2 Interfaces to Logic Plug-Ins
One important feature of theMOP framework is its extensibility, which allows the
user to add new specification formalisms by providing logic plug-ins. In order to
support this feature, the input and output to a logic plug-inshould be in a standard
format. In Java-MOP, the input to the logic plug-in is simply the body of the
specification, while its output is composed of the following:

Monitored variables. Fields in the class, whose updates should be monitored.

Monitored events. Events to monitor along with associated actions, followingthe
syntax “<eventName> [event definition] <actions>”. The event def-
inition can be one ofset(variable), called(method signature) orex-
ecution(method signature).

Declarations. Variables to maintain relevant state information, needed for the next
monitoring step. These variables will be declared as new fields in the class.

Initialization. A segment of program to prepare the monitor to start monitoring.

Monitoring body. The main part of the monitor, which is executed any time the
observation point is reached.

Intermediate declaration. Temporary variables needed by the monitor during the
verification process.

Success condition. Says when the monitored requirement has been fulfilled. When
this becomes true, the user-provided validation handler will be executed.

Failure condition. This gives the condition that shows when the trace violates the
requirements. When this condition becomes true, the user-provided “recovery”
code (given as the violation handler) will be executed.

Figure 6 shows the output of theFTLTL logic plug-in used in Figure 4. TheJava-

MOP specification processor will further translate this outputinto AspectJ aspects.

11

Chen, d’Amorim and Rosu

//Monitored Variables
$this.speed;x;
//Monitored Events
ControlOn[called(void On())]:{
event0=true; x = $this.speed;}
ControlOff[called(void Off())]:{
event1=true;}
//Declaration
int $state = 1;
local boolean event0=false, event1=false;
//Intermediate Declaration
boolean isNormal= ($this.speed < x+5) && ($this.speed > x-5);
boolean ControlOn=#event0;
boolean ControlOff=#event1;
//Monitoring body
switch ($state) {
case 1:
$state = ControlOff ? -1 : ControlOn ? isNormal ? 2 : -2 : -1; break ;
case 2:
$state = ControlOff ? -1 : isNormal ? 2 : -2; break ;
}
//Success condition
$state == -1
//Failure condition
$state == -2

Fig. 6. Output of the FTLTL plug-in for the specification in Figure 4.

5.3 Supported Specification Languages
Two kinds of specification languages are currently supported in MOP: DBC-like
runtime checking languages such asJML andJass, and trace languages likeERE

andLTL. We next introduce them informally. Interested readers canrefer to our
technical report [8] for more technical details, includingcorresponding algorithms.
JML and Jass. Both JML and Jass are Java specific, using Java syntax inside
specifications. This makes translation from specification to checking code straight-
forward; separate logic engines are unnecessary in such cases. Therefore, the logic
plug-ins forJML andJass consist only of language shells.Jass has been defined in
a plug-in supporting state assertions. Most features ofJass, except trace assertions
in Jass 2.x, are supported. For trace properties, we prefer to useERE andLTL as
specification languages.JML provides a comprehensive modeling language with
some features that are difficult, sometimes almost impossible, to monitor, for exam-
ple, theassignable clause [21]. We therefore focused on defining those features
supported by theJML runtime checker in [10], including method specifications,
type invariants, and historic constrains. We do not supportabstract specifications,
i.e., ghostvariables andmodelfields, but note that declaring and using variables
inside specifications is supported in a more general fashionin MOP.

ERE. Regular expressions provide an elegant and powerful specification lan-
guage for monitoring requirements, because an execution trace of a terminating
program is in fact a string of states. The advantage of regular expressions over
many other logics is that they are a standard form of notationto which many peo-
ple have already been exposed. Extended regular expressions (ERE) add comple-
mentation, or negation, to regular expressions, allowing one to specify patterns that
mustnot occur during an execution. Complementation gives one the power to ex-
press more compactly patterns on traces. However, complementation leads to a

12

Chen, d’Amorim and Rosu

non-elementary exponential explosion in the number of states of the correspond-
ing automaton if naiveERE monitoring algorithms are used. Preliminary efforts
in [28,30] show how to generate efficient monitoring algorithms forERE. A logic
engine forERE and its correspondingJava plug-in have been implemented.

LTL. Temporal logics and its variations prove to be favorite formalisms for
formal specification and verification of systems [24]. Safety properties can be nat-
urally expressed using temporal logics, so these logics canalso be very useful in
MOP. Based on work in [17] and [27], we implemented logic enginesand corre-
sponding language shells forJava to support variants of temporal logics.
5.4 Case Study
We evaluated the effectiveness ofJava-MOP on Sun’s standardJava Card API

2.1 informal specification and the reference implementation [34]. Our case study2

was initially motivated by an already existingJML specification [25]. The analysis
carried out in this case study illustrates the strength of combining specification
formalisms, such asJML, ERE andLTL in this case. The resulting specification
is more comprehensive and more concise when appropriate formalisms are used
for different properties. Another interesting observation in this case study is that,
while monitoring contracts of classes is quite heavy and maygreatly impact the
performance in many cases, monitoring temporal properties, e.g. safety properties
about orders of method calls, is usually relatively little costly because it requires
few observation points as well as simple processing actions, most of which just
simple state transitions. Moreover, violations of temporal properties are very likely
to be corrected at runtime by proper usage of handlers. The complete case study
report can be found on our website [23]. Here we only present some conclusions.

Java Card API 2.1 consists of four packages, namely,java.lang with 12
classes,javacard.security with 17 classes and interfaces,javacard.frame

work with 18 classes and interfaces, and an optionaljavacardx.crypto pack-
age. The corresponding specification from [25] presents an informal description of
requirements for the implementation. As in [25], our study focuses on the APIs
constraints, putting aside the functional specifications and properties related to
lower level details. In addition to straightforward pre-conditions, post-conditions,
and exceptional conditions, our review reports around 40 critical properties, most
of which are history-related constraints on the method calls (30 out of 40). There-
fore, allowing the use of logics such as ERE or LTL provides a more concise and
dependable way to formally specify and check time-related properties at runtime,
significantly improving the expressiveness of the specification.

6 Conclusion and Future Work
A software development tool supporting monitoring oriented programming (MOP)
in the context ofJava has been presented, calledJava-MOP. Following the general
philosophy ofMOP, our tool supports several requirement specification formalisms
and can easily be extended with new ones, provided that corresponding logic plug-
ins are supplied. Several examples were discussed, showingthe practical feasibility
of the approach in spite of its generality. Interesting future work includes support

2 We warmly thank Sophie Quinton of her help with this case study.

13

Chen, d’Amorim and Rosu

for specifying global (cross class) properties, which is needed for many applica-
tions including theJava Card case study. Another interesting avenue for further
investigation is to use static analysis as a means to reduce the runtime overhead:
if a specification, or part of it, can be proved statically, then one does not need to
generate the corresponding monitor, or can generate a more efficient one.

References

[1] Eclipse and aspectj project. http://www.eclipse.org.

[2] Eiffel language. http://www.eiffel.com/.

[3] P. Abercrombie and M. Karaorman. jContractor: BytecodeInstrumentation
Techniques for Implementing Design by Contract in Java. InProceedings of RV’02,
volume 70 ofENTCS. Elsevier Science, 2002.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime
Verification. InProceedings of VMCAI’04, volume 2937 ofLNCS. Springer, 2004.

[5] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass - Java with Assertions.
In Proceedings of RV’03, volume 55 ofENTCS. Elsevier Science, 2001.

[6] Concurrency bugs. http://qp.research.ibm.com/QuickPlace/concurrency_testing.

[7] F. Chen, M. d’Amorim, and G. Roşu. A Formal Monitoring-Based Framework for
Software Development and Analysis. InProceedings of ICFEM’04, volume 3308 of
LNCS, pages 357–372. Springer, 2004.

[8] F. Chen, M. d’Amorim, and G. Roşu. Monitoring Oriented Programming. Technical
Report UIUCDCS-R-2004-2420, Univ. of Illinois Urbana-Champaign, March 2004.

[9] F. Chen and G. Roşu. Towards Monitoring-Oriented Programming: A Paradigm
Combining Specification and Implementation. InProceedings of RV’03, volume 89
of ENTCS. Elsevier Science, 2003.

[10] Y. Cheon and G. T. Leavens. A Runtime Assertion Checker for the Java Modeling
Language. InProceedings of SERP’02, pages 322–328. CSREA Press, 2002.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott.
Maude 2.0 Manual. June 2003. http://maude.cs.uiuc.edu/download.

[12] M. d’Amorim and G. Roşu. Efficient Monitoring ofω-Languages. InComputer Aided
Verification (CAV), 2005.

[13] D. Drusinsky. Temporal Rover. http://www.time-rover.com.

[14] J. Hallstrom, N. Soundarajan, and B. Tyler. MonitoringDesign Pattern Contracts.
Technical Report 04-09, IOWA State University, November 2004.

[15] K. Havelund and G. Roşu. Monitoring Java Programs withJava PathExplorer. In
Proceedings of RV’01, volume 55 ofENTCS. Elsevier Science, 2001.

14

Chen, d’Amorim and Rosu

[16] K. Havelund and G. Roşu.Workshops on Runtime Verification (RV’01, RV’02, RV’04).
2001, 2002, 2004.

[17] K. Havelund and G. Roşu. Synthesizing Monitors for Safety Properties. In
Proceedings of TACAS’02, volume 2280 ofLNCS. Springer, 2002.

[18] C. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

[19] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. InProceedings of ECOOP’97, volume 1241,
pages 220–242. Springer-Verlag, 1997.

[20] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance Tool
for Java. InProceedings of RV’01, volume 55 ofENTCS. Elsevier Science, 2001.

[21] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations and
tools supporting detailed design in Java. InOOPSLA 2000 Companion, 2000.

[22] B. Meyer.Object-Oriented Software Construction, 2nd edition. Prentice Hall, 2000.

[23] MOP Website. http://fsl.cs.uiuc.edu/mop.

[24] A. Pnueli. The Temporal Logic of Programs. InProceedings of FOCS’77, pages
46–57. IEEE, 1977.

[25] E. Poll, J. van den Berg, and B. Jacobs. Specification of the JavaCard API in JML. In
Proceedings of CARDIS’00. Kluwer Academic Publishers, 2000.

[26] R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic.
RealTime Systems, 2(4):255–299, 1990.

[27] G. Roşu and K. Havelund. Rewriting-Based Techniques for Runtime Verification.
Automated Software Engineering, 12(2):151–197, 2005.

[28] G. Roşu and M. Viswanathan. Testing Extended Regular Language Membership
Incrementally by Rewriting. InProceedings of RTA’03, volume 2706 ofLNCS, pages
499–514. Springer-Verlag, 2003.

[29] D. S. Rosenblum. A Practical Approach to Programming With Assertions. IEEE
Transactions on Software Engineering, 21(1):19–31, 1995.

[30] K. Sen and G. Roşu. Generating Optimal Monitors for Extended Regular Expressions.
In Proceedings of RV’03, volume 89 ofENTCS. Elsevier Science, 2003.

[31] K. Sen, G. Roşu, and G. Agha. Online Efficient Predictive Safety Analysis of
Multithreaded Programs. InTACAS’04, volume 2988 ofLNCS. Springer, 2004.

[32] O. Sokolsky and M. Viswanathan.Runtime Verification 2003, volume 89 ofENTCS.
Elsevier Science, 2003. Proceedings of CAV’03 satellite workshop.

[33] N. Soundarajan and J. O. Hallstrom. Responsibilities and rewards: Specifying design
patterns. InProceedings of ICSE ’04, pages 666–675. IEEE Computer Society, 2004.

[34] Sun. Java Card 2.1 API.http://java.sun.com /products /javacard/.

[35] P. Thati and G. Roşu. Monitoring Algorithms for MetricTemporal Logic. In
Proceedings of RV’04, volume 113 ofENTCS. Elsevier Science, 2004.

15

h

	Introduction
	MOP in Java: A Simple Example
	Related Work
	Java-MOP
	Standalone Specifications v.s. Annotations
	Specification Schema
	Specifying Trace Properties

	Implementation
	Architecture
	Interfaces to Logic Plug-Ins
	Supported Specification Languages
	Case Study

	Conclusion and Future Work
	References

